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Abstract 

A graph G is called Ck-saturated if G contains no cycles of length k but does contain such 
a cycle after the addition of any new edge. Bounds are obtained for the minimum number of 
edges in Ck-saturated graphs for all k ~ 8 or 10 and n sufficiently large. In general, it is shown 
that the minimum is between n + cln/k and n + c2n/k for some positive constants cl and c2. 
Our results provide an asymptotic solution to a 15-year-old problem of Bollob~,s. 

1. Introduction 

Given a graph G, we denote the vertex set, edge set and complement of G by V(G), 
E(G) and tJ, respectively; the order and size of G are the cardinalities of V(G) and 
E(G). The path, cycle and complete graph of order k will be denoted by Pk, Ck and Kk, 
respectively. The distance between two vertices u and v of the graph G is denoted by 
dG(u, v). By leaf we will mean a copy of K2 and by triangle, a copy of K 3. (Our 
definition of leaf differs from the usual, attaching a leaf to the graph does produce an 
endvertex however.) If H is a subgraph of G, we write H ~_ G. A graph G 1 is said to be 
at tached to the graph G at the vertex 0 iff V(GI)c~  V(G) = {0}. Of  course, if GI is 

vertex-symmetric the vertex of a t tachment  of GI need not be specified. 

Given the graph F, the graph G is said to be F-saturated if F ~ G but F _ G + e for 

every e e E((~). We note that if F has order  greater than the order, n, of  G then Kn is the 

only F-saturated graph (and vacuously so) of order n. Thus, we restrict our  at tention 
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to n ~> IV(F)I and for such n we define sat(n, F) to be the minimum size of an 
F-saturated graph of order n. 

Apparently, this notion occurred first with Erd6s et al. [9], who determined the 

value of sat(n, Kk) more than 25 years ago. These authors posed a related problem in 
which all the graphs involved are required to be bipartite. This problem was solved 

independently by Bollobfis [1, 2] and Wessel [17, 18]. Since the paper of Erd6s et al. 
several related results, both special and general, have been obtained. As special results, 

K~iszonyi and Tuza [11] determined exact values of sat(n, K1,D, sat(n, kK2) and 

sat(n, Pk). In general, they proved sat(n, F) = O(n) for fixed F; Tuza has conjectured, 
further, that for every graph F the limit l i m , ~  (sat(n, F))/n exists (see [15]). Trus- 

zcynski and Tuza [14] characterized the graphs F for which this limit exists and is less 

than 1. For results on hypergraphs see [8, 15]. Our point of departure is the class of 

problems with F = Ck. As pointed out by Bollobhs [3, p. 103], these form a 'rather 

neglected set of unsolved problems'. 
One of us (unpublished) had asked if sat(n, Ck) = 3n/2 + o(n) for every fixed k > 3 

and infinitely many n. Three exact values of sat(n, CD and bounds, which we will 

determine, are listed in Table 1 in summary form. These show that there can be at 

Table 1 
Bounds and exact values for sat(n, Ck), n sufficiently large 

k sat(n, Ck) n >~ Reference 

3 = n - I  3 

4 = - -  5 Theorem A [12, 16] 

10n - 4 
5 ~ < -  8 Proposition 1 

7 

>/5 1 + n k Theorem 1 

3n 
6 ~< -~- 11 Proposition 2 

7n+ 12 
7 ~ < -  10 Proposition 3 

5 
43n 

9 ~<-~- + O(1) 9 [11] 

>~9and---lmod2 <~(1+, 6--~]n+O(k 2) 3k Theorem2 
\ K ~ D / t  - -  

29n + 99 
12 ~< - -  12 Proposition 4 

22 

( 4 ) 3k~ 5 k 4  2 Theorem3 ~>14and =0mod2 ~< 1+~- -~  n+O(k 3) + 

(~ 4--~-4) k k Theorem 4 /> 20 and =4mod8 ~< + n+ 

n =1 3n+1- /  53 Theorem B[5-7] 
L_ z ._] 
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most eight values of k for which sat(n, Ck) = 3n/2 + o(n), namely: 4,6,8,9, 10, 11, 13 
and 15. On the other hand, sat(n, Ck) < 3n/2 + o(n) has not yet been proved for 
k tending to infinity faster than n ~/2, k < n. 

One may also ask for sat(n, Ck) when n and k both tend to ~ .  Here different results 

may be expected over different regions. Our results give asymptotic formulas for 
sat(n, Ck) up to the second term when k is allowed to tend to infinity slowly. 

For odd k >t 9, 

( l  + 2 k ~ ) n  <~ sat(n, Ck) <~ ( l  + k ~ ) n  + O(k2) 

so that, for n and odd k both tending to oc with k = o(nl/3), 

and 

sat(n, Ck) = n + @(n/k) 

sat(n, Ck) = (1 + o(1))n 

for k = o(nl/2). 

For even k >/ 14, 

(1 +2k~)n<<.sat(n, Ck)<~(l + k~2)n  + O(k3) 

so that for n and even k tending to oc with k = o(nl/4), 

sat(n, Ck) = n + @(n/k) 

and 

sat(n, Ck) = (1 + o(1))n 

for k = o(nl/3). 
For k = 4m, m odd and at least 3 we have a reasonably good upper bound over 

a much wider region: 

sat(n, Ck) <~ + n + -~. 

2. Ck-saturated graphs, small k 

As pointed out by Ollman, a few minutes reflection shows that the unique 
C3-saturated graph of minimum size is the star K I , , - 1  so that sat(n, C 3 ) =  n -  1. 
Already for the next entry in the table, sat(n, C4) = 1_ (3n - 5)/2 J, the original proof 
[12] was 20 pages long; a later proof, [16], is still half that length. (It should be noted 
that the value of sat(n, C4) is misstated in [3, p. 167]). 
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Theorem A (Ollmann [12] and Tuza [16]). sat(n, C4)= [_(3n- 5)/2/ ,  n t> 5. The 

only Ca-saturated graphs of order n >>, 5 and minimum size are pictured in Fig. 1. 

In reading Fig. I it is to be understood that in (i) there is a total of(n - 6)/2 triangles 
attached to the base triangle at the bold vertices and in (ii) there is a total of (n - 5)/2 
triangles attached to the base triangle or the pentagon at the bold vertices. 

The graphs of Fig. 1 suggest a general construction that we will exploit on several 
occasions. Call a graph G a Ck-builder iff G is Ck-saturated and has a vertex, labelled 0, 
such that if the 0 vertices of two copies are identified then the resulting graph is 
Ck-Saturated. Clearly, if G is a Ck-builder and we identify the 0 vertices of s >/1 copies 
of G, then the resulting graph is Ck-saturated. We use this technique to obtain upper 
bonds for sat(n, Ck), k = 5, 6, 7 and 12. 

Some obvious properties of Ck-saturated graphs will be used without further 
reference. Certainly, all blocks of such graphs must themselves be Ck-Saturated graphs. 
Furthermore, if one of those blocks is a copy of K, for some r, 1 ~< r ~< k - 1, then it 
may be replaced by K~ for arbitrary s, r ~< s ~ k - 1 and the resulting graph is still 

Ck-saturated. 
Throughout this section we have attempted to strike a reasonable balance with 

respect to the inclusion of details. We have learned from experience that carelessness 
in verifying the existence of paths and nonexistence of cycles generally causes them to 
not exist, and exist, respectively. 

Proposition 1. sat(n, C5) <~ (10n - 4)/7, n >~ 8. 

Proof. It is easily verified that the graph G pictured in Fig. 2 is Cs-saturated. Since 
there is a path of length 2 from vertex 0 to every vertex of G different from 0, it 
immediately follows that G is a Cs-builder. Let G~, s t> 1, be the graph obtained from 

(i} (ii} 

Fig. l, The minimal C4-saturated graphs; (i) n even, (ii) n odd. 



C.A. Bar¢Jbot et al./ Discrete Mathematics 150 (1996) 31-48 35 

4 5 

0 I 0 8 

Fig. 2. A Cs-builder. Fig. 3. A C6-builder. 

s copies of G by identifying the 0 vertices. Then G= has order n = 7s + 1 and size 10s. 

When n =  7 s +  r, 2~< r~< 7, a Cs-saturated graph with order n and size 
10s + [_ 3r/2 J - 1 can be constructed from Q or G~+I as follows. 

If r = 3 or 5, attach one or two triangles, respectively, at 0 in Q .  
If r = 2, 4 or 6, delete one endvertex from G= and attach one, two or three, 

respectively, triangles at 0. 

If r = 7 (and alternatively, for r = 6), delete one (two) endvertex (vertices) 

from G=+ 1. 
It is a simple matter  to verify that all the constructions described above give 

Cs-saturated graphs and have the required numbers of edges. We leave it to the reader 
to do this. [] 

Proposition 2. sat(n, C6)<~ 3n/2, n ~> 11. 

Proof. Any 6-cycle in the graph G pictured in Fig. 3 must contain two of the paths 

0123, 3456 and 6780 and so cannot exist. In view of the symmetry of G, the existence of 

the paths 065432, 087654, 123654, 108765, and 123678 shows that G is C6-saturated. 

There are paths of length 3,1 and 4 from 0 to each of the vertices 1 and 8. Furthermore, 
there are paths of length 2 and 3 from 0 to each of the vertices 2, 3, 4, 5, 6 and 7. Thus, 
for any two (not necessarily distinct) vertices of G both different from 0, there are paths 

from these vertices to 0 the sum of whose lengths is 5. We conclude that G is 

a C6-builder. 

Let Gs, s >/1, be the graph obtained from s copies of G by identifying the 0 vertices. 
Then G= has order n = 8s + 1 and size 12s. When n = 8s + r, 2 ~< r ~< 8, a C6- 
saturated graph with order n and size 12s + 3[_r/2 J can be constructed from G~ or 
G=_ 1 as follows. 

If r --- 3, 5 or 7, to G= attach one triangle at each of the vertices 0, 0 and 3, 0, 3 and 6, 
respectively, of one copy of G in G~. 

If r --- 4, 6 or 8, attach a K4 to G~ at 0, also attach no triangles, one triangle at 3 and 
one triangle at 6, respectively, of one copy of G in G,. 

If r = 2 and s ~> 2 attach one K4 at 0 and attach one triangle at each of the vertices 
0, 3 and 6 of one copy of G in Gs_ 1. 
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In this case also, it is simple matter to verify that all the constructions described 
above give C6-saturated graphs and have the required number of edges. We again 
leave this to the reader. [] 

Proposition 3. sat(n, C7) <~ (7n + 12)/5, n ~> 10. 

Proof. Let G be the Petersen graph with seven leaves attached as indicated in Fig. 4. 
In proving that G is a CT-builder we make heavy use of the fact that the Petersen 
graph is vertex-transitive. 

The existence of the path 0327891 implies the existence of paths of length 6 between 
any two distinct, nonadjacent vertices of the Petersen graph. 

The existence of the paths 067891 and 067219 implies the existence of paths of 
length 5 between any two distinct vertices of the Petersen graph. Consequently, we 
have paths of length 6 between any two nonadjacent vertices in G, one in the Petersen 
graph, the other not. 

The existence of the paths 06789 and 06721 implies the existence of paths of length 
4 between any two distinct vertices of the Petersen graph. Consequently, we have 
paths of length 6 between any two distinct vertices in G, not in the Petersen graph. 

Since it is easily verified that the Petersen graph has no 7-cycles (see [4], for 
example) we conclude that G is C7-saturated. 

Now consider the graph H formed by taking two copies of G, deleting the endvertex 
adjacent to 0 from one of the copies, and identifying the 0-vertices. Suppose vertex u is 
in one copy of G, vertex v is in the other copy of G and u 4:0 4: v. 

The existence of the path 0912 and 067219 implies the existence of paths of length 
6 between u and v in the case u and v are in the Petersen graphs. 

The existence of the paths 091, 0321 and 06721 implies the existence of paths of 
length 6 between u and v in the case u is in the Petersen graph and v is not. 

The existence of the path 091 implies the existence of paths of length 6 between 
u and v in the case neither u nor v is in the Petersen graph. 

9 8' 1' 

8 I 

7' 7 2 2' 

6 3 

5 4 

Fig. 4. A CT-builder. 
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Since H obviously has no 7-cycles we conclude that H is CT-saturated. 
Consequently, if we identify all of the 0 vertices of s/> 1 copies of G and delete 

all but one of the end vertices adjacent to 0, the resulting graph, G~, is CT-saturated, 
has order n = 15s + 2 and size 21s + 1. For 1 ~< r ~< 7 a C7-saturated graph with 

order n = 15s - r + 2 and size 21s - r + 1 can be constructed from G~ by deleting 

r leaves. For 1 ~ r ~< 7 a C7-saturated graph with order n = 15s + r + 2 and size 

21s + 2r + l can be constructed from Gs by replacing each of r leaves by a tri- 

angle. [] 

Proposition 4. sat(n, C12 ) ~ (29n + 99)/22, n >~ 12. 

Proof. We denote by J3 the Tietze graph. If the triangle of this graph is contracted 

to a vertex the resulting graph is the Petersen graph. Since the Petersen graph 
is nonhamiltonian so is the graph J3 of Fig. 5. We have verified, by computer, 
that every two nonadjacent vertices of the Tietze graph are joined by paths of lengths 

9, 10 and 11 and that every two nonadjacent vertices are joined by paths of lengths 
9 and 10. Thus, the graph G obtained from J3 by attaching a leaf at every vertex is 

C12-saturated since every two nonadjacent vertices are the end vertices of a path of 

length 11. It was also verified by computer that for every pair of vertices u and v of J3, 
distinct from 0 but not necessarily from each other, there are paths from u to 0 and 
from v to 0 the sum of whose lengths is 9 and l0 and l l .  We conclude that G is 

a C ~ 2-builder. 
Consequently, if we identify all of the 0 vertices of s >~ l copies of G and delete all 

but 1 of the end vertices attached at 0, the resulting graph, Gs, is C12-saturated, has 
order n -- 22s + 2 and size 29s + 1. For 1 ~< r ~< 12 a C~2-saturated graph with order 
n = 22s - r + 2 and size 29s - r + 1 can be constructed from Gs by deleting r leaves. 

For 0~<r~<9  a C~2-saturated graph with order n - - 2 2 s + r + 2  and size 
29s + 2r + l can be constructed from Gs by replacing each of r leaves by a tri- 
angle. [] 

Fig. 5. The graph Js: a C12-builder. 



38 C.A. Barefoot et al./ Discrete Mathematics 150 (1996) 31-48 

3. A lower bound 

We will need some additional terminology and notation for this section. If A and 

B are two disjoint subsets of vertices of a graph G we will denote by e(A, B) the number 

of edges of G with one endvertex in A and the other in B and by G [A] the subgraph of 

G induced by A. Given the vertex v of G we denote by No(v) the set of vertices of G that 

are adjacent to v. We will not require all the subsets of a partition to be nonempty. We 
assume the implicit duplication of vertices when we write 'the path abcPdefwhere  P is 

the path cxyzd '  will cause no confusion. 

Theorem 1. For n >~ k >~ 5, sat(n, CR) >~ n(1 + 1/(2k + 8)). 

Proof. Assume, to the contrary, that there are counterexamples and let G be one of 
smallest order n. Necessarily, G is connected. Let 

L = {v~ V(G)ldo(v) = 1}. 

(i) If vl, v z e L  then d(vl ,vz)  t> 3. Since G is connected and n/> 3, vlv2 ¢ E(G). 

Suppose vlwva is a path in G. Then G + V~Vz contains a k-cycle which must be vawvavl 

and k = 3. 
(ii) If v e L and vw ~ E(G) then do(w) ~> 3. From (i) we have do(w) ~> 2. Suppose 

do(w) = 2 and let vwx be a path in G. Then G + vx contains a k-cycle which must be 

vxwv and k = 3. 
(iii) If v e L  and vwxy  is a path in G then do(w)= 3 implies do(x)/> 3. Suppose 

do(x) = 2. Since k >~ 5, G + vy contains a k-cycle which must be vwPyv where P is 
a w - y path in G - v - x of length k - 2. But then x w P y x  is a k-cycle in G. 

(iv) I f v l ,  v a e L  and vlwlw=v2 is a path in O then do(w1), do(w2) >/4. From (ii) we 

have do(w1), do(w2)/> 3. Suppose No(wl)  = {vl, w2 ,x l } .  Since v2 # xl and k/> 5, 
G + V2Xl contains a k-cycle which must be VaX~PWzV2 where P is a x~ - w2 path in 
G - v2 - w~ of length k - 2, so that WlX~Pw2wa is a k-cycle in G. 

(v) No endblock of O is a cycle. Let Ct be an/-cycle containing the cutvertex v of G. 
For l = 3, H = G - (V(Ct) - {v}) is Ck-Saturated with 

e ( G ) = e ( H ) + 3 > ~ ( n - 2 )  I +  + 3 ~ > n  1 +  

while for l >/4, some chord may be added to C~ without forming a k-cycle. 

Let 

A = { re  V(G) Jda(v) = 2}, 

B = {v ~ V(G) ldo(v) = 3, No(v) c~ L # 0}, 

C = {rE V(G)ld6(v) >1 3, No(v)c~ L = 0}, 

D = {v~ V(G)ldo(v)/> 4, N o ( v ) ~ L  ~0} .  
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Then {L, A, B, C, D} partitions V(G) so that, by (i), each vertex of B w D is adjacent to 
precisely one vertex of L, and, by (ii), each vertex of L is adjacent to a vertex of B w D 
(see Fig. 6). Thus, IBI + ID[ = ILl. From Off) and (iv) we have 

e(A, B) = e(A, D) = e(B, B) = e(B, D) = O. 

Since G is connected, G[A] is the union of disjoint paths P1 . . . . .  Pt .  

(vi) For all i, l~<i~< t, we have I V(Pi)l ~< k - 1 .  Let P = vlv2...v~ be a path 
in G[A] with l >~ k and vlx,  v~yEE(G) where x, y e C .  By (v), x # y. Then G +/21/' 3 
contains a k-cycle Ck which must be vlv3...vtyQXVl where Q is a y -  x path of 
length at least 1. But then Ck must have length at least I +  1 >~ k + 1 which is 
impossible. 

Let 

S = {c~CIdG(c) = e(A w B, {c})}, 

S, = { c e S i e ( B , { c } ) =  0}, 

$2 = [ceS[e(B,  [c}) # 0}. 

Obviously, {$1, $2 } is a partition of the independent set S and $1 is the set of vertices 
with degree at least 3 that are adjacent only to vertices with degree 2. 

A C 
r 

I I  
I |  
I I  

| |  

B 

Fig. 6. The partition of VIG). 

| l  
| l  

8| 
SO 
|1 
a|  

6! 
|D 
l !  
| l  
| |  

D 

) 
81 

$a 

_>3 

_>4 
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For  s ~ S let 

P(s) = {PI is a ( c o m p o n e n t ) p a t h  in G[A],  e(P,{s}) # 0}, 

O(s) = { P ~ P ( s ) I P  ¢ P(r), for all r E S  -- {s}}, 

T(s) = { P e P ( s ) l P e P ( r ) ,  for some r e S  - {s}}. 

Obviously,  {O(s), T(s)} is a part i t ion of P(s), a pa th  P in P[A ]  is in P(s) for at most  two 

s in S and O(s) n O(r) = 0 for distinct s, r in S. 

(vii) For  all seS~ we have 

I V(P)I ~< (k - l)(d~(s) - 1). 
P e P(s) 

If I V(P)I ~< 2 for all P e P ( s )  then 

I V(P)I 4 2dG(s) ~< (k - 1)(dG(s) - l) 
P ~ P(s) 

since k >~ 5 and riG(s) >/3. Thus, we m a y  suppose P = vlvzv3 ...v~EP(s) with I ~> 3 and 
VlS, v~s'~ E(G). By (v), s # s'. Consequently,  G + vtv3 contains a k-cycle which must  be 
vtv3 . "  vls'Qsvl, where Q is an s' - s pa th  in G - {Vl, .. . ,  v~} and Q must  contain some 

P'eP(s )  as a subpath  since s e S t .  Then 

I v(P)I + I v(e ') l  <~ k - 1 

and, by (vi), 

Y, IV(R) I = I V(P)I + I v(e)'l + 
P ~ P(s) 

Let 

~ =  U e(s), 
s~Sl 

I V(R) I 
R~t'(s}- {e,p'} 

~ < k - l + ( k - 1 ) ( d c ( s ) - 2 )  

~< (k - 1)(d~(s) - 1). 

o =  U O(s), 
s~St 

3 - =  U r(s). 
s~Sl 

Note  that  {O(s) l seS1  } part i t ions 0. 

(viii) We have ISll ~< ]1~1 ~< ~t. Here  

s~Sl PEg ,/ 
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(ix) We have t >1 IAl / (k  - 1) + IS, l~2. 
By (vii), 

Y~ Iv(P)[ = ~., I V(P)l + 
P e ~  t PePls~ ~ PeOlsl 

I v(P)I  

~<2~1 , (k - 1)(dG(s) - 1) + ~ , (k - 1)lO(s) 

k - 1  k 1 
- 2 ( 2 1 # 1 - 1 ( ' ° 1 - 1 s ' 1 ) + - 2 - 1 ( 9 1  

= (k - 1)(l~l - IS, I/2), 

e * =  O o(~), 
se T l 

J ' * =  ~ T(s). 
sc T~ 

(xi) We have IT, I ~ I~*1 ~ t. Here 

2IT,[ ~< ~ (dG(s)- 1) = e(A, T,)= 21,~'1 -JC*I ~ 21~'1. 
sE TI 

(xii) Finally, we have [S2l ~ 2IBL. Here 

Is2l ~< e(B,  S2)  <. 21BL. 

Let 

~ * =  ~ P(s), 
SE TI 

while, by (vi), 

Z Iv(P)l  ~< (k - 1)(t - I~'1) 
P ~ I P, ..... t'~,l 

so that 

]A[ = ~ IV(Pi)I ~< (k - 1 ) ( l ~ ' l -  ISl1/2) + (k - 1)(t - 1~1) 
i - 1  

~< (k - l )( t  - 1&l/2). 

Partition $2 as follows: 

T,  = { s ~ S z l e ( B , { s } ) =  1}, 

Tz = { s ~ S 2 1 e ( B , { s } ) > 1  2}. 

(x) We have 21S21 ~< 21BI + IT,[. Here 

21S21- ITll = IT~I + 21T21 ~< e(B,  s2)<~ 2ln]. 
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NOW, by counting degrees, 

e /> Ih[ + 2inl  + 31C1/2 + 51OI/2 = n + [D[/2 + ICI/2, (1) 

while, by counting edges, 

l 

e/> ~(1  vtP,)l  + 11 + 3181 + (IcI - ISI)/2 + 3101/2 + 101 
1 

-- Ihl + t + 3181 + IC1/2 + 51OI /2 -  ISI/2 

= n + IOI/2 - [CI/2 + t + Inl - [SI/2, (2) 

since e(C u D, {v}) /> 1 for all v ~ C -  S, so that 

e (G[C w 0-1) >/([Cp - 1SI)/2 + 31D/2. 

First, by (1) and (2), 

e 1> max{n + IDJ/2 + 1CI/2, n + IOI/2 - ICI/2 + t + Ial - ISl/2}. 

Now fix n, I BI, I DI, IS I, and t and define 

f ( IAI ,  ICI )=  max{n + IOI/2 + ICI/2, n + IOI/2 - I C I / 2  + t + I B I -  ISl/2}. 

Then f minimizes at I CI = I BI + t - I SI/2 so that 

e/> min f([AI,  ICI) = n + 101/2 + t/2 + IB[/2 - iSl/4. (3) 
Ihl.rCI 

Next, using (ix), (xii), (1) and (2) we argue in a similar manner  and obtain 

e / >  min max{n + IOI/2 + I f l / 2 ,n  + IOI/2 - l E t ~ 2  + I a l / ( k  - 1)} 
IAI, IcI 

= n + IOl/2 + Ial/2(k - 1) 

= n 1 + + IOl - ~IBI. 

For  IBI ~< (n/2)(1 - 8), (8 to be determined later), 

e>~n 1 +  - - ~ - > ~ n  1 + - ~  , 

by (4), while 

ISI = IS1 I +  IS21 ~< 7t/6 + IBI, 

by (viii), (x), and (xi) so that, for IBI >/(n/2)(1 - ?), 

e >t n + t/2 +181/2 -1SI /41> n + 5t/24 +181/4 ~> n(9/8 - g/8) >~ n 1 + ~-£ , 

(4) 
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by (3) provided 

k ? ~ < - -  
k + 4 '  

Consequently, 

e>~n 1 +  [] 

4. Upper bounds 

A special case of a construction in [11] implies that 

sat(n, Ck) <<. sat(n, P k _ l )  + n -  1 

for all k and n, 3 ~< k ~< n. Combining this inequality with the value of sat(n, Pk-  ~ 1 

obtained in [11] gives the upper bound, for k >/6, 

sat(n, Ck) <~ Ckn + O(1), 

¢k = 

where 

1 
2 k even, 

2 k/z - 2' 
1 

2 odd. 3.2 tk- 3~/2 _ 2 '  

Until now this has been the only general upper bound for sat(n, Ck). 

We present four constructions in this section all of which give upper bounds for 
sat(n, Ck). Each of the first three contains a complete or nearly complete subgraph of 
order at least k and, consequently, these bounds are bad as long as n is small. The 
fourth construction works for small n/k ratios as well. 

Theorem 2. 

C-') sat(n, C2s+l)<,  s + 2  { r ) +  + - 10, 
s -  1 " n -  2 2 

where n = (m + 2)(s - 1 )  + r, l ~< r ~< s - l, s l> 4 and m >13. 

Consider the graph G,.m pictured in Fig. 7. It consists of a subgraph H, a complete 
subgraph K2,-  3 with the edge 0 0 '  deleted and a complete subgraph K, attached to an 
arbitrary vertex O" $ {O, O'} of the subgraph K2~-3 - OO'. The subgraph H consists 
of two vertices A and B joined by m internally disjoint paths P~, 1 ~< i ~< m, each of 
length s. Vertex B is adjacent to all vertices of the subgraph K2,-3 - O0'. Both 0 and 
O' are adjacent to all vertices of H that are adjacent to B. 
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O 
B 

Fig. 7. The graph G~,~,; a Ck-saturated graph, k = 2s + 1 >/9. 

It is easily seen that G,.m has order n = 2 + m ( s - 1 ) + 2 s - 3 + r -  1 =  
(m + 2)(s - 1) + r and size 

m s +  - 1 + 2m + 2 s -  5 + 

= (m + 2)(s + 2) + + - 10 

(2 (;) 
- -~(n  - r) + + - 10. 

It remains to show the existence of paths of length 2s between all pairs of 
nonadjacent vertices of G~,,.. This is done in Part I. In Part  II we show that 
G~,., contains no cycles of length (2s + 1). The details of Part  I have not been included 

since they consist of the analysis of 16 cases. A copy of this analysis is available from 

the third author. 

Part II. To show that Gs.,, contains no (2s + 1)-cycles we assume, to the contrary, 
that C is such a cycle and note that it cannot have the form A B A  ( = APiBP~A). Thus, 

C contains a vertex of K2s- 3 - OO'. Furthermore, C must contain at least one of the 

vertices A, B for otherwise it could have length 2s - 2 at most. 
If A and B are both in C, then necessarily one of the paths BAO or BAO'  would be 

a subgraph of C. Now each of these paths is of length 2s. But then, since (O, B) and 
(O',B) are not edges of G . . . .  we would have IE(C)I > 2s + 1, a contradiction. 

Suppose, then, that A is a vertex of C but B is not. Now the path OAO', which has 
length 2s, is a subgraph of C. But then, since (O, O') is not an edge of G . . . .  we would 
again have IE(C)J > 2s + 1. We conclude that A is not in C. But any cycle of length 
greater than 6 in G~, ,, - A contains at most two vertices of the type (0, q), none of the 
type (p,q) with p/> 1 and none from K , - 0 " .  Thus, C has order at most 
1 + 2 s - 3 + 2 = 2 s .  [] 
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Theorem 3. For k >~ 14 and even, 

sat(n, Ck)<~ ( l  + k 4~2)n  + O(k3). 

Proof.  Throughou t  the proof, s will be even and at least 6 and n >~ 103. 
D e f i n e m > ~ 2 a n d r b y n = m s  2 + s + r +  l a n d 2 s ~ < r < s  2 + 2 s . T h e g r a p h G  . . . .  

pictured in Fig. 8 with m = 2, is constructed as follows. Let H = t~, iwhich 
is connected since s/> 6), with vertices labeled (s, 1),(s,2) . . . . .  is, s) so that is, i) is 
not  adjacent to is, i + 1), 1 ~< i ~< s (indices are read modulo  s). To  each vertex is, i) 
of  H attach a complete graph K,, where the ri's are as nearly equal as possible 
subject to 3 ~< ri ~< s + 3 and ~ = l i r i -  1) = r (the K,, are not shown in Fig. 8). 
For  1 ~< j ~< m, let C~. j be a cycle of length s with vertices labeled (0, i)j so that (0, i)~ 
is adjacent to (0, i + l)j, 1 ~<i~< s. Now construct disjoint (O, i)j - (s, i) paths of 
length s. Finally, append a vertex O and all edges O(s/2, i)j, 1 <~ i <~ s and 1 ~< j ~< m. It 
is easy to see that this graph has order  n = ms 2 + s + r + 1 and size 

( ~ )  ~ - - ( ) ( 2 )  r i --  1 1 + n + O(s3). m ( s  2 + 2 s ) +  - - s +  2 = s 

i=1 

Now define m >/2 and r by n = ms 2 + (m + l)s + r + 1 and 2s ~< r < s 2 + 2s. 
The graph G'~.,, is the same as G~.~ except that the vertices of H are labeled 
( s +  1,1), ( s +  1,2) . . . . .  ( s +  1,s) and the (O, i)j - (s, i) paths of length s are re- 
placed by i 0 , i ) j - ( s +  1,i) paths of length s +  1. Thus, G'~.,. has order  

s/2, I)~ (s, 1) (s/2, 1)2 
(L I)2 (0, 1)2 (0, 1)1 .(I~1)I 

0 - "  v )) 
(o, sh (o, s)e 

0 
o 

Fig. 8. The graph G,.m; a Crsaturated graph, k = 2s + 2 >/ 14. 
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n = ms 2 + (m + 1)s + r + 1 and size 

(;) ri - 1 1 + n + O(s3). m(s 2 + 2 s ) +  - s +  2 = s +  1 

In Part I we construct paths of length 2s + 1, (2s + 3) between all pairs of 
nonadjacent vertices in G . . . .  (G',,,., respectively). In Part II we will show that G . . . .  
(G'~, m) contains no 2s + 2, (2s + 4, respectively)-cycles, As with Theorem 2, the details 
of Part I are not included but are available from the third author. 

Part II. To show that there are no 2s + 2, (2s + 4)-cycles in G . . . .  (G'~, m, respectively), 
we note that any such cycle in either graph would necessarily contain vertices 
u,v where ueC~.~ for some a and veCs. But any cycle containing a vertex 
ueC~.~ necessarily contains an edge e in C,,a and, since d6,,(u,v)>~s and 
d6 , (u ,v )  ~> s + 1 there are at least 2s + 1, (2s + 3) edges of E(Gs, m ) -  E(C~), 

(E(G's, ~) - E(Cs) respectively) that are also in the cycle. Hence, every cycle of length 
2s + 2, (2s + 4) in G . . . .  (G',. ,,, respectively) that contains vertices u and v must contain 
exactly one edge from each of Gs.~ and C~. But clearly this is impossible. Thus, any 
cycle containing u and v has length strictly greater than 2s + 2, (2s + 4) in Gs, ~ (G'~. m), 
respectively). [] 

Theorem 4. For n >~ 4m >~ 12 and m odd sat(n, C4m) <<. ((10m - 1)/(8m - 2))n + 2m. 

Proof. Recall the graph 33 pictured in Fig. 5. In proving Proposition 4 it was shown 
that the graph G~ obtained by identifying the 0 vertices of s ~> 1 copies of J3 and 
attaching one leaf to each vertex was Ct2-saturated, had order 22s + 1 and size 29s. 

There is a natural generalization, 3,,, m odd, of J3 where the 'inner triangle' now is 
a cycle C of length m each of whose vertices lies in one of the m copies of the 
K L 3 subgraphs of J,, (J~ is pictured in [6]). The structure of the cycle on the 'outer' 
two vertices of each of the Ja's is the same as in J3: two consecutive, skip two, two 
consecutive, skip two, etc. These are the 'snarks' of Isaacs [10] who had shown them 
to be nonhamiitonian, i.e., they contain no 4m-cycles. 

Let G . . . .  s >~ 1, m >~ 5 and odd, be the graph obtained by identifying the 0 vertices 
of s ~> 1 copies of J~ and attaching one leaf to each vertex of G,.m different from 0. 
Then G,.m has order n = 2 ( 4 m -  1)s+ 1 and size ( 6 m + ( 4 m -  1 ) ) s = ( ( 1 0 m - l ) /  
(8m - 2))(n - 1). By deleting r leaves, 0 ~< r ~< 8m - 3, we obtain a graph of order 
n = 2 ( 4 m -  1)s+ 1 - r a n d s i z e  

1 0 m -  1 2 m +  1 1 0 m -  1 
(10m - 1)s - r = (n - 1) + x-------; r < n + 2m. 

8m 2 8m 2 ~ s m - - z  

It remains to show that each two nonadjacent vertices of G~. m are joined by a path 
of length 4m - 1. Our proof of this fact is long (12 pages) and so will not be included 
here; full details can be found in [13]. We will, however, outline the proof. 
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The proof is inductive on m beginning at m --- 5. In [6] it was shown that every two 
nonadjacent vertices of Jm are joined by a path of length 4m - 1; in [13] it is shown, 
through consideration of seven cases, that this is true also for paths of lengths 4m - 2 
and 4m - 3. To complete the proof that each two nonadjacent vertices of G~.,, are 
joined by a path of length 4m - 1 it now suffices to show that if the 0 vertices of two 
copies of dm are identified then each of two nonadjacent vertices of the resulting graph 
are joined by paths of lengths 2m, 2m - 1 and 2m - 2. This was accomplished by 
analysis of 24 cases. [] 

Finally, we consider the situation in which k = n. Then we are considering graphs 
that are not hamiltonian but become so upon the addition of any new edge. Minimum 
graphs of order n with this property were shown, [6], to have size 3n/2 for all even 
n >~ 36 and, [5, 7], to have size (3n + 1)/2 for all odd n >~ 53. Combining these results 
we obtain 

Theorem B. Clarke et al. [5-7]. sat(n,C,) = [.(3n + 1)/2 J, n ~> 53. 

5. Concluding remarks 

Although it may not be evident from the results, we made extensive use of 
computers, mainly to check our constructions. The computer also assisted in the proof 
of Theorem 1: linear programming showed that using the inequalities developed in the 
proof, the lower bound n(1 + 1/(2k + 8)) is close to the optimal value for various 
values of n and k. Actually, the experimental optimum seems to be n(1 + 1/(2k + 3)) 
from our computational evidence. 

The computer also helped to discard some of our constructions. It is interesting to 
note that the computer check of our constructions for 14- and 16-cycle saturated 
graphs took hours. To find these graphs - -  the smallest members in their infinite 
families - -  with a computer search is impossible with any computer. 

We were not satisfied with our construction for 6-cycle saturated graphs with 
3 L n/2 ] edges. Therefore, we conducted a computer search for C6-builders with up to 
8 vertices but did not find anything better. 

We think that some of our graphs are the extremal graphs (for k = 5, 6, 7) and that 
our general constructions, if not optimal, still are very close to being optimal and 
show some structural features of the extremal graphs. 

The values of sat(n, C4) = [_ (3n - 5)/2 .] and sat(n, Cn) = [_ (3n + 1)/2 .J together with 
the constructions showing sat(n, Ck) < 3n/2 for other values of k suggest the following 
problems. 

Problem 1. Determine if sat(n, C~) is a convex function of k, k > 3, for fixed n or is 
convex at least when the parity of k is fixed. 
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If this is the case then 

Problem 2. Determine the value of k which minimizes sat(n, Ck) for fixed n. 

On the other hand, if the answer to Problem 1 is in the negative, then the dual 
question arises: which k maximizes sat(n, Ck)? Finally, 

Problem 3. Is lim supnsat(n, Ck)/n a decreasing function of k, at least for odd k and 
even k, respectively? 
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