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Abstract Bone structure is an integral determinant of
bone strength. The availability of high resolution periph-
eral quantitative computed tomography (HR-pQCT) has
made it possible to measure three-dimensional bone
microarchitecture and volumetric bone mineral density in
vivo, with accuracy previously unachievable and with
relatively low-dose radiation. Recent studies using this
novel imaging tool have increased our understanding

of age-related changes and sex differences in bone
microarchitecture, as well as the effect of different phar-
macological therapies. One advantage of this novel tool is
the use of finite element analysis modelling to non-
invasively estimate bone strength and predict fractures
using reconstructed three-dimensional images. In this pa-
per, we describe the strengths and limitations of HR-
pQCT and review the clinical studies using this tool.
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Introduction

High-resolution peripheral quantitative computed tomogra-
phy (HR-pQCT), commercially available in the mid-2000’s,
is a non-invasive, low-radiation method for assessing bone
microarchitecture and volumetric bone mineral density
(BMD) in cortical and trabecular compartments of the distal
radius and distal tibia. Its application in clinical research has
increased exponentially in the past decade (Fig. 1), and has
enlightened our understanding of age-related changes and
sex differences in bone microarchitecture, differences in
bone structure across a wide range of bone metabolic disor-
ders, fracture risk, and the response of bone to different
osteoporosis therapies. Coupled with computer-based finite
element analysis (FEA) modeling, HR-pQCT also provides
a newfound approach to noninvasively assess bone strength.

Currently, only one commercial HR-pQCT machine, the
XtremeCT (SCANCO Medical AG, Brüttisellen, Switzer-
land), is able to perform scans at a resolution sufficient to
measure three-dimensional human bone microarchitecture
in vivo. However, research groups worldwide are working
collaboratively to advance HR-pQCT post-image process-
ing algorithms to better quantify the observed changes.

The Canadian Bone Strength Working Group is an inter-
disciplinary academic group established in 2007 that has
interests in advancing bone strength research and education.
Although HR-pQCT is currently a research tool, there is
potential for its use in the clinical diagnosis and manage-
ment of osteoporosis. Our group recently performed a sys-
tematic search of published literature in the adolescent and
adult population up until January 31, 2013 (Medline search
terms “high-resolution peripheral quantitative computed to-
mography” OR “HR-pQCT”, no limitations). In this paper,
we aim to provide a comprehensive review of the method-
ology, limitations, and clinical utility of HR-pQCT with an
emphasis on its use to study aging and gender differences,
fracture discrimination, and treatment effects.

HR-pQCT Scanning Techniques

Image Acquisition

Patient Positioning

As with any medical imaging device, the proper positioning
of the patient is crucial to accuracy and reproducibility. The

most common usage of HR-pQCT is to image the non-
dominant radius and tibia in vivo. The scanner’s gantry is
relatively narrow and shallow (rear physical stop) only
allowing the distal peripheral skeleton to be accommodated.
Although rare, some individuals with large lower leg girth
are not able to fit within the scanner bore.

The limb being scanned is immobilized in a carbon fiber
shell (Fig. 2a). A scout view, essentially a two-dimensional
x-ray scan, is obtained so that the operator can identify a
precise region for the three-dimensional measurement
(Fig. 2b, c, d). The standard measurement protocol utilizes
the following settings: an X-ray tube potential of 60 kVp, X-
ray tube current of 95 mA, matrix size of 1536×1536 and
slice thickness and in-plane voxel size of 82 μm. While the
reconstructed voxel size is 82 μm for the standard patient
HR-pQCT protocol, the actual spatial resolution of the im-
age is approximately 130 μm near the center of the field of
view, and somewhat less off-center (140–160 μm) [1, 2•].
Consequently, structures less than 100 μm are not typically
resolved from in vivo images. At each site, 110 computer-
ized tomography slices are obtained and used to reproduce a
9.02 mm (radial or tibial length) three-dimensional image
(Fig. 2e).

Because HR-pQCT uses a polychromatic X-ray source it
is subject to beam hardening as well as scatter artefacts,
which can significantly impact geometric and densitometric
measures [3]. Daily and weekly quality control scans should
be performed to identify drift, which can occur as a conse-
quence of decreased X-ray emission (decay). The HR-pQCT
single-scan effective dose is estimated to be 3 μSv [4]. Given
that exposure is additive, we recommend no more than three
measures at a single site during an appointment due to the
recommended radiation dose limit being 50 μSv/year (Inter-
national Commission on Radiological Protection).

Motion Artefact

Because HR-pQCT has a high resolution and scan times are
relatively long (3 minutes), any movement during the scan
can result in movement artefact, impacting the accuracy and
reproducibility of the images obtained or rendering the
image unusable. Measures of micro-architecture are more
sensitive to movement artefact compared with geometric or
densitometric measures [5–7, 8•]. While automated and
well-defined manual grading techniques to quantify and
correct for motion artefact have been developed [7, 8•, 9,
10], the best solution to date is to re-scan the patient as the
effect of motion on parameter errors are typically not sys-
tematic and correction algorithms cannot be applied to the
parameters themselves [9].

Automated motion detection does provide the possibility
for real-time assessment of scan quality allowing for the
operator to decide whether a re-scan is necessary [8•]. Pialat
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et al [6] reported that in 22.7 % of their scans motion
artefacts necessitated a re-scan. Looking forward, improved
immobilization would improve data quality and minimize
the need for re-scanning.

Image Registration

When a patient needs to be followed longitudinally, image
registration is applied to ensure the same region is consec-
utively assessed. The HR-pQCT system includes a default
image registration that matches repeat scans by aligning
similar-sized slices. More sophisticated three-dimensional
registration methods have also been developed [4, 11].

Image Analyses

Once the images have been acquired, a default patient evalu-
ation protocol is used to analyze the scans over the entire
9.02 mm three-dimensional region to assess a wide range of
standard and optional structural and density parameters, de-
fined in Table 1 (Fig. 2d presents a typical HR-pQCTsection).

Standard Measures

A good description of the techniques used to provide three-
dimensional measures are given in Boutroy et al 2005 [12],
and it is important to recognize that although these analysis
methods are based on techniques developed for micro-
computed tomography (μCT), some of the parameters with
HR-pQCT are derived rather than directly measured (eg,
trabecular thickness), because the voxel size of the scanner
is close to the average thickness of a human trabecular
structure [13, 14]. In future versions of HR-pQCT scanners,
it may be possible to directly measure all microarchitecture

parameters; however, that is not currently possible with the
standard analysis protocol.

Secondary Analyses

The three-dimensional data from HR-pQCT offers opportu-
nities to develop new techniques and parameters to describe
and quantify the plate and rod-like structure of bone. These
include structure model index [15], connectivity density
(initially developed for μCT of ex vivo bone) [16, 17], and
individual trabecular segmentation (ITS) [18]. Methods
have also been established to improve the segmentation of
the cortical and trabecular compartment [19, 20, 21•], and
subsequently measure cortical parameters such as cortical
porosity [21•, 22•]. There are other applications under de-
velopment, such as for the visualization and quantification
of bony erosions in a rheumatoid arthritis hand [23]. Cer-
tainly, these and future analyses will continue to add value
to HR-pQCT measurements.

Accuracy and Precision

The HR-pQCT systems have been thoroughly tested for
both accuracy and precision using μCT of ex vivo bone as
the gold-standard. Whereas accuracy is typically assessed
using cadaver data, precision is based on repeated measures
analyses from in vivo scanning.

Accuracy

There is moderate to good agreement (r2=0.59–0.98) between
the HR-pQCT and μCT for the assessment of cadaveric mor-
phological parameters [1, 24–28]. Other assessments, such as
connectivity density (r2=0.90) [24], mechanical stiffness

Fig. 1 The number of
publications each year that
utilized high-resolution
peripheral quantitative
computed tomography
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(r2=0.73) [24] and cortical porosity (r2=0.80) [28] correlate
highly with μCT [28]. Liu et al [29] tested ITS against μCT
and found that measurements of HR-pQCT images correlated
significantly with those of μCT images at a similar voxel size
(80μm, r=0.71–0.94) and correlations were stronger for plate-
related parameters compared with trabecular rods. Tjong et al
[1] investigated the impact of different voxel sizes (41, 82, and
123 μm) on HR-pQCT accuracy and found that the 41 μm
voxel size correlated best with the μCT measures and the
123 μm voxel size worst for trabecular microstructure and
cortical porosity measures. Trabecular density and cortical
thickness measures were strongly correlated with μCT across
all voxel sizes.

When compared with the gold-standard μCT, HR-pQCT
provides moderate to good accuracy in assessing bone struc-
tural indices in the radius and tibia.

Reproducibility

Essential to any clinical measurement is the demonstration
that measures are reproducible. BMD assessment by HR-
pQCT is highly reproducible, with precision errors generally
below 1 % [4, 5, 12, 22•]. Structural measures, not surpris-
ingly, have higher precision errors associated with them,
ranging from 2.5 %–6.3 % [4, 5, 12, 22•]. FEA intrinsically
incorporates a composite of BMD and structural data and
has a precision error between that of its components
(<3.5 %) [4].

HR-pQCT measures performed at the radius consistently
have worse precision than those at the tibia [5, 22•] and in
vivo measures have a higher precision error than those ex
vivo (ex vivo 0.5 %–1.5 %) [4], both likely owing to greater
movement artefacts in the radius (a site easily affected even
by the slightest movement of the head, neck, shoulder, arm,
or fine tremors of the hand).

Initial work to characterize multi-center precision has be-
gun through a consortium of HR-pQCT centers using anthro-
pomorphic phantoms incorporating cadaveric radii [2•]. Using
these phantoms, the ex vivomulti-center precision error across
nine HR-pQCT systems was found to be <3 % for density
measures and 4 %–5 % for trabecular structure measures.
These data will be the basis for testing and validating cross-
calibration techniques in the future. Improved automation of
all aspects of data acquisition, analysis, and quality assurance
will also be integral to multi-center standardization.

Segmentation

When analyzing bone, there are generally two bone compart-
ments considered: cortical and trabecular. At the transitional
zone, the confluence of these two compartments, there is little
in the way of clear defining borders, presenting a significant
challenge [30]. The standard analysis protocol involves the

Fig. 2 a, A typical setup of HR-pQCT for patient measurements. At
top, the casts used for securing the forearm and lower leg is shown. b,
c, and d, The procedure for HR-pQCT analysis requires a ‘scout view’
x-ray of the radius or tibia (left) so that the operator can select the
region of interest for scanning (solid green bar). Subsequently, three-
dimensional data can be obtained in the scan region (right). e, A typical
section from HR-pQCT showing the ultradistal tibia and fibula. The
green line on the periosteal surface of the tibia is used to extract the
bone of interest for subsequent three-dimensional analysis
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user manually defining the periosteal surface of the tibia or
radius on each slice and a semi-automated contouring algo-
rithm enables this manual process to be typically completed
within five minutes. Subsequently, the analysis continues with
a filtering and threshold approach that segments the cortical
and trabecular bone compartments so that individual compart-
ment analyses can be made. Typically this segmentation pro-
cess has difficulties in properly identifying the cortex in cases
where it is thin or highly porous.

A dual-threshold approach was introduced to address the
challenge of bone compartment segmentation. This approach
employs a series of fully-automated image processing steps
and has proven to be in excellent agreement with hand-
contouring of μCT images of the same bones (r=0.9 to 1.0)
[19]. This dual-threshold approach was further improved in a
collaboration between the manufacturer and researchers in
Calgary and San Francisco and is now available as part of
the software package for all users of HR-pQCT [22•].

Alternative segmentation approaches have recently been
proposed, including a threshold-independent segmentation
tool that was shown to have a high degree of agreement with
hand-contouring [20]. Most recently, another method that
bases segmentation (and cortical porosity measurements) on

a density profile analysis across the cortex [21•], may also
allow for the identification of the transitional zone [30]
between the cortical and trabecular compartments. Current-
ly, both of these methods are implemented on third party
platforms and therefore require data conversion and transfer
procedures.

Heterogeneity in Bone Structure in Population Studies

Changes with Age

An important development for HR-pQCT adoption is the
establishment of normative databases that provide age- and
sex-specific reference data to allow comparison of individ-
ual subject data to population-level variation. Normative
databases help with the clinical interpretation of HR-pQCT
data by allowing for the production of reports that provide
context to an individual’s HR-pQCT results. It also provides
information about the changes in bone microarchitecture as
a function of sex and age (albeit from cross-sectional studies
of populations). To date there have been three main
population-based HR-pQCT studies that have described
age-related variation in bone microarchitecture – the

Table 1 HR-pQCT parameters with units

Abbreviation Description Standard
unit

Metric measures

Total volume TV Volume of entire region of interest mm3

Bone volume BV Volume of region segmented as bone mm3

Bone surface BS Surface area of the region segmented as bone mm2

Bone volume ratio* BV/TV Ratio of bone volume to total volume in region of interest %

Bone surface ratio BS/BV Ratio of bone surface area to bone volume %

Trabecular thickness* Tb.Th Mean thickness of trabeculae mm

Trabecular thickness SD Tb.Th.SD Measure of homogeneity of trabecular thickness mm

Trabecular separation* Tb.Sp Mean space between trabeculae mm

Trabecular separation SD Tb.Sp.SD Measure of homogeneity of trabecular spacing mm

Trabecular number* Tb.N Mean number of trabeculae per unit length per mm

Cortical thickness (original)* Ct.Th Average cortical thickness mm

Cortical porosity Ct.Po Cortical porosity %

Bone mineral density (D100)* BMD Total volumetric density mg HA/cm3

Cortical bone mineral density (Dcomp)* Ct.BMD Cortical volumetric density mg HA/cm3

Trabecular bone mineral density (Dtrab)* Tb.BMD Trabecular volumetric density mg HA/cm3

Total bone area* Tt.Ar Cross-sectional area mm2

Non-Metric Measures

Structural model Index SMI Measure of trabecular structure (0 for plates and 3 for rods

Degree of anisotropy DA 1 is isotropic, >1 is anisotropic by definition; DA = length of
longest divided by shortest mean intercept length vector

Connectivity density Conn.D Extent of trabecular connectivity normalized by TV mm-3

Cross-sectional moment of inertia lmin, 1max minimum and maximum moments of inertia mm4

*Standard HR-pQCT measures are indicated
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Calgary cohort of the Canadian Multicentre Osteoporosis
Study (CaMOS) cohort, the Rochester, Minnesota cohort
and the Cambridge, UK cohort [31••, 32, 33]. Table 2 details
the changes in HR-pQCT parameters over age.

During puberty, there is a general increase in cortical
BMD and a decrease in cortical porosity with a correspond-
ing increase in estimates of bone strength in both sexes [34,
35]. It has also been suggested that transient increases in
cortical porosity coincide with the age of highest fracture
incidence, during early puberty [36]. With the exception of
early puberty, young men have a higher estimated load-to-
strength ratio (estimated failure load divided by fall force),
or in other words, lower estimated fracture risk.

After puberty, total bone area tends to increase with age,
with men generally possessing a larger cross-sectional area
compared with women (~33 % larger) [31••]. Postmeno-
pausal women have larger intracortical and endocortical
bone surface area compared with premenopausal women
[37]. Cortical thickness is higher in men than in women,
but declines in both sexes with age and over the menopause
[12, 32]. Cortical porosity is higher in young men, but
increases with age and after menopause in women [28,
31••, 38•]. In dual energy x-ray absorptiometry (DXA)-
assessed areal bone mineral density (aBMD)-matched
populations of young (<50 years) and elderly (>50 years)
women and men cortical porosity measures alone showed
age-related increases (approximately +90 % and +30 % for
women and men, respectively) [39].

Young men tend to have similar or greater numbers of
trabeculae that are thicker compared with young women
[31••, 32, 33]. This results in a greater trabecular bone
volume/tissue volume (BV/TV) in young men compared
with young women (20–29 years) [33]. Changes after young
adulthood have been described as loss of trabecular number
and thickness in both genders with aging [31••], decreases in
trabecular number only in women with aging and relatively
larger losses in trabecular thickness in men [33] and no
change in either parameter with age [32]. Postmenopausal
women have lower trabecular number compared with
premenopausal women [12, 37].

As measured by FEA, young men have stronger bones
than young women (34 % to 47 % greater) but both sexes
have losses in strength with aging [31••, 32]. The percentage
of load carried by trabecular bone increases with aging in
both sexes [32] and increases in cortical porosity have
shown through FEA to be important determinants of
strength [38•]. Load-to-strength ratios tend to increase more
in women than in men with aging (27 % more) [31••].

Differences in Relation to aBMD

Osteopenic and osteoporotic women (defined by aBMD) gen-
erally have weaker bone in almost all parameters assessed by T
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HR-pQCT when compared with women with normal aBMD
[18, 28]. Areal (DXA-estimated) BMD is higher in men than
in women, and declines with age [32] and through menopause
[12]. However, not all studies have found an age-associated
decline in volumetric BMD by HR-pQCT [38•].

Individuals with similar DXA-based aBMD can have
vast differences in results determined by HR-pQCT. Sub-
stantial variation in indices reflecting density, structure, and
biomechanical competence exist among subjects with iden-
tical aBMD results [40]. This could be attributable to differ-
ences in bone structure, measurement site, artifacts, or
measurement methodology.

Role of HR-pQCT for Fracture Risk Assessment

HR-pQCT has been demonstrated to be able to discern
between women and men with and without fractures. The
inherent strength of HR-pQCT is its ability to assess a large
slice of bone in three-dimensions for differences in cortical
and trabecular characteristics and to identify those charac-
teristics that are most associated with bone weakness, by
FEA bone strength modelling.

When compared with DXA aBMD, HR-pQCT measures
have a better discriminatory ability to discern between wom-
en with and without fractures [16, 41•, 42–44, 45•, 46–48,
49••], even those with similar aBMD [50, 51•]. Differences
in HR-pQCT assessed cortical thickness and porosity, BMD,
and decay in trabeculae explain a lot of the discriminatory
ability. While HR-pQCT bone quality measures are partic-
ularly sensitive to discriminate forearm fractures from con-
trols [16, 41•], vertebral fractures appear to be more strongly
associated with poor bone quality compared with non-
vertebral fractures in general [52–54]. Many of these mea-
sures are independent of those assessed by DXA [43, 44].

Ex-vivo examinations comparing DXA and HR-pQCT
have concluded that aBMD was highly correlated with
BMD and a number of HR-pQCT-obtained microstructural
parameters [55]. When combining a DXA-calculated polar
moment of inertia measure with aBMD the prediction of
specimen structural failure was similar to that obtained by
the HR-pQCT measures.

Overall, there is emerging evidence that HR-pQCT is
generally superior to DXA for discriminating men and
women with and without fractures, especially at the sites
of measure (ie, distal radius), although all studies to date
were cross-sectional.

Finite Element Analysis Modeling

Many fractures occur in individuals with normal or osteopenic
aBMD, and not only in individuals with aBMD in the osteo-
porotic range.While density is a reasonable surrogate for bone

strength, the assessment of bone mechanical properties by
FEA may improve identification of those at high risk for
fracture because it provides a more comprehensive measure
of bone strength based on both bone microarchitecture and
BMD of each tiny element from the three-dimensional image.
FEA parameters at the radius and tibia are associated with all
types of fragility fractures in both men [56•] and women [57].

FEA modeling has also been shown to accurately predict
the energy needed for fracture in ex vivo studies. At the
wrist, FEA models have correlated highly with bone stiff-
ness (r2=0.79) and strength (r2=0.87–0.96) obtained with
mechanical testing [58–60]. In many of these models, the
zones that display high strains are those where fracture
subsequently occurred [58].

Emerging FEA approaches include the use of accelerated
computational performance based on either multiple central
processing unit cores, or even multiple graphics processing
unit cores. It is now possible with some software applica-
tions to analyze a typical HR-pQCT scan on standard con-
sumer workstations in under two minutes, compared with
hours on less-optimized systems [61].

Role of HR-pQCT in Monitoring Therapy

There are current limitations to the use of DXA in monitor-
ing osteoporosis therapies. The percent of fracture risk re-
duction attributable to changes in aBMD with different
therapies varies from 5 % to 85 % [62–66]. HR-pQCT
presents the potential to monitor other components of bone
strength, with possibly greater discrimination between dif-
ferent osteoporosis therapies. Thus, the interest in applying
HR-pQCT to clinical research studies has grown significant-
ly in recent years, and data from recent studies have provid-
ed interesting insights into the effect of new and existing
osteoporosis therapies on bone structure and strength.

Treatment with alendronate over one and two years large-
ly preserves BMD, cortical thickness, trabecular BV/TV,
and estimated failure load [67, 68, 69••]. One study found
that after two years of alendronate therapy there were sig-
nificant improvements in BMD, cortical thickness and cor-
tical area at the distal tibia, but not at the radius [70].
Treatment with zoledronic acid for 18 months significantly
increased total BMD, cortical BMD, cortical thickness, and
trabecular BV/TVat both sites, but had no impact on cortical
porosity [71]. FEA revealed maintenance of bone strength
with zoledronic acid therapy. After two years of ibandronate
therapy, there was no change in trabecular bone
microarchitecture, however at the tibia there was a preser-
vation of cortical thickness and gains in cortical BMD [72].
One year of treatment with denosumab resulted in mainte-
nance or increases in total, cortical, and trabecular BMD and
cortical thickness [69••].
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One year of strontium ranelate therapy increased trabecular
BMD, cortical thickness, and cortical area [68]. Two years of
treatment with strontium ranelate resulted in increases in cor-
tical BMD, cortical thickness, trabecular BV/TV, and FEA-
estimated failure load [67]. These data may be affected by
beam hardening from the artifact of the higher atomic number
of strontium compared with calcium incorporated in bone.

Odanacatib therapy has been shown to increase total,
cortical, and trabecular BMD as well as increase cortical
thickness at both the radius and the tibia after two years of
therapy [73]. FEA demonstrated an increase in the estimated
failure load (increased bone strength) at both sites with
odanacatib therapy over two years.

Teriparatide therapy for 18 months results in decreases in
total BMD, cortical BMD, and cortical thickness with con-
comitant increases in cortical porosity [71, 74]. Teriparatide
therapy was also associated with trabecular thinning, an in-
crease in trabecular number and reduced trabecular BV/TVat
the wrist [71]. Despite these changes in bone quality, bone
strength was maintained over the 18-month follow-up [71,
74]. With PTH 1-84 there is a loss of estimated bone strength
at the radius and tibia strength after 18 months of therapy [71].

Limitations and Challenges of HR-pQCT

It is important to recognize that HR-pQCTonly assesses bone
at two sites of the peripheral skeleton typically, and there is a
concern whether measurements at these sites reflect strength at
the axial skeleton (ie, hip and spine). There is limited data, but
the few studies that have examined the relationship between
HR-pQCT measurements of the peripheral skeleton have
shown a moderate correlation (r=0.56–0.70) to the axial skel-
eton [75, 76]. Furthermore, it is important to emphasize that
the radius itself is an important fracture site, and certainly
there is no better imaging technology available than HR-
pQCT to measure bone structure at that site. The value of
the tibial measurement in relation to fracture is less directly
relevant, but the value of having a tibial measurement is that it
is a weight-bearing site, as opposed to the radius. Lastly,
evidence is still emerging as to whether the distal radius (or
tibia) is a responsive skeletal site for monitoring therapy;
however, evidence based on the clinical trials conducted to
date are encouraging (as noted above).

Segmentation is a continuing challenge, and a focus of
much energy in technology development. Despite the fact that
HR-pQCT is the highest resolution in vivo scanner available
for human bone measurements, the 82 μm voxel size poses
challenges in segmentation because a human trabeculae is
close in physical dimension. In addition, direct quantification
of porosity is limited to relatively large Haversian canals that
are resolvable by HR-pQCT. Furthermore, identifying the
delineation between the cortical and trabecular compartments

is challenging, largely because a precise border is not always
present due to real biological effects in the endocortical and
intracortical envelopes. Various strategies have been devel-
oped, as discussed earlier, but the most crucial aspect is the
reproducibility rather than the accuracy of the segmentation
process. Removing operator bias has the advantage of pro-
ducing more reproducible data, as well as ensuring consisten-
cy among HR-pQCT centers. Nevertheless, this is an area of
HR-pQCT methodology that requires more work.

There are several other technical issues, such as the partial
volume effect, beam hardening, and assumptions in the calcu-
lations of all the structural and densitometric measures. While
not all of these errors can be corrected, it is important to
recognize that they exist and interpret the findings accordingly.
For example, measures such as the structural model index,
which is highly sensitive to image resolution, should be
interpreted with caution when derived from HR-pQCT, be-
cause it is highly sensitive to motion artifacts, which can occur
especially when scanning the radius. Density-based measures
may be susceptible to beam hardening and scatter artifacts.

Conclusions

HR-pQCT provides unprecedented ability to measure human
bone microarchitecture at the wrist and ankle in the clinical
setting, and these data are providing new insight into changes
in bone quality across the lifespan as well as the impact of
anti-osteoporosis therapies on bone quality. Before this cutting
edge research tool can be used in routine clinical practice, it is
imperative to show its utility for fracture prediction, either in
conjunctionwithDXA-based aBMDor in lieu of DXA.While
today HR-pQCT is strictly a research tool, it is a relatively
easy technology to utilize in the ‘standard analysis’ or auto-
matic analysis default mode, thus opening the possibility for
wider use in the hands of ‘non experts’. If it can be demon-
strated that HR-pQCT provides value to bone quality assess-
ment, the currently prohibitive cost of the systems would
likely be substantially decreased as production increases. Cur-
rently, there are less than 45 HR-pQCT systems world-wide,
compared with thousands of DXA machines. With the devel-
opment of normative databases, it will be possible to provide
better context of the outcome measures from HR-pQCT, sim-
ilar in concept to the T-scores that are routine outputs from
DXA scan reports. Fracture risk assessment (such as FRAX)
could potentially be adapted to include HR-pQCT parameters.

In summary, the three-dimensional measurement of bone by
HR-pQCT confers significant advantages over two-dimensional
measurements based on DXA. It provides assessment of not
only BMD, but also of bone structure and strength. To fully
realize the potential of this technology for clinical use, many
more clinical studies in different populations will need to be
performed.
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