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SUMMARY

Germ cell specification is accompanied by epi-
genetic remodeling, the scale and specificity of
which are unclear. Here, we quantitatively delineate
chromatin dynamics during induction of mouse em-
bryonic stem cells (ESCs) to epiblast-like cells
(EpiLCs) and from there into primordial germ cell-
like cells (PGCLCs), revealing large-scale reorgani-
zation of chromatin signatures including H3K27me3
and H3K9me2 patterns. EpiLCs contain abundant
bivalent gene promoters characterized by low
H3K27me3, indicating a state primed for differen-
tiation. PGCLCs initially lose H3K4me3 from many
bivalent genes but subsequently regain this mark
with concomitant upregulation of H3K27me3, partic-
ularly at developmental regulatory genes. PGCLCs
progressively lose H3K9me2, including at lamina-
associated perinuclear heterochromatin, resulting
in changes in nuclear architecture. T recruits
H3K27ac to activate BLIMP1 and early mesodermal
programs during PGCLC specification, which is
followed by BLIMP1-mediated repression of a broad
range of targets, possibly through recruitment and
spreading of H3K27me3. These findings provide a
foundation for reconstructing regulatory networks
of the germline epigenome.
INTRODUCTION

Epigenetic reprogramming refers to genome-wide chromatin-

state remodeling leading to fundamental changes of cellular

phenotypes, and it has critical implications for broad areas of

medical science. The key examples include physiologic reprog-

ramming during germ cell development (Kafri et al., 1992; Monk

et al., 1987) and artificial reprogramming in induced pluripotency

(Takahashi and Yamanaka, 2006) or somatic cell nuclear transfer

into oocytes (Gurdon, 1962). While the mechanism for the latter

examples is inherently difficult to analyze due to the low effi-

ciency and high stochasticity, the mechanism for the former

should be amenable to precise genetic/biochemical analysis

as a deterministic activity imposed by a program for germ cell

specification (Saitou et al., 2012). Furthermore, and importantly,

impaired epigenetic reprogramming in germ cells leads to a

variety of critical defects, including loss of germ cells, impaired

development of embryos, and impaired development/physi-

ology of offspring. Thus, it is essential in reproductive biology/

medicine to understand epigenetic regulation and its conse-

quences during germ cell development.

The germ cell lineage in mice arises as primordial germ cells

(PGCs) at around embryonic day (E) 7.25 (Ginsburg et al.,

1990; Saitou et al., 2002). PGCs repress a somatic mesodermal

program, regain a transcriptional network for pluripotency,

and, during their migration, initiate epigenetic reprogramming

that includes reduction of histone H3 lysine 9 di-methylation

(H3K9me2), elevation of H3K27 tri-methylation (H3K27me3),

and demethylation of 5-methylcytosine (5mC) (Seisenberger
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Figure 1. Transcriptional Foundation for In Vitro PGC Specification

(A) Scheme for in vitro PGC specification. BV, Blimp1-mVenus; SC, Stella-ECFP. Bar, 50 mm.

(B) The log2 expression level-frequency plots for the expression of genes with high, intermediate, and low CpG promoters (HCP, ICP, and LCP, respectively).

Dotted lines indicate a log2 expression level of 8, which corresponds to the expression of �20 copies of genes per cell (Kurimoto et al., 2006).

(legend continued on next page)
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et al., 2012; Seki et al., 2005). Consequently, by E13.5 in embry-

onic gonads, PGCs acquire a unique epigenetic state with an

extremely low level of genome-wide 5mC (Seisenberger et al.,

2012). Thus, in reprogramming PGCs, DNA methylation and

transcription are largely uncoupled and a mechanism indepen-

dent of DNA methylation, most likely, that by histone modifi-

cations promotes transcriptional control (Seisenberger et al.,

2012). Subsequently, male and female germ cells establish

unique epigenomes for the spermatogenic and oogenic path-

ways, respectively. Although recent advances in sequencing

technologies have uncovered consequences of epigenetic

reprogramming—particularly the genome-wide distribution of

5mC—during germ cell development (Lee et al., 2014), there is

a lack of information as to how PGCs establish their epige-

nome—particularly the genome-wide histone modification

states—at the outset and what the overall mechanism of

epigenetic reprogramming by germ cells might be. This has

mainly been because PGCs are specified in small numbers

(�40) and are intractable to quantitative analysis, and because

there is no appropriate in vitro system that recapitulates germ

cell development.

Recent studies have shown that embryonic stem cells (ESCs)/

induced pluripotent stem cells (iPSCs) are induced into epiblast-

like cells (EpiLCs), and EpiLCs are in turn induced into PGC-like

cells (PGCLCs) with capacity for both spermatogenesis and

oogenesis (Hayashi et al., 2011, 2012). The global gene-expres-

sion dynamics during PGCLC induction are highly similar to

those for PGC specification and development until around

E9.5, and PGCLCs appear to acquire epigenetic properties

similar to those of PGCs at around E9.5 (Hayashi et al., 2011),

demonstrating that the in vitro PGC specification is a proper

reconstitution of the in vivo pathway and provides an appropriate

model for analysis of the mechanisms underlying PGC specifi-

cation and development. Here, using this system, we investigate

the chromatin-state reprogramming, and in particular, the

histone modification reprogramming, for PGC specification

and development.

RESULTS

Global Transcription Regulation
We first performed a systematic evaluation of transcriptomes of

four key cell types (ESCs, EpiLCs, day 2 [d2] PGCLCs, and d6

PGCLCs) during in vitro PGC specification (Figure 1A) (Hayashi

et al., 2011; Nakaki et al., 2013). We classified the 17,050 genes

into those bearing high (10,848), intermediate (2,438), and low

(3,764) CpG density promoters (HCP, ICP, and LCP, respec-

tively) (Weber et al., 2007). The HCP genes include house-

keeping genes and developmental regulators, whereas the

LCP genes include highly tissue-specific genes. All four cell

types predominantly expressed the HCP genes (Figure 1B), indi-
(C) Gene expression changes. The numbers of genes upregulated (>2 fold, marke

a neighboring cell type are indicated. The numbers of genes expressed at the hi

(D) GO analysis of genes expressed at the highest levels in the four cell types.

(E) Enrichment of genes for the indicated GO terms.

(F) ChIP-seq track transitions for H3K4me3, H3K27ac, H3K27me3, and H3K9me

See also Figure S1.
cating that the HCP genes regulate key properties of the PGC

specification pathway.

We explored genes that were upregulated or downregulated

(>2-fold) between the successive stages (�2.8%–5.9%) and

identified those expressed at the highest level in ESCs (774,

the ESC genes), EpiLCs (608, the EpiLC genes), d2 PGCLCs

(932, the d2 PGCLC genes), or d6 PGCLCs (1,131, the d6

PGCLC genes) (Figure 1C). The Gene Ontology (GO) function

category analysis revealed that genes for ‘‘stem cell mainte-

nance’’ are enriched in the ESC genes but are depleted in the

EpiLC genes, and then again become prevalent in the d2 and

d6 PGCLC genes (Figures 1D and 1E and Figure S1A). In

contrast, genes for ‘‘one-carbon metabolic process,’’ including

Dnmt3a, Dnmt3b, Satb1, and Suv420h1, were prevalent among

the EpiLC genes (Figures 1D and 1E and Figure S1A). Notably,

the EpiLC genes did not show overt enrichment of genes for

developmental regulators (Figures 1D and 1E), despite the fact

that EpiLCs were induced from ESCs by withdrawal of an

inhibitor of the mitogen-activated protein kinase (MAPK)

pathway (PD0325901) and stimulation by Activin A and basic

fibroblast growth factor (bFGF). Instead, the genes for develop-

mental regulators such as those for ‘‘embryonic morphogen-

esis’’ and ‘‘pattern specification process’’ were highly enriched

in the d2 PGCLC genes (Figures 1D and 1E and Figure S1A).

The ESC and d6 PGCLC genes were distinguished mainly by

their unique metabolic, signaling, and cell cycle properties (Fig-

ure 1D). For example, the ESC genes were enriched with genes

for ‘‘lipid biosynthetic process,’’ ‘‘sterol metabolic process,’’ and

‘‘oxidation reduction,’’ whereas the d6 PGCLC genes were

characterized by genes playing roles in the ‘‘cell cycle,’’ ‘‘protein

amino acid phosphorylation,’’ and ‘‘response to DNA damage

stimulus.’’ The d6 PGCLC genes were also characterized by

those for ‘‘programmed cell death,’’ including both positive

(Apc and Brca1) and negative (Akt1 and Bag3) regulators of

apoptosis, consistent with the fact that migrating PGCs are

balanced in transducing apoptotic signals and readily eliminated

by apoptosis when mis-located or depleted from survival

signals (Runyan et al., 2006). The EpiLC genes were also charac-

terized by unique metabolic properties, with genes for the

‘‘sterol biosynthetic process,’’ ‘‘lipid biosynthetic process,’’

and ‘‘glucose metabolic process’’ (Figure 1D). These analyses

provide a clear delineation of key transcriptional properties of

the four cell types during in vitro PGC specification.

Quantification of Chromatin-State Dynamics
and BLIMP1 Binding
To explore chromatin-state dynamics during in vitro PGC

specification, we developed a protocol for the representative

amplification of chromatin-immunoprecipitated (ChIP-ed) DNA

from a relatively small number of samples (Experimental Proce-

dures), as the number of PGCLCs obtained per experiment is
d by corresponding colors) and unchanged (gray) in each cell type compared to

ghest level in each cell type are indicated in bold next to each cell type.

2 in the Prdm1, Dnmt3b, and T loci (50 kb).
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on the order of�105. We measured the distribution of H3 (nucle-

osome), H3K4me3 (promoters), H3K27ac (acetylation) (active

enhancers), H3K27me3 (repression by polycomb complex 2

[PRC2]], and H3K9me2 (repression by G9A/GLP). For the detec-

tion of BLIMP1-binding sites, we generated a knockin mouse

strain in which the EGFP sequence is fused in-frame to the

first ATG of Blimp1, derived ESCs homozygously bearing the

EGFP-Blimp1 knockin alleles, and induced PGCLCs for

the ChIP-sequencing (ChIP-seq) analysis using an anti-GFP

antibody (Figures S1B–S1F). See Figures S2 and S3A–S3C and

Supplemental Experimental Procedures for the normalization

of the ChIP-seq data.

Figure 1F shows ChIP-seq track transitions for the histone

modifications around Prdm1, Dnmt3b, and T loci. Consistent

with their expression, while Prdm1 showed a specific

H3K4me3 peak around its promoter in d2 and d6 PGCLCs,

Dnmt3b showed such a peak in EpiLCs and T showed it in d2

PGCLCs (Figure 1F). Consistently, the three loci exhibited

several distinct H3K27ac peaks in relevant cell types, which

would represent their enhancers (Figure 1F). Indeed, one prom-

inent peak around 10 kb upstream from a transcription start site

(TSS) of Prdm1 corresponds to a T-binding site for Prdm1

upregulation in PGCLCs (Aramaki et al., 2013). On the other

hand, while the Prdm1 and T loci were deposited with a ‘‘lawn’’

of high-level H3K27me3 in ESCs and to a lesser extent in EpiLCs,

they exhibited no H3K27me3 in d2 PGCLCs: the T locus

regained H3K27me3 in d6 PGCLCs. As to the Dnmt3b locus,

the upstream region exhibited high-level H3K27me3 in ESCs

and lost it in EpiLCs, and the whole locus regained it in d6

PGCLCs (Figure 1F). Regarding H3K9me2, the three loci ex-

hibited similar modification patterns in ESCs, EpiLCs, and d2

PGCLCs, albeit at different levels, and all three loci exhibited a

significant reduction of this modification in d6 PGCLCs (Fig-

ure 1F). Thus, the histone modifications of the three key genes

provide not only a precise reflection/prediction of their active/

repressed states, but also novel information as to their regulatory

mechanism during in vitro PGC specification.

Regulation of Promoter and Enhancer Usage
We analyzed the transitions of H3K4me3 and H3K27ac during

in vitro PGC specification. In all cell types, a vast majority of

the genes with high H3K4me3 were HCP genes (Figure 2A)

and the log2 H3K4me3 levels around the TSSs were positively

correlated with the log2 gene-expression levels (Figure S4A).

Consistent with the notion that gene expression involves com-

plex and dynamic enhancer usage (Calo and Wysocka, 2013),
Figure 2. Promoter and Enhancer Usage for In Vitro PGC Specification

(A) The log2 H3K4me3 level-frequency plots for the HCP, ICP, and LCP genes. D

(B) Heat map representation of the changes in gene expression, H3K4me3, and H

(1, 2) for each cell type are shown.

(C) Heat map representation of cell-type-specific H3K27ac peaks and expressio

(D) Venn diagram showing that genes (numbers indicated) with cell-type-specific

(E) ChIP-seq tracks for cell-type-specific H3K27ac peaks in the Tead4, Dnmt3b,

(F) Fraction of genes (color codes indicated) with cell-type-specific H3K27ac pe

(G) Enrichment of transcription factor (TF)-binding sites in cell-type-specific H3K

(H) Venn diagrams showing the co-existence of multiple TF-binding sites in cell-ty

gene numbers in respective categories are indicated.

See also Figures S3 and S6 and Table S5.
the global changes in H3K27ac were more pronounced than

those in gene expression and in H3K4me3 (Figure 2B). We iden-

tified H3K27ac peaks (<15 kb from the TSSs and gene bodies)

specific to each cell type: many of the genes with such peaks

show specific and high-level expression in each cell type (Fig-

ure 2C). Accordingly, a vast majority of cell-type-specific peaks

were associatedwith different genes in each cell type (Figure 2D).

For example, Tead4,Dnmt3b, Fgf8, andGata2 exhibited specific

H3K27ac peaks and the highest expression in ESCs, EpiLCs, d2

PGCLCs, and d6 PGCLCs, respectively (Figures 2C and 2E).

The cell-type-specific H3K27ac peaks were associated with

�6%–39% of the genes differentially expressed between adja-

cent stages, and such peaks were, with increasing threshold

levels, prevalent in genes downregulated in the ESC-to-EpiLC

transition and upregulated in the EpiLC-to-d2 PGCLC transition

(Figure 2F), suggesting a critical role of specific enhancer usage

for the maintenance of naive pluripotency and the induction of a

mesoderm program/specification of germ cell fate.

We explored whether consensus sequences for any transcrip-

tion factor (TF) binding were enriched in H3K27ac peaks specific

to each cell type, and we identified a high prevalence of such

sequences for unique, but partially overlapping, TFs for each

cell type (Figure 2G): for example, while SOX2 exhibited enrich-

ment in three cell types (ESCs, EpiLCs, and d6 PGCLCs), KLF4,

ZIC3, and TFAP2C showed specific enrichment in ESCs,

EpiLCs, and d6 PGCLCs, respectively. Reflecting highly specific

enhancer usage for the induction of a mesoderm program/

specification of germ cell fate in d2 PGCLCs (Figure 2F), the

binding sites for TFs involved in mesoderm formation were

enriched in d2 PGCLCs (Figure 2G). Importantly, a majority of

the H3K27ac peaks bear multiple TF-binding motifs (Figure 2H),

suggesting that genes specific to each cell type are regulated by

a combination of distinct yet partially overlapping sets of TFs.

We looked into the relationship between the binding sites of

OCT4, a key pluripotent factor, in ESCs and EpiLCs (Buecker

et al., 2014) and H3K27ac peaks. Notably, OCT4-binding sites

specific to ESCs exhibited substantial enrichment of H3K27ac

in ESCs and d6 PGCLCs, whereas those present in both ESCs

and EpiLCs showed enrichment of H3K27ac in all cell types

(Figure S3D). These findings indicate that OCT4 distinctively reg-

ulates a specific set of common genes in ESCs and d6 PGCLCs,

while it controls many other targets similarly in all the cell types,

highlighting a similarity between ESCs and d6 PGCLCs in the

regulatory network for pluripotency. Thus, the potential en-

hancers we have identified provide a foundation for delineating

regulatory networks orchestrating PGC specification.
otted lines correspond to a log2 expression level of 8.

3K27ac levels (correlation coefficients). The values for two biological replicates

n of associated genes.

H3K27ac peaks exhibit little overlap.

Fgf8, and Gata2 loci (50 kb).

aks plotted against expression level changes.

27ac peaks in the four cell types.

pe-specific H3K27ac peaks in the four cell types. Representative genes and the
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Figure 3. Dynamics of H3K27me3 for In Vitro PGC Specification
(A) The log2 H3K27me3 IP level-frequency plots for the genome (single-copy regions, 2 kb sliding windows with 1 kb overlaps, red) and the HCP, ICP, and LCP

genes (color codes indicated). The log2 H3K27me3 IP levels corresponding to a log2 expression level of 8 are indicated by dotted lines.

(B) The H3K27me3 IP levels in repeat elements in the four cell types.

(C) ChIP-seq track transition for the H3K27me3 IP levels in the 10 Mb region around Pax5.

(legend continued on next page)
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Regulation of Polycomb Repression
We next examined the transitions of H3K27me3 during in vitro

PGC specification. Remarkably, the genome-wide IP levels of

H3K27me3 (for definition, see Supplemental Experimental Pro-

cedures) changed in a dynamic fashion during in vitro PGC spec-

ification (Figures 3A–3C and Figures S4A and S4B), a finding

demonstrating observations by immunofluorescence and west-

ern blot analysis (Seki et al., 2005): the H3K27me3 IP level was

highest throughout the genome and around the TSSs in ESCs

and decreased significantly in EpiLCs. The genome-wide

H3K27me3 reached the lowest IP level in d2 PGCLCs, which,

however, exhibited a high level of H3K27me3 specifically around

a subset of TSSs (Figures 3A and 3C and Figures S4A and S4B).

The H3K27me3 IP level recovered significantly throughout the

genome, around the TSSs, and in the gene bodies in d6 PGCLCs

(Figures 3A and 3C and Figure S4B). A vast majority of the TSSs

of the LCP genes weremarked by high-level H3K27me3 in all cell

types (Figure 3A).

The H3K27me3 IP levels around the TSSs exhibited bimodal

distributions with negative correlation to the gene expression

levels in all cell types (Figures 3A and 3C and Figure S4A), and

the log2 expression levels of 8 (�20 copies/cell, a lower limit of

appreciable expression) (Figure 1B) (Kurimoto et al., 2006) corre-

sponded to the saddles of the bimodal distributions (Figure 3A).

We therefore defined the ‘‘enrichment levels’’ of H3K27me3

around the TSSs as the fold difference from the IP levels corre-

sponding to a log2 expression level of 8, so that the enrichment

levels were log-proportionally correlated with the expression

levels.

Accordingly, we identified the TSSs with significant changes

of the H3K27me3 enrichment levels (>2 fold) between the

successive stages and, consequently, the TSSs with the highest

H3K27me3 enrichment levels in ESCs (1,830, the ESC PRC2

targets), EpiLCs (1,732, the EpiLC PRC2 targets), d2 PGCLCs

(1,988, the d2 PGCLC PRC2 targets), or d6 PGCLCs (1,693,

the d6 PGCLC PRC2 targets) (Figure 3D). Accordingly, the

ESC PRC2 targets were enriched in genes for ‘‘gamete genera-

tion’’ and ‘‘spermatogenesis,’’ whereas the d2 and d6 PGCLC

PRC2 targets were enriched in genes for ‘‘neuron differentia-

tion,’’ ‘‘embryonic morphogenesis,’’ and ‘‘pattern specification

process’’ (Figure 3E and Figure S4C). Thus, key developmental

regulators are more strongly repressed by PRC2 in PGCLCs

than in ESCs and EpiLCs. The fact that the d2 PGCLC

genes were enriched with distinct developmental regulators

(Figures 1D and 1E) indicates that a subset of developmental

regulators are specifically activated, whereas the remaining

majority of developmental regulators are repressed by PRC2 in

d2 PGCLCs. Indeed, many developmental regulators did not
(D) Changes in the H3K27me3 enrichment level around TSSs. The numbers of T

(gray) in each cell type compared to a neighboring cell type are indicated. The nu

are indicated in parentheses below each cell type.

(E) Enrichment of the indicated GO terms in the PRC2 targets of the four cell typ

(F) Heat map representation of the PRC2 targets of the four cell types and their e

(G) Classification of the PRC2 targets of the four cell types by promoter classes.

(H) Comparison of the H3K27me3 IP levels around TSSs between d2 PGCLC

corresponding colors) and unchanged (gray) in each cell type are indicated. Ge

gene expression classes (d2 and d6 PGCLC genes are enriched).

See also Figures S2, S4, and S6.
show significant expression during in vitro PGC specification

and exhibited particularly high H3K27me3 enrichment levels in

d2 and d6 PGCLCs (Figure 3F). The four PRC2 target classes

show expression in distinct cell types and there is no apparent

link between the timings of the genes acquiring robust PRC2-

based repressive states and the activation of their expression

(Figure 3F).

The ESC and d6 PGCLC PRC2 targets consisted of �40% to

�50% HCPs, �20% ICPs, and �30% LCPs, whereas the EpiLC

PRC2 targets showed depletion of HCPs (�20%) and enrich-

ment with LCPs (�55%), and the d2 PGCLC PRC2 targets

were highly enriched with HCPs (�80%) (Figure 3G). This

suggests that during the ESC-to-EpiLC transition, many devel-

opmental regulators with HCPs reduce their H3K27me3 levels

for differentiation toward three germ layers, whereas during

the EpiLC-to-d2 PGCLC transition, only specific developmental

regulators, in response to BMP4, are activated, while those for

unrelated lineages are strongly repressed by PRC2.

To examine the impact of BMP4 signaling on H3K27me3

acquisition, we compared the H3K27me3 states between

d2 PGCLCs and the EpiLC aggregates stimulated only by LIF

(leukemia inhibitory factor) for two days (d2 LIF Ag). Many

developmental regulators and PGC genes upregulated in d2

PGCLCs acquired a high level of H3K27me3 in d2 LIF Ag,

indicating that BMP4 signaling prevents the acquisition of or

depletes H3K27me3 from these genes (Figure 3H and Figures

S4D and S4E).

Transitions in Bivalency
Bivalent promoters with both activating H3K4me3 and repres-

sing H3K27me3 are prevalent in developmental regulators and

may represent a poised state for a timely activation of associated

genes (Voigt et al., 2013). The bivalency may be key for the germ

cell lineage to activate developmental genes at an appropriate

time point after fertilization (Sachs et al., 2013). However, how

the germ cell lineage may acquire the bivalency has been

unknown. We therefore looked at the transitions in bivalency

during in vitro PGC specification.

We defined the bivalent genes as those that show no/low

expression (log2 expression levels <8) and bear substantial

levels of both H3K27me3 and H3K4me3 (Figures 4A and 4B

and Figure S5A). Throughout in vitro PGC specification, a large

number of genes were classified as bivalent (1,798, 2,863,

1,559, and 2,435 genes for ESCs, EpiLCs, d2 PGCLCs, and

d6 PGCLCs, respectively), and such genes were most sig-

nificantly enriched with those for ‘‘neuron differentiation’’ (Fig-

ures 4C and 4D and Figure S5B). We verified by sequential

ChIP-qPCR that the 12 gene loci identified as bivalent in EpiLCs
SSs upregulated (>2-fold, marked by corresponding colors) and unchanged

mbers of TSSs with the highest H3K27me3 enrichment levels in each cell type

es.

xpression.

s and d2 LIF Ag. The numbers of TSSs upregulated (>2-fold, marked by

nes that show higher H3K27me3 IP levels in d2 LIF Ag are classified by the

Cell Stem Cell 16, 517–532, May 7, 2015 ª2015 Elsevier Inc. 523



B C

D E

F G

A

Figure 4. Dynamics of Bivalency for In Vitro PGC Specification

(A) Definition of the bivalent state. The scatter plots show the log2 levels of the H3K4me3 peaks around the TSSs and those of the neighboring (<1 kb from the

centers of the H3K4me3 peaks) H3K27me3 (data for d6 PGCLCs). The modification levels corresponding to a log2 expression level of 8 are indicated by dotted

lines (see Supplemental Experimental Procedures). Bivalent genes (indicated by red dots) are defined as those bearing both H3K27me3 and H3K4me3 at levels

higher than those indicated by the dotted lines.

(B) Heat map representation of the H3K4me3 levels ±5 kb from the TSSs and the corresponding H3K27me3 levels. Dotted lines correspond to the genes with a

log2 expression level of 8.

(C) Classification of the bivalent genes (orange, with their numbers) by promoter classes. Only those genes that were expressed at levels lower than a log2
expression level of 8 were evaluated (see also Figure S5A). The genes that bear H3K4me3 only (blue), H3K27me3 only (green), or neither modification (pale) are

also shown, with their numbers.

(D) GO term enrichment in the bivalent genes in the four cell types.

(E) The change of the H3K4me3 and H3K27me3 states of the bivalent genes in the stage transitions. The numbers of the genes whose chromatin states are

changed from bivalency to the indicated states are shown.

(F) Fraction of the bivalent genes among the PRC2 targets in the four cell types.

(G) ChIP-seq track transition for H3K4me3 and H3K27me3 in the 20 kb region around Adora2a, which upregulates H3K4me3 and regains bivalency in d6

PGCLCs.

See also Figures S5 and S6.
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indeed bear both H3K4me3 and H3K27me3 on the same loci

(Figure S5C).

A majority (1,297/1,798, �72%) of the bivalent genes in ESCs

remained bivalent during the ESC-to-EpiLC transition and a large

number (1,566) of genes were newly recruited as bivalent in this

transition (Figure 4E and Figure S5D); consequently, EpiLCs bore

the largest number of bivalent genes (Figure 4C). During the

EpiLC-to-d2 PGCLC transition, however, only �44% (1,252/

2,863) of the bivalent genes in EpiLCs remained bivalent

(307 genes became newly bivalent in d2 PGCLCs) and, remark-

ably, as many as �34% (985/2,863), which were highly enriched

with genes for ‘‘neuron differentiation’’ (p = 2.3 3 10�24), only

became H3K27me3 only in d2 PGCLCs (Figure 4E and Fig-

ure S5D). Accordingly, among the d2 PGCLC PRC2 targets,

more than 50% were bivalent in EpiLCs, but less than 30%

were bivalent in d2 PGCLCs (Figure 4F), indicating that the d2

PGCLC PRC2 targets mainly reflect the bivalent genes in EpiLCs

and that, compared to EpiLCs, d2 PGCLCs lose their potential

for ‘‘neuron differentiation’’ and are restricted to an early meso-

dermal/PGC state.

In contrast, during the d2-to-d6 PGCLC transition, a majority

(1,123/1,559, �72%) of the bivalent genes in d2 PGCLCs re-

mained bivalent and a larger number (1,312) of genes were newly

recruited as bivalent (Figure 4E and Figure S5D). As a result,

�40% of the d2 and d6 PGCLC PRC2 targets were bivalent in

d6 PGCLCs (Figure 4F), indicating that d6 PGCLCs re-acquire

a potentially developmentally more permissive state; i.e., d6

PGCLCs gain H3K4me3 around the TSSs of the genes repressed

by H3K27me3 (Figure 4G). Additionally, consistent with the

depletion of HCPs in the EpiLC PRC2 targets, only �10% of

the EpiLC PRC2 targets were bivalent throughout in vitro PGC

specification (Figures 3G and 4F). Thus, developmental regula-

tors with HCPs are in more permissive states with relatively

low H3K27me3 and high H3K4me3 in EpiLCs, acquire highly

repressive states in d2 PGCLCs, and regain potentially more

permissive states in d6 PGCLCs, although it is important to

note that d2 and d6 PGCLCs exhibit higher H3K27me3 enrich-

ment levels in developmental regulators.

We compared the bivalent genes in d6 PGCLCs with those

in E11.5 PGCs (Sachs et al., 2013). A majority of the bivalent

genes in d6 PGCLCs were in common with those in E11.5

PGCs (1,423/2,435) (Figure S5E). While the bivalent genes

specific to d6 PGCLCs (1,012/2,435) did not show enrichment

in GO terms for major developmental processes such as

‘‘neuron differentiation,’’ ‘‘pattern specification,’’ and ‘‘embry-

onic morphogenesis,’’ those specific to E11.5 PGCs showed

enrichment of all such terms (Figure S5E). Thus, d6 PGCLCs

are similar in bivalency to E11.5 PGCs and may acquire

more bivalency when cultured further under an appropriate

condition.

Genome-wide Reduction of H3K9me2
We next evaluated the transitions of H3K9me2 during in vitro

PGC specification. Strikingly, the H3K9me2 level was drastically

reduced throughout the genome and around the TSSs in d6

PGCLCs (Figures 5A–5D), reinforcing the observations made

by immunofluorescence and western blot analysis (Seki et al.,

2005). Throughout the in vitro PGC specification, the TSSs

associated with high-level H3K9me2 (IP level > 1) were pre-
dominantly those of the LCP genes and were enriched with

genes for ‘‘inflammatory response’’ and ‘‘defense response’’

(Figure 5E), whereas a majority of the HCP and ICP genes

were essentially devoid of this modification (Figure 5B). The

H3K9me2 levels around the TSSs were highly anti-proportional

to the expression levels of the associated genes (Figure 5D

and Figure S4A).

Figure 5F illustrates ChIP-seq tracks for the H3K27me3 and

H3K9me2 transitions in a 50 Mb region on chromosome 11:

the H3K9me2 level was high in ESCs, EpiLCs, and d2 PGCLCs

and significantly downregulated in d6 PGCLCs. The H3K9me2

levels in d2 PGCLCs were distributed in a narrower range

compared to those of the other cell types (Figure 5B and Fig-

ure S4A), which may signify a unique property of d2 PGCLCs

(i.e., transient acquisition of a somatic program) during in vitro

PGC specification. In ESCs, EpiLCs, and d2 PGCLCs,

H3K9me2 was enriched in lamina-associated domains (LADs),

the genome regions that are associated with the nuclear lamina

(NL) and are long interspersed nuclear element (LINE)-rich and

gene-poor, and typically harbor low or no gene-expression levels

(Figure 5F) (Guelen et al., 2008; Peric-Hupkes et al., 2010).

Remarkably, d6 PGCLCs showed a reduction of H3K9me2 in

LADs as well (Figures 5F and 5G).

We found that the expression of Lamin A is progressively

decreased, while expression of Lamin B1 and B2 remain rela-

tively constant during in vitro PGC specification (Figure 5H).

The immunofluorescence analysis, however, revealed that,

compared to EpiLCs, d6 PGCLCs showed a reduced level of

LAMIN B1 and appeared to have a diminished level of DAPI-

dense heterochromatin around the nuclearmembrane (Figure 5I).

However, similar to ESCs and EpiLCs, d6 PGCLCs exhibited a

relative depletion of H3K27me3 in LADs (Figure 5G). d6 PGCLCs

may thus bear a chromosome structure relatively free from

constraints imposed by LAD-NL interactions, although they

may still retain some features distinguishing LADs from other

parts of the genome.

Repression of ‘‘Germline Genes’’ by H3K27me3
and H3K9me2
Upon colonization of embryonic gonads, PGCs upregulate a set

of genes, often referred to as ‘‘germline genes,’’ that are crucial

for their progression into meiosis in females and for transposon

repression in males. It has been proposed/reported that these

genes are activated by the genome-wide DNA demethylation

in PGCs (Hackett et al., 2012; Maatouk et al., 2006) and lack

histone modifications in somatic cells (Hackett et al., 2012). It

is unknown how they are regulated by histone modifications in

early PGCs. We therefore explored their histone modifications

during in vitro PGC specification, when a majority of them were

in a repressed state (Figure 6A).

The key germline genes, Ddx4 and Dazl, lacked H3K4me3

and H3K27ac throughout the in vitro PGC specification, despite

the fact that they showed low-level expression in d6 PGCLCs

(Figures 6A and 6B). Remarkably, a majority of the germline

genes harbored a high level of H3K27me3 throughout the

in vitro PGC specification (Figures 6B and 6C). Because they

essentially lacked H3K4me3, less than 10% of them showed

bivalency (Figure S5F). Interestingly, they were marked by an

exceptionally high level of H3K9me2 in ESCs and EpiLCs, and
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Figure 5. Dynamics of H3K9me2 for In Vitro

PGC Specification

(A) ChIP-qPCR (with SDs, two biological replicates)

for H3K9me2 in the indicated repeat elements.

(B) The log2 H3K9me2 IP level-frequency plots for

the genome and the HCP, ICP, and LCP genes.

(C) The H3K9me2 IP levels in repeat elements in

the four cell types.

(D) The relationship between the log2 expression

levels of genes (color codes indicated) and the

H3K9me2 levels around them (±50 kb from their

TSSs and TTSs [transcription termination sites])

in the four cell types.

(E) GO term enrichment in genes with high

H3K9me2 levels (IP level > 1) in ESCs.

(F) ChIP-seq track transitions for H3K27me3 (top,

blue) and H3K9me2 (bottom, red) IP levels in a 50

Mb region on chromosome 11. The lamina-asso-

ciated domains (LADs) (Peric-Hupkes et al., 2010)

are indicated by red bold lines at the bottom.

(G) H3K9me2 and H3K27me3 distributions around

LADs (±50 kb) in the four cell types (color codes

indicated).

(H) Expression of Lmna, Lmnb1/b2, and Lbr (SDs,

two biological replicates).

(I) Immunofluorescence analysis of heterochro-

matin structure identified by DAPI staining (white)

and LAMIN B1 expression (blue) in d6 PGCLCs

(BV-positive cells, yellow, indicated by yellow

arrows) and EpiLCs (BV-negative cells, indicated

by blue arrows). Bar, 10 mm.

See also Figure S2.
they continued to show such a trend in d6 PGCLCs with a very

low level of genome-wide H3K9me2 (Figures 6B and 6D).

We analyzed the published data on expression of H3K27me3

and its distribution in the germline genes in PGCs at E11.5 (Kagi-

wada et al., 2013; Sachs et al., 2013). Many germline genes were

expressed in PGCs at E11.5 (Figure 6E), and in general, there

was a negative correlation between the expression and the

H3K27me3 levels of the germline genes, although some germline

genes expressed at this stage still exhibited relatively high levels

of H3K27me3 (Figures 6F and 6G). Thus, we propose that, unlike

in somatic cells, the germline genes are repressed by both

H3K27me3 and H3K9me2 during PGC/PGCLC specification

and development.
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EpiLCs versus EpiSCs
Having established the chromatin-state

dynamics during in vitro PGC specifica-

tion, we compared the chromatin states

between EpiLCs and epiblast stem cells

(EpiSCs) (Factor et al., 2014), which bear

robust and little, if any, competence for

the germ cell fate, respectively (Hayashi

et al., 2011).

Genes bearing higher H3K27ac peaks

in EpiSCs than in EpiLCs were enriched

in the GO term for ‘‘regulation of tran-

scription, DNA-dependent,’’ including

characteristic TFs (Figure S6A), indicating

that EpiSCs bear distinct transcriptional
circuitry with unique epigenetic foundations. EpiSCs, but not

EpiLCs, expressed genes associated with pattern specifi-

cation/tissue morphogenesis such as Hoxa1, Hoxb1-b3,

Snai1, Id3, and Fgf8, albeit at low levels, showing substantial

H3K4me3 and H3K27ac peaks around such genes (Figure S6B).

In good agreement with these findings, genes bearing higher

H3K27ac peaks in EpiSCs than in EpiLCs included higher

numbers of genes for ‘‘neuron differentiation,’’ ‘‘embryonic

development,’’ and ‘‘pattern specification’’ than genes bearing

higher H3K27ac peaks in EpiLCs than in EpiSCs (Figure S6C).

Moreover, we found that the bivalent genes specific to EpiSCs,

but not EpiLCs, were enriched with those for ‘‘pattern specifi-

cation’’ and ‘‘embryonic morphogenesis’’ (Figure S6D). Thus,
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Figure 6. Regulation of Germline Genes for In Vitro PGC Specification

(A) Expression of the indicated germline genes (SDs, two biological replicates).

(B) ChIP-seq track transitions for H3K4me3, H3K27ac, H3K27me3, and H3K9me2 ±5 kb from the TSSs (dotted lines) of Ddx4, Dazl, and Prdm14.

(C and D) The log2 H3K27me3 (C) or H3K9me2 (D) IP level-frequency plots for germline genes (102 genes). Representative germline genes are indicated, and

those expressed at more than a log2 expression level of 8 are colored in red. Pale red lines represent the plots for all genes as a reference.

(E) Expression of the indicated germline genes in PGCs from E9.5 to E13.5 (F, female; M, male) (SDs, two biological replicates) (Kagiwada et al., 2013).

(F) The log2 H3K27me3 level-frequency plots for germline and all genes in PGCs at E11.5 (Sachs et al., 2013) as in (C). The H3K27me3 level forHoxb1 is indicated

by a triangle.

(G) The log2 H3K27me3 level-log2 expression level plots for germline (red dots) and all (gray dots) genes in PGCs at E11.5 (Kagiwada et al., 2013; Sachs et al.,

2013). Dotted lines indicate a log2 expression level of 8 and the log2 H3K27me3 level corresponding to a log2 expression level of 8.

See also Figure S6.
EpiSCs bear an epigenetic property representing a more primed

state for somatic differentiation than EpiLCs. Interestingly, the

germline genes exhibited much higher H3K27me3 in EpiLCs

than in EpiSCs, indicating that they are properly repressed in

EpiLCs for appropriate later expression (Figure S6E). Thus,

EpiLCs and EpiSCs bear different epigenetic properties reflect-

ing their transcriptional and functional differences.
Distribution of BLIMP1 and T
We determined the binding sites of BLIMP1 and T, two key tran-

scriptional regulators for PGC specification (Aramaki et al., 2013;

Ohinata et al., 2005), and explored their relationship with the

chromatin states during in vitro PGC specification. Figures 7A

and 7B provide examples of the BLIMP1-binding peaks in the

Klf9 and Hoxa loci and the T-binding peak in the Prdm1 locus,
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Figure 7. Distribution of BLIMP1 and T for In Vitro PGC Specification

(A) ChIP-seq track transitions for H3K27me3 binding (top, blue) and BLIMP1 binding (bottom, red) in the 200 kb regions around Klf9 (left) and the Hoxa cluster

(right).

(B) ChIP-seq track transitions for H3K27ac-binding (top, red) and T-binding (bottom, blue) in the 200 kb region around Prdm1. The genome-wide binding profiles

of T were determined in floating aggregates of EpiLCs stimulated by BMP4 and LIF for 36 hr (Aramaki et al., 2013). In (A) and (B), the dotted lines indicate the TSSs

of the genes bound by the TFs.

(legend continued on next page)
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respectively (see also Figure S7A). We identified 7,122 and

11,224 EGFP-BLIMP1 binding peaks in d2 and d6 PGCLCs,

respectively, which were highly overlapped with each other (Fig-

ures 7C and 7D), but were only partially overlapped with those

identified in P19 cells overexpressing Blimp1 (Figure 7C) (Mag-

núsdóttir et al., 2013), indicating that the cellular context plays

a key role in the distribution and function of TFs (Nakaki et al.,

2013). Both BLIMP1- and T-binding sites were enriched around

TSSs (Figure S7B) and were distributed in different promoter

classes in a proportional manner (Figure S7C). The motifs for

BLIMP1 and T binding showed partial, but not perfect, overlaps

with previously identifiedmotifs, extending their potential targets

(Figures S7D–S7G).

We explored the relationship between the genes bound by

BLIMP1 and (1) the genes upregulated or downregulated in

Blimp1-knockout cells (Kurimoto et al., 2008) and (2) the genes

upregulated or downregulated in EpiLCs overexpressing Blimp1

(Nakaki et al., 2013) by gene set enrichment analysis (GSEA).

Both the genes upregulated in Blimp1-knockout cells and those

downregulated in EpiLCs overexpressing Blimp1 were enriched

with those bound by BLIMP1, revealing 630 and 578 targets for

BLIMP1 repression, respectively (Figure 7E and Figure S7H).

However, it should be noted that BLIMP1 binds to a much higher

number of genes than it appears to regulate at an appreciable

level (Figure 7E). We also found by GSEA that T preferentially tar-

gets at least 202 genes upregulated in d2 PGCLCs (Figure 7F

and Figure S7H).

The targets of BLIMP1 in d2 PGCLCs showed only a small

overlap with those of T (Figure S7I): while both BLIMP1 and

T targets were enriched in genes for embryonic development/

pattern specification processes, targets of T as an activator

were skewed to genes involved in early mesoderm formation

and those of BLIMP1 as a repressor were for more various

biological processes (Figures S7J and S7K). Remarkably, the

BLIMP1-binding sites in d2 PGCLCs, which were mostly pre-

served in d6 PGCLCs, exhibited an enrichment of H3K27me3

in d6, but not d2, PGCLCs (Figures 7G and 7H), suggesting

that BLIMP1 functions as a nucleator for PRC2 recruitment

and spreading for a stable repression of gene expression.

In contrast, the T-binding sites were enriched with H3K27ac

(Figures 7G and 7H), consistent with the notion that T activates

transcription by recruiting histone acetyltransferase in a

sequence-dependent fashion.
(C) Venn diagrams showing the overlap of BLIMP1 peaks in d2 and d6 PGCLCs

(D) The number of BLIMP1 peaks plotted against the intensity of BLIMP1 peaks

(E) Gene set enrichment analysis (GSEA) of BLIMP-bound genes and gene expr

gulated genes on the right) and gain of function (Nakaki et al., 2013) (right; downre

genes determined by both loss- and gain-of-function effects of Blimp1.

(F) GSEA of T-bound genes and gene expression difference between EpiLCs and d

were ordered according to the rank of the difference of expression levels.

(G) (Left) Heat map representation of BLIMP1 peaks in d2 PGCLCs (top 50%), wh

PGCLCs. (Right) Heat map representation of T peaks in EpiLC aggregates stimula

around the TSSs) in d2, but not d6, PGCLCs.

(H) (Left) Averaged intensity plots for H3K27me3 levels in the four cell types around

intensity plot for H3K27ac levels in the four cell types around ±50 kb of the top 5

codes for the cell types are indicated on the right.

(I) (Top) A model for transcription and chromatin-state dynamics during in vitro

morphogenesis’’ and ‘‘pattern specification’’ by BLIMP1 (repression) and T (activ

See also Figures S1 and S7and Table S6.
DISCUSSION

We have established the concept of epigenetic reprogramming

upon PGC specification by a comprehensive analysis of tran-

scription and chromatin-state dynamics during in vitro PGC

specification (Figure 7I). We showed that the H3K27me3 IP

levels, including those around the TSSs, exhibited dynamic

global changes with negative correlations with gene expression

levels in all cell types (Figure 3A and Figure S4A), suggesting that

the absolute levels of H3K27me3 around the TSSs in a certain

cell type may not necessarily be indicative of the expression

levels of the associated genes. This is consistent with the

observations that ESCs lacking PRC2 activity appear to pro-

liferate in a normal fashion, although their differentiation poten-

tials are severely perturbed (Margueron and Reinberg, 2011).

The significance of the genome-wide deposition of high

H3K27me3 in ESCs therefore remains unclear. The high

H3K27me3 levels may reflect gene expression circuitry for

(potentially) pluripotent cells, since d6 PGCLCs, which regain

the relevant genes (Figures 1D and 1E and Figure S1A), also

exhibit high H3K27me3 throughout the genome (Figure 3A and

Figure S4A). Accordingly, there appears to be a tendency for

the PRC2 components to be expressed at higher levels in

both ESCs and d6 PGCLCs (Figure S4F). BLIMP1 as a potential

nucleator for H3K27me3 deposition and spreading (Figures 7A,

7G, and 7H and Figure S7A) may also contribute to the high

H3K27me3 level in d6 PGCLCs.

Coupled with the dynamic regulation of H3K27me3, genes

bearing bivalent promoters exhibit dynamic changes during

in vitro PGC specification (Figure 4). Notably, EpiLCs bear the

highest number of bivalent genes with the highest enrichment

for developmental regulators, and at the same time, they show

the narrowest range of the H3K27me3 IP level among the four

cell types (Figure 3A and Figure 4), suggesting that EpiLCs

acquire an epigenome in which a wide range of developmental

regulators are repressed by relatively low levels of H3K27me3

and bear low levels of H3K4me3, which may represent a bona

fide primed state immediately ready for differentiation into cells

of the three germ layers. In good agreement with this idea,

EpiLCs do not overtly upregulate genes for developmental regu-

lators (Figures 1D and 1E), and EpiLCs, but not ESCs, respond

quickly to BMP4 to deplete or prevent the acquisition of

H3K27me3 from genes for early mesoderm induction/PGC
and those reported previously (Magnúsdóttir et al., 2013).

in d2 and d6 PGCLCs (color codes as indicated).

ession difference caused by loss of function (Kurimoto et al., 2008) (left; upre-

gulated genes on the right) of Blimp1. Genes marked in red are core enrichment

2 PGCLCs (genes upregulated in d2 PGCLC on the left). In (E) and (F), all genes

ich show enrichment of H3K27me3 (±50 kb around the TSSs) in d6, but not d2,

ted by BMP4 (Aramaki et al., 2013), which show enrichment in H3K27ac (±50 kb

±50 kb of the top 50%BLIMP1-binding peaks in d2 PGCLCs. (Right) Averaged

0% T-binding peaks in EpiLC aggregates stimulated by BMP4 for 36 hr. Color

PGC specification. (Bottom) Differential regulation of genes for ‘‘embryonic

ation).
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specification to be induced as PGCLCs (Figure 3H) (Hayashi

et al., 2011): d2 PGCLCs instead deplete H3K4me3 from, and

deposit high H3K27me3 onto, a large number of developmental

regulators for unrelated lineages for their repression (Figures 3

and 4). Additionally, compared to ESCs, EpiLCs acquire a

distinct enhancer pattern (Figure 2) (Buecker et al., 2014), which

would also contribute to their developmental potential. It will be

important to explore whether pre-gastrulating epiblasts bear an

epigenomic equivalent to EpiLCs.

d6 PGCLCs upregulate the global H3K27me3 levels (Figure 3)

and newly recruit a large number of genes, many of which are

marked only by H3K27me3 in d2 PGCLCs, as bivalent genes

(Figure 4 and Figure S5D). This indicates that d6 PGCLCs intro-

duce H3K4me3 onto many genes at levels that maintain their

H3K27me3-based repression. Accordingly, d6 PGCLCs upregu-

lated a gene encoding an H3K4methyltransferase (MTase) (Mll3)

(Figure S4G). The mechanism by which d6 PGCLCs restore the

bivalency and the functional significance of bivalency in PGCs/

PGCLCs warrants further investigation.

Our results demonstrated a striking reduction of the

H3K9me2 levels in d6 PGCLCs (Figure 5). Repression of the

H3K9 MTases G9A and GLP in PGCs/PGCLCs may contribute

to the creation of this unique state (Seki et al., 2007), a possibility

that requires experimental validation. What, then, would be the

potential consequences of the genome-wide reduction of

H3K9me2 in PGCs/PGCLCs? We showed that d6 PGCLCs

bear altered nuclear architecture with diminution of DAPI-dense

heterochromatin and reduced concentration of LAMIN B1

around the nuclear periphery (Figure 5I). This unique nuclear

architecture of d6 PGCLCs is reminiscent of that of PGCs

(Kagiwada et al., 2013) and may be a key of epigenetic reprog-

ramming in PGCs/PGCLCs. Considering the reported link be-

tween the loss of H3K9me2 and DNA demethylation (Tachibana

et al., 2008), another potential result would be that PGCs un-

dergo genome-wide DNA demethylation (Seisenberger et al.,

2012). Indeed, compared to EpiLCs, PGCLCs show substantial

genome-wide DNA demethylation (K. Shirane, K.K., M.S., and

H. Sasaki, data not shown). Further studies will be necessary

to explore these possibilities.

A recent study showed that the germline genes lack any

repressive histone modifications and are repressed solely by

DNA methylation in somatic cells (Hackett et al., 2012). We

showed that the germline genes are enriched in ESC PRC2

targets and a majority of them bear high H3K27me3 and

H3K9me2 levels throughout in vitro PGC specification (Figure 6

and Figure S4C). These findings suggest that the germline genes

are repressed by both DNA methylation and histone modifica-

tions in PGCs. In good agreement with this idea, many of the

germline genes expressed in PGCs at E11.5 are depleted of

H3K27me3 from their promoters at the same stage (Figures

6E–6G) (Sachs et al., 2013), and the germline genes are upregu-

lated prematurely in PGCs with impaired PRC1 activity (Yoko-

bayashi et al., 2013). The comprehensive profiling of transcrip-

tion and chromatin-state transitions for the in vitro PGC

specification pathway provided herein should serve as a robust

foundation not only for reconstituting the regulatory networks

underlying epigenetic reprogramming in PGCs, but also for

developing culture conditions for the induction of PGCLCs into

a more mature phenotype.
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EXPERIMENTAL PROCEDURES

The experimental procedures for analysis of the gene expression for in vitro

PGC specification, generation of EGFP-Blimp1 knockin mice and ESCs,

induction from ESCs of EpiLCs and PGCLCs, normalization of the ChIP-seq

data, ChIP-seq data analysis, sequential ChIP-qPCR, comparison of the

ChIP-seq data for EpiLCs with those for EpiSCs, GSEA, immunofluorescence

analysis of spread cells, immunofluorescence analysis of cryosections, histol-

ogy, and western blot analysis are available in the Supplemental Information.

ChIP

BVSC and EGFP-Blimp1 knockin cells were used for ChIP of histone H3/his-

tone H3 modifications (H3K4me3, H3K9me2, H3K27ac, and H3K27me3) and

EGFP-BLIMP1 respectively. Mouse monoclonal antibodies were used for

ChIP-seq/ChIP-qPCR for histone H3 modifications (Hayashi-Takanaka et al.,

2011), and rabbit polyclonal antibodies were used for histone H3 and EGFP-

BLIMP1 (Table S2 and Table S3).

Prior to IP, themouse antibodies and the rabbit antibodies were reactedwith

20 ml of M280Dynabeads Sheep anti-mouse IgG and 10 ml ofM280Dynabeads

Protein G (Life Technologies), respectively.

ChIP was performed as described previously (Luo et al., 1998) with modifi-

cation. Cells were suspended in 1 ml of PBS and fixed by the addition of 27 ml

of 36.5% formalin (Sigma) for 10 min at room temperature. Fixation was termi-

nated by the addition of 110 ml of 1.5M glycine. The fixed cells were washed

twice in PBS containing 0.1% BSA and were lysed in 400 ml SDS-lysis buffer

(50 mM Tris-HCl [pH 8.0] containing 1% SDS, 10 mM EDTA, and 1 mM

PMSF) on ice for 10 min. Chromatins were then solubilized using a Bioruptor

UCD250 with ice-chilled water, with 10 cycles of 30 s sonication at high power

and 60 s intervals. The sonication products were centrifuged at 16,0003 g for

5min. The supernatants were diluted in 1ml ChIP dilution buffer (16.7 mMTris-

HCl [pH 8.0], 0.01% SDS, 1.1% Triton X-100, 1.2 mM EDTA, 167 mM NaCl,

1 mM PMSF, 2 mg/ml tRNA [Roche]) and were divided into 0.1 ml as input

DNA and 1.3 ml as ChIP samples.

The ChIP samples were mixed with the Dynabeads-antibody complexes

and rotated at 4�C overnight. The ChIP-ed Dynabeads were recovered using

a DynaMag-2 magnet (Life Technologies) and washed with 200 ml of low salt

buffer (20 mM Tris-Cl [pH 8.0] containing 0.1% SDS, 1% Triton X-100, 2 mM

EDTA, and 150 mMNaCl), a high salt buffer (20 mM Tris-Cl [pH 8.0] containing

0.1% SDS, 1% Triton X-100, 2 mM EDTA, and 500 mM NaCl), RIPA buffer

(10 mM Tris-Cl [pH 8.0] containing 1% sodium deoxycholate, 1% NP40,

250 mM LiCl, and 1 mM EDTA), and TE buffer (10 mM Tris-Cl [pH 8.0] contain-

ing 1 mM EDTA). The ChIP-ed Dynabeads were then incubated in new tubes

containing 50 ml of elution buffer (0.1 M NaHCO3, 1% SDS, 10 mM DTT, and

60 ng/ml tRNA) for 15 min at room temperature. The supernatants were

collected using DynaMag-2, and they were reverse-crosslinked by the addi-

tion of 8 ml of 2.5 M NaCl and being incubated at 65�C overnight. Then, 2 ml

of 0.5 M EDTA, 4 ml of 1M Tris-Cl (pH 6.5), and 0.2 ml of 20 mg/ml proteinase

K solution were added to the reaction mixture, which was further incubated

at 45�C for 1 hr. The ChIP-ed DNAs were then purified with Qiaquick PCR

purification columns, using the buffer EB supplemented with 4 ng/ml tRNA

(QIAGEN).

Library Preparation for Sequencing

The ChIP-ed and input DNAs were sheared to an average size of about 150 bp

by ultra-sonication (Covaris). The ChIP-ed DNAs obtained from 1 3 106 cells

were then subjected to the procedures for SOLiD Fragment Library Prepara-

tion (Life Technologies) according to the manufacturer’s instructions, except

for the ligation reaction, which was performed overnight.

For histone H3 and its modifications, ChIP-ed DNAs from 13 105 cells were

subjected to the procedures for SOLiD Fragment Library Preparation with a

modification, in which the size fractionation step using AMPure XP beads

(Agencourt) was omitted and a ligation reaction was performed overnight.

We developed a new method to prepare and precisely amplify libraries of

ChIP-ed DNA from a small number of cells, and we applied this method to

H3K4me3 from 1 3 105 cells and TFs from 3 3 105 �1 3 106 cells. We pre-

pared the modified adaptor for the SOLiD library by annealing 50 mM each of

P1-T Adaptor/F and Barcode-Internal+12-mer/R (Table S1) in 13 Linker buffer

(50 mM Tris-HCl [pH 8.0] containing 100 mM NaCl and 1 mM EDTA) with a



step-wise cooling procedure (95�C, 70�C, 50�C, 40�C, and 25�C for 15 min

each). We end-repaired the sheared DNAs by using an End-It DNA End-Repair

Kit (Epicenter) on a 120 ml scale according to the manufacturer’s instructions,

and we purified them by using a MinElute PCR purification kit (QIAGEN) with

540 ml of binding buffer PB3 (5.6 MGu HCl, 33.3% isopropanol) supplemented

with 10 ng/ml tRNA and 10 ml of elution buffer EB (QIAGEN) with 4 ng/ml tRNA.

The end-repaired DNAs were incubated in 20 ml of dA tailing mixture (0.2 mM

dATP [GEHealthcare], 13High Yield buffer [Greiner], 4 ng/ml tRNA, 2.5 units of

Taq DNA polymerase [Greiner]) for 10 min at 70�C, and we purified them by

using a MinElute PCR purification kit with the buffers PB (QIAGEN) and EB

(11 ml) supplemented with tRNA. The dA-tailed DNAs were incubated in 15 ml

ligation mixture (1 3 DNA Ligase Reaction Buffer [Life Technologies], 0.1 mM

of the modified adaptor for the SOLiD library, and 2.5 units of ExpressLink

T4DNA Ligase [Life Technologies]) at 16�C formore than 22 hr, andwe purified

them using a MinElute PCR purification kit with the buffers PB and EB (20 ml)

supplemented with tRNA. We then amplified the adaptor-ligated DNAs by us-

ing the Platinum Taq DNA Polymerase on a 50 ml reaction scale (Life Technol-

ogies) with 1 mM each of Library PCR primer 1 (Life Technologies) and Library

PCR primer Barcode001+Internal adaptor (Table S1). We purified the PCR

products by using 60 ml AMPure XP beads supplemented with 3.33 ml of

25%PEG8000 and 13.7 ml of 2.5MNaCl, and they were eluted in 30 ml of buffer

EB supplemented with tRNA. We then subjected the PCR products to another

PCR by using 1 mM each of Library PCR Primer 1 and P2-Barcode-N-Internal

primer (Table S1), and we purified them twice with AMPure XP beads supple-

mented with PEG8000 and NaCl. The barcode-tagged library DNAs were

sequenced on a SOLiD 5500xl platform (Life Technologies) to generate sin-

gle-end 50 bp reads. The experimental outlines, including PCR cycle numbers,

and mapping statistics are summarized in Table S3.
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