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1 Introduction

In 2010 Eguchi, Ooguri and Tachikawa [1] showed that the elliptic genus of the K3 man-

ifold can be expanded in such a way that the first few expansion coefficients are sums of

dimensions of irreducible representations of the largest Mathieu group M24. This connec-

tion between the elliptic genus of K3 and M24 was checked and confirmed in [2–5].1 In

2012, Gannon proved [10] that all the expansion coefficients appearing in the elliptic genus

are sums of irreducible representations of M24. Despite all this work, there are still many

interesting questions related to this ‘Mathieu moonshine’ that have not yet been answered.

For example, no N = (4, 4) non-linear sigma model with K3 target has M24 as its symme-

try group [11]. So why does the elliptic genus of K3 exhibit this connection to M24? One

possible explanation, currently pursued in, for example, [12, 13], is that the symmetries

of different points in K3 moduli space combine to give M24. An alternative idea is that

1For very interesting generalizations of this moonshine see [6–8] and [9].
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models which preserve only N = (0, 4) worldsheet supersymmetry and that are connected

to N = (4, 4) non-linear sigma model with K3 target, have as their symmetry group the

full M24 group [14, 15].

Since Mathieu moonshine involves the K3 manifold that has played a major role in

compactifications of superstring theories and in string dualities, it is very interesting for

string theorists. We are currently in the process of understanding the implications of

this moonshine phenomenon for superstring compactifications and have already obtained a

variety of new insights: for example, it was shown in [16] that certain one-loop amplitudes

in compactifications of type II string theory on K3×T 2 are related to the elliptic genus of

K3 and therefore to Mathieu moonshine. In [17], the authors found that certain BPS states

in type II string theory compactified on S1 ×K3 are related to a particular mock modular

form that is closely related to the elliptic genus of K3. Compactifying the heterotic string

theory on K3×T 2, the authors of [14] showed that the sums of irreducible representations

of M24 that appear in Mathieu moonshine also appear (albeit in a less direct manner)

in the prepotential of the resulting four dimensional N = 2 theories.2 To support the

conjecture that Mathieu moonshine plays a role in these N = 2 compactifications, a variety

of twined elliptic genera (i.e. the analogue of the McKay-Thompson series for the Monster)

were calculated in [15], in which the authors twined by explicit symmetries of heterotic

GLSMs with K3 target, for various instanton embeddings. For some of these symmetries,

the twined elliptic genera reproduced the graded traces predicted by Mathieu moonshine.

These heterotic theories are dual to type IIA compactifications on CY3 manifolds Xn

that are elliptic fibrations over the Hirzebruch surfaces Fn for n = 0, 1, . . . , 12. In these

dual type IIA theories the prepotential receives instanton corrections and those are by

duality related to the Mathieu group M24 [14]. More specifically, the instanton corrections

are determined by the Gromov-Witten invariants of the CY3 manifolds Xn and these are

connected to Mathieu moonshine. This extends the usual connection between number

theory and representation theory that is heralded by the appearance of moonshine to also

include (algebraic) geometry. Furthermore, the corrections to the prepotential determine

the gauge couplings in the four-dimensional N = 2 spacetime theories. Hence, the 1-loop

corrections to the gauge couplings are implicated in Mathieu moonshine. Such a connection

appears more generally in heterotic string theory compactifications. It was shown in [18]

that for almost all four-dimensional N = 1 theories that arise from heterotic orbifold

compactifications, the gauge kinetic functions (and therefore the gauge couplings) receive

a universal one-loop correction that is connected to the Mathieu group M24.

We see that Mathieu moonshine has already lead to a variety of intriguing new insights

for several different compactifications of superstring theories. In this paper we add to this

list by applying mirror symmetry to the above type IIA compactifications on the CY3

2In the case of the standard embedding, where there exists a (4, 4) locus in the (0, 4) moduli space, it is

perhaps reasonable to decompose the prepotential into N = 4 characters to observe the appearance of M24

representations. This would correspond on the type IIA side to a compactification on the threefold with

base F12. However, it is unclear why the N = 4 characters, rather than e.g. Virasoro characters augmented

by a U(1) current algebra, continue to work for other embeddings. It would be interesting to understand

this point better; for now, we can simply say that the N = 4 decompositions, perhaps miraculously, work.
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manifolds Xn that are elliptic fibrations over the Hirzebruch surfaces Fn. Mirror symmetry

relates the Gromov-Witten invariants of Xn to the periods of the holomorphic 3-form

Ω of the mirror Yn. We explicitly work out the connection between these periods and

representations of M24 for Yn with n = 0, 1, 2, though the results will generalize to all

n in an obvious way. Having implicated the holomorphic 3-forms of the Yn in Mathieu

moonshine, we note that for n = 2, 4, 6, 12, the Xn are given as hypersurfaces in the

weighted projective space WP1,1,n,2n+4,3n+6 and the mirror manifolds Yn can be obtained

from a Greene-Plesser type construction [19]. This means that one expects that a subspace

of the complex structure moduli space of these particular Xn is the same as the complex

structure moduli space of the Yn (and likewise for the quantum Kähler moduli space). For

at least n = 2, 4, 6, 12 there would then be a connection between M24 and the Kähler as

well as the complex structure sector of the Xn and Yn. Having established such a link,

we then proceed and discuss two implications for physically interesting theories. First we

study flux compactifications on Xn and Yn and show how M24 representations appear in

the Gukov-Vafa-Witten superpotential. Then we discuss compactification of the heterotic

E8×E8 string theory on Xn and Yn and find that the Yukawa couplings and therefore the

masses of the particles in the resulting four-dimensional N = 1 theories are implicated in

Mathieu moonshine as well.

The outline of the paper is as follows: in section 2, we review Mathieu moonshine and

show how through string dualities it controls Gromov-Witten invariants or periods of the

holomorphic 3-form Ω for certain CY3 manifolds. Then we argue in section 3 that at least

for some CY3 manifolds the complex structure and Kähler moduli space is implicated in

Mathieu moonshine. Next we study flux compactifications on these manifolds in section 4

and explicitly show how M24 representations appear in the superpotential. In section 5 we

show for certain compactifications of the heterotic string theory, how the Yukawa couplings

of the 4d N = 1 theories are related to M24. We summarize our findings and point out

interesting future directions in section 6. Appendix A provides a concise introduction to

mirror symmetry and appendix B lists topological data for three CY3 manifolds that are

of particular interest to us.

2 Mathieu Moonshine and the holomorphic 3-form Ω

In this section we first review Mathieu moonshine that was discovered in [1]. There the

authors expand the elliptic genus of theK3 manifold and find that the expansion coefficients

are sums of dimensions of irreducible representations of the largest Mathieu group M24.

Then we use the duality between heterotic string theory compactifications on K3 × T 2

and type IIA compactifications on CY3 manifolds Xn that are elliptic fibrations over Fn

to discuss (following [14]) how Mathieu moonshine is connected to the Gromov-Witten

invariants of the Xn. Using mirror symmetry we finally connect Mathieu moonshine to

the holomorphic 3-form Ω of Yn, that are the mirror CY3 manifolds of the Xn. We then

argue using the Greene-Plesser construction of mirror pairs that at least some of Xn and

Yn exhibit a connection between M24 and both their Gromov-Witten invariants and their

holomorphic 3-form Ω.
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2.1 Mathieu moonshine

The elliptic genus is defined as the following trace over the RR sector of an N = (2, 2)

superconformal field theory

Zelliptic(q, y) = TrRR

(

(−1)FL+FRqL0−
c
24 yJ0 q̄L̄0−

c̄
24

)

. (2.1)

Here FL/R denotes the left/right moving fermion number and y is a chemical potential for

the left-moving U(1) charge measured by J0. Since only the right-moving Witten index

(−1)FR q̄L̄0−
c̄
24 appears in Zelliptic, it does not depend on q̄. For the particular case of

K3, the elliptic genus was calculated in 1989 in [20]. It wasn’t until 2010, however, that

Eguchi, Ooguri and Tachikawa [1] noticed that the coefficients appearing in the K3 elliptic

genus expanded in terms of N = 4 characters are related to the dimensions of irreducible

representations of M24. In particular, if we define the N = 4 superconformal characters [20]

(please see appendix A of [14] for our conventions for the Jacobi θ-functions)

chh= 1

4
,l=0(q, y) = −

iy
1

2 θ1(q, y)

η(q)3

∞
∑

n=−∞

(−1)nq
1

2
n(n+1)yn

1− y qn
, (2.2)

chh=n+ 1

4
,l= 1

2

(q, y) = qn−
1

8
θ1(q, y)

2

η(q)3
, (2.3)

then one finds the following expansion [1]

ZK3
elliptic(q, y) = 8

[

(

θ2(q, y)

θ2(q, 1)

)2

+

(

θ3(q, y)

θ3(q, 1)

)2

+

(

θ4(q, y)

θ4(q, 1)

)2
]

(2.4)

= 24 chh= 1

4
,l=0(q, y) +

∞
∑

n=0

Anchh=n+ 1

4
,l= 1

2

(q, y) . (2.5)

The 24 = 23+1 as well as the first few An where identified in [1] as sums of irreducible

representations of M24

A0 = −2 = −1− 1 ,

A1 = 90 = 45 + 45 ,

A2 = 462 = 231 + 231 , (2.6)

A3 = 1540 = 770 + 770 ,

A4 = 4554 = 2277 + 2277 ,

. . . (2.7)

It was proven in [10] that all the An for n ≥ 1 are sums of irreducible representations of

M24 with only positive coefficients.
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2.2 M24 in Type II N = 2 theories

This connection between the elliptic genus of K3 and the Mathieu group M24 is still not

understood and one might hope that studying the appearance of this Mathieu moonshine

in different string theory settings might help understand it better. In addition, this might

lead to new insights in otherwise well-understood string compactifications and connections

between physical observables and the Mathieu group M24 in certain toy models. Of par-

ticular interest to us is [14], where it was shown that the elliptic genus of K3 appears in

compactifications of the heterotic string theory and that, by duality, the Gromov-Witten

invariants of certain CY3 manifolds are related to the Mathieu group M24. After quickly

reviewing these results we will extend them and show explicitly how the holomorphic three

form of certain CY3 manifolds is related to M24.

The heterotic E8×E8 string theory compactified onK3×T 2 leads to a four dimensional

spacetime theory with N = 2 supersymmetry (see for example [21] for a nice review of

basic facts about these theories). In order to satisfy the Bianchi identity for the H3 field

one has to turn on a non-trivial gauge bundle inside one or both of the E8 gauge groups. In

particular, in the absence of NS5-branes, we have to embed a total of 24 instantons into the

two E8’s which leads to 13 different cases due to the symmetry that exchanges the two E8’s.

We embed (12−n, 12+n) instantons in E8×E8 and take w.l.o.g. n = 0, 1, . . . , 12. These 13

cases are perturbatively inequivalent, however, each case can be further subdivided based

on the particular subgroup G×G′ ⊂ E8 × E8 in which one turns on the instantons.

For n = 0, 1, 2 the instantons generically break the E8×E8 gauge symmetry and there

are only three vector multiplets whose scalar components we denote by S, T and U . S is

the axio-dilaton, while T and U control the size and complex structure of the two torus T 2.

For n > 2 there are additional Wilson line moduli V i. As was shown in [14], after setting

the Wilson line moduli to zero V i = 0, the prepotential for the thirteen four dimensional

N = 2 spacetime theories is always the same and is directly related to the elliptic genus of

K3 and therefore to M24.
3 In particular (up to a quadratic polynomial in S, T and U) it

is given by

F = STU +
1

3
U3 +

1

(2πi)3
c(0)ζ(3)−

2

(2πi)3

∑

k>0,l∈Z
k=0,l>0

c(kl)Li3

(

qkT q
l
U

)

+O(e2πiS) , (2.8)

where ζ(3) ≈ 1.2 is the Riemann zeta function, qU = e2πiU , qT = e2πiT , the polylogarithm

is defined as Lip =
∑∞

n=1
xn

np and the coefficients c(m) are obtained from the expansion

E4(q)E6(q)

η(q)24
=

∑

m≥−1

c(m)qm=
1

q
−240−141444q − . . . , and c(m) = 0 ∀ m < −1, (2.9)

where Ei(q) are the Eisenstein series (see appendix A in [14] for a definition).

3If one embeds all instantons in one E8 and allows for non-zero Wilson lines for the other E8, then there

is still a direct connection between the prepotential and M24 [14].
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From the explicit derivation of the prepotential one finds that E6(q) and therefore the

c(m) in the prepotential (2.8) are related to the elliptic genus of K3. Explicitly one has

−
4E6(q)

η(q)12
=

(

θ2(q)

η(q)

)6

ZK3
elliptic(q,−1) +

(

θ3(q)

η(q)

)6

q
1

4 ZK3
elliptic

(

q,−q
1

2

)

−

(

θ4(q)

η(q)

)6

q
1

4 ZK3
elliptic

(

q, q
1

2

)

= 24gh= 1

4
,l=0(q) + gh= 1

4
,l= 1

2

(q)

∞
∑

n=0

Anq
n , (2.10)

where the 24=23+1 and the An’s can be decomposed into irreps of M24 as in (2.6) and we

defined

gh= 1

4
,l(q) =

(

θ2(q)

η(q)

)6

chh= 1

4
,l(q,−1) +

(

θ3(q)

η(q)

)6

q
1

4 chh= 1

4
,l

(

q,−q
1

2

)

−

(

θ4(q)

η(q)

)6

q
1

4 chh= 1

4
,l

(

q, q
1

2

)

. (2.11)

Having established this connection between the Mathieu group M24 and the N = 2 prepo-

tential in the spacetime theory, the authors of [14] used the fact that these compactifications

of the heterotic E8 × E8 string theory are dual to compactifications of type IIA on CY3
manifolds Xn that are elliptic fibrations over the Hirzebruch surfaces Fn, where again

n = 0, 1, . . . 12.4 In the dual type IIA compactification the infinite sum in the prepoten-

tial (2.8) arises from instanton corrections and the c(m) are related to the Gromov-Witten

invariants of the CY3 manifolds Xn. The prepotential on the type IIA side was recently

calculated in [22, 23] for X0, X1 and X2 and it matches the heterotic result (2.8) to leading

order in qT [14]. Thus, there is a connection between Gromov-Witten invariants of certain

CY3 manifolds and the sporadic group M24.

We now review that by mirror symmetry this implies that for certain CY3 manifolds

the holomorphic 3-form Ω is likewise connected to the Mathieu group M24. Mirror symme-

try, as we review in appendix A, is a duality between compactifications of type IIA string

theory on a Calabi-Yau manifold Xn and type IIB string theory on the mirror Calabi-Yau

manifold Yn. The moduli space of four dimensional N = 2 theories (locally) factorizes

into a hypermultiplet part and a vector multiplet part. In our particular compactifications

of the heterotic and type IIA string theories the vector multiplets are connected to M24.

In compactifications of type IIA string theory the vector multiplets arise from the Kähler

moduli sector, while for the dual type IIB string theory compactifications the vector multi-

plets arise from the complex structure sector. So we expect that the mirror CY3 manifolds

Yn have a complex structure moduli space that is related to M24.

4We group together all the CY3 manifolds that are dual to heterotic constructions with the same instanton

numbers and collectively call them Xn. All manifolds for a given n are related by geometric transitions

that correspond to (un-)higgsing the gauge group on the dual heterotic side.
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In particular, as discussed in appendix A.3, we can integrate the holomorphic three

form Ω of the CY3 manifolds Yn over a canonical homology basis such that

zi =

∫

Ai

Ω , Fi(z) =

∫

Bi

Ω . (2.12)

In the basis of forms dual to
{

Ai, Bi

}

, it is often convenient to expand the 3-form as

Ω = ziαi − Fi(z)β
i. As we will explain, the Fi exhibit interesting dependence on M24 via

their dependence on the holomorphic prepotential F : Fi = ∂ziF .

The prepotential that controls the vector multiplet moduli space for type IIB compact-

ifications on Yn is given by F = 1
2z

iFi(z), which is a function of the projective coordinates

zi. The periods themselves are solutions of the Picard-Fuchs equations, which can be de-

termined with the classical intersection numbers of the mirror, Xn, as input. The mirror

map can also be inferred from the solutions to the Picard-Fuchs equations in an expansion

around zi = 0. This large complex structure point is mirror to the large radius point of Xn,

so applying the mirror map in an expansion around this point enables us to read off the

Gromov-Witten invariants of Xn. Therefore, the period vector of Yn is controlled entirely

by some classical topological numbers plus the Gromov-Witten invariants of its mirror Xn.

The Gromov-Witten invariants come from the worldsheet instanton corrections to the

Kähler moduli space of Xn, which must be small for our perturbative expansion to be

valid. It is important to remember, though, that the complex structure moduli space of

Yn is classically exact and its periods are expressible in a simple closed form in the zi

coordinates.

The period vector can be expressed in terms of the prepotential as (see appendix A

for details):

Π =











1

ti

∂
∂ti

F
(z0)2

2 F
(z0)2

− ti ∂
∂ti

F
(z0)2











, (2.13)

where ti = zi/z0 are the three moduli dual to S, T, U on the heterotic side. Since the

Hirzebruch surfaces may be viewed as certain P
1 fibrations over P

1, the ti measure the

volumes of the elliptic fiber and the two P
1s: ti =

∫

Ci
(B+ iJ), where B is the NS-NS field

and J is the Kähler form.5 Finally, we can write the period vector even more explicitly by

plugging in F := F/(z0)2

F =





κ0ijk
6
titjtk +

1

2
aijt

itj + biti +
χ(Xn)ζ(3)

2(2πi)3
+

1

(2πi)3

∑

(ni)

N(ni)Li3

(

q
(ni)
i

)



 . (2.14)

The κ0ijk are the classical triple intersection numbers of Xn. aij and bi are also classical

topological numbers which we define in appendix A. We list their numerical values for

5In the context of the type II string, we may view our compactification manifold as being either an

elliptic fibration over Fn or a K3 fibration over P
1. The elliptic fibration over F2, which we will study

extensively in the next section, is a hypersurface X24(1, 1, 2, 8, 12) in a weighted projective space. The K3

fiber of the latter point of view is a hypersurface in X12(1, 1, 4, 6).
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X0, X1 and X2 in appendix B. The N(ni) are the Gromov-Witten invariants of Xn, of

which at least a subset is governed by Mathieu moonshine, as we will delineate shortly.

With the aforementioned substitution, the period vector becomes:

Π =













1

ti

κ0
ijk

2 tjtk + aijt
j + bi + ∂ti (Finst)

−
κ0
ijk

6 titjtk + bit
i + c+ 2Finst − ti∂tiFinst













, (2.15)

where we have defined Finst = 1
(2πi)3

∑

(ni)
N(ni)Li3(q

(ni)
i ). In practice, it is easiest to

compute the prepotential (in the ti coordinates, expanded around the large complex struc-

ture/large radius point) and the Gromov-Witten invariants directly from (2.15) or by com-

puting a triple integral of κijk[Xn] (see appendix A) with the classical topological numbers

as input. This is what we have done; we record the κijk[Xn] = κ̄ijk[Yn] for n = 0, 1, 2 to

fifth order in the qi = e2πit
i

in appendix B.

Finally, we wish to verify that our mirror symmetry computations exhibit the moon-

shine that we expect from the heterotic/IIA duality described earlier. After computing the

prepotential, we finally have all the necessary information in hand. First, we note that the

duality is good on the heterotic side when the string coupling is small. This corresponds to

S → 0, which for us means “ignoring” instanton contributions from what in the notation

of appendix B we call q2 in the elliptic fibration over F0 and q3 for F1,2. We simply use the

usual type IIA/heterotic dictionary [21] and match

− 2cSTU (kl) = NII(k + l, 0, k)[X0] = NII(k + l, k, 0)[X1,2] , (2.16)

which are the coefficients of the Finst on each side of the duality.6

In [14] (2.16) was explicitly checked for k = 1. We have calculated the NII, now

allowing both k and l to vary, to 20th order for each threefold and recovered the coefficients

of −2E4(q)E6(q)/η(q)
24, which exhibit M24 moonshine, as expected from (2.16). This

constitutes a new numerical check of the duality at higher instanton number in the K3

fibers. We see explicitly that the connection to the M24 persists when both the K3’s

elliptic fiber and P
1 base are “counted” multiple times.

The presence of−2E4(q)E6(q)/η(q)
24 in the STUmodel and its corresponding influence

on the IIA side have been known for a long time. The first mirror symmetry computations

of this type were done in [24], where the first few such Gromov-Witten invariants for X2

were computed. As we see from our computations, these coefficients are also visible in the

other Xn, indicating that the new connection to M24 is indeed independent of the instanton

embedding on the heterotic side. We emphasize that the S → 0 limit corresponds to a

large base P
1 on the IIA side, so the Gromov-Witten invariants relevant for moonshine

come from worldsheet instantons mapping into the K3 fiber. This seemingly different

connection between K3 and M24 certainly deserves further study and we point out in the

conclusion that it could potentially extend to other K3 fibered CY3 manifolds.

6The notation NII(k+ l, k, 0) indicates that we are looking at terms in the instanton expansion of order

Li3(q
k+l
1 qk2q

0
3).
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Having established the relationship between the sporadic group M24 and the Gromov-

Witten invariants of the CY3 manifolds Xn, as well as the holomorphic 3-form Ω of the

mirror manifolds Yn, we show in the next section that for (at least some of) the Xn part of

the complex structure moduli space is also linked to M24, and likewise for part of the Kähler

moduli space of (at least some of) the Yn. We also discuss which physical implications can

be derived from such a connection. Here we mostly focus on the holomorphic 3-form Ω of

the Yn (and some of the Xn) and show in the section 4 that its relation to M24 leads to

the appearance of dimension of M24 in the Gukov-Vafa-Witten [25] flux superpotential. In

section 5, we show that for compactifications of the heterotic string theory on the Xn or

Yn the Yukawa couplings of the four dimensional N = 1 theories are related to M24.

3 Connecting both complex structure and Kähler moduli spaces to M24

For n = 2, 4, 6, 8, 12 we can write the Xn as hypersurfaces in the weighted projective space

WP1,1,n,2n+4,3n+6. For at least n = 2, 4, 6, 12 the mirror manifolds can be obtained from

a Greene-Plesser construction, because the sum of the weights is divisible by each weight

(see [19]). This means that we can quotient the space Xn by the maximal group of scaling

symmetries to get a singular limit of its mirror, the Yn manifold.

For example, for X2, the elliptic fibration over F2, we have the Hodge numbers h1,1 = 3

and h2,1 = 243, where the three Kähler moduli correspond to the three STU moduli of the

previous section. If we quotient by the maximal scaling symmetry Z12×Z24 we project out

240 of the 243 complex structure moduli and leave the other three untouched. Resolving

the orbifold singularities leads to 240 new Kähler moduli and the smooth Y2 manifold

with Hodge numbers h1,1 = 243 and h2,1 = 3. The interesting feature of this explicit

construction is that one can clearly see that the 3 complex structure moduli of Y2 have a

moduli space that is a subset of the 243 dimensional complex structure moduli space of X2.

This subspace of the complex structure moduli space of X2 is spanned by the three moduli

that are invariant under the maximal group of scaling symmetries, the Greene-Plesser (GP)

orbifold group. Let us identify them in the defining polynomial of X2. We can write X2

as a hypersurface in WP1,1,2,8,12 (see for example the review [21]):

p =
1

24
(z241 +z242 +2z123 +8z34+12z25)−ψ0z1z2z3z4z5−

1

6
ψ1 (z1z2z3)

6−
1

12
ψ2 (z1z2)

12 , (3.1)

where zi ∈ WP1,1,2,8,12 and the three ψi are three of the 243 complex structure moduli.7

The other complex structure moduli correspond to deformations of the polynomial p that

we have set to zero. As mentioned above, X2 and therefore p can be quotiented by G :=

Z12 × Z24 leading to a singular limit of Y2. From the explicit action of the elements

(g1, g2) ∈ Z12 × Z24:

g1 : (z1, z2, z3, z4, z5) →
(

e
2πi
12 z1, z2, e

2πi11
12 z3, z4, z5

)

,

g2 : (z1, z2, z3, z4, z5) →
(

e
2πi
24 z1, e

2πi23
24 z2, z3, z4, z5

)

, (3.2)

7In appendix A, the ψi and numerical coefficients together are called ai, with one ai multiplying each

monomial.
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we see that p is invariant, and therefore the ψi correspond to the three complex structure

moduli of the mirror manifold Y2 that has Hodge numbers h1,1 = 243, h2,1 = 3. As we

have shown in the previous section, these three complex structure moduli are connected to

M24 and therefore the subset of the complex structure moduli space of X2 that is spanned

by the ψi is likewise connected to M24. Thus we have implicated the Kähler moduli space

and part of the complex structure moduli space of X2 in Mathieu moonshine.

To recap, since we have connected the holomorphic 3-form Ω of all the Yn with M24,

we can now conclude that for the Xn with at least n = 2, 4, 6, 12 there is also a connection

between M24 and a subspace of the complex structure moduli space. Similarly, by mirror

symmetry this then implies that for the Yn with at least n = 2, 4, 6, 12 there is likewise a

connection between M24 and a subspace of the Kähler moduli space.

Note that although the full hypermultiplet moduli spaces ofXn and Yn are quaternionic

Kähler, the special slices we discussed in this section (namely, the slice of the complex

structure moduli space of Xn and the mirror slice of the Kähler moduli space of Yn, and

with all RR fields turned off) obey the relations of special Kähler geometry. This means for

example, that we can calculate period vectors from a prepotential for X2 (and likewise for

Xn with n = 4, 6, 12). The other polynomial deformations that we have turned off in (3.1)

will only appear in the computation of the eight G-invariant periods at higher orders, and

can be consistently set to zero. This idea was first explored in [26] in the context of flux

compactifications.

4 Mathieu representations in flux compactifications

Flux compactifications have been intensively studied during the last fifteen years due their

great importance in solving the moduli problem in string compactifications [27, 28]. The

holomorphic 3-form Ω plays a central role in all flux compactifications on CY3 manifolds

that give rise to a four-dimensional N = 1 theory due to the Gukov-Vafa-Witten superpo-

tential [25]

WGVW =

∫

CY3

H3 ∧ Ω , (4.1)

where H3 denotes the NSNS 3-form flux. In flux compactifications of the heterotic string

theory on any of the Yn (or Xn for n = 2, 4, 6, 12) we therefore expect the appearance of

M24 coefficients in the superpotential via the holomorphic 3-form Ω. (As we show in the

next section, the superpotential arising in heterotic compactifications on the Xn and Yn is

also connected to M24 for H3 = 0.)

For type II compactifications on a CY3 manifold one has to do an orientifold projection

in order to get a four-dimensional theory with N = 1 supersymmetry. For example in type

IIA one usually does an orientifold projection that gives rises to O6-planes while in type

IIB one chooses between either an O3/O7 or an O5/O9 orientifold projection.8 While these

orientifold projections can project out some of the complex structure moduli contained in

8Depending on the orientifold projection, the four-dimensional N = 1 theory might also contain vector

multiplets. For type IIB compactifications the resulting holomorphic gauge kinetic function is also related

to the holomorphic 3-form Ω and therefore to M24 [29, 30].
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Ω, one generically expects that a connection to M24 survives. We work out the details

for the most studied class of flux compactifications which is type IIB string theory on a

CY3 manifold in the presence of O3/O7-planes. In that case the orientifold projection can

potentially remove some entries of the period vector but usually all (or the majority) of

the entries remain unaffected.

We follow the seminal paper [31] that constructs Minkowski vacua in which the com-

plex structure moduli as well as the axio-dilaton are stabilized by fluxes. The reason is

that one might wonder whether the appearance of dimensions of M24 in the holomorphic

3-form Ω are due to an actual symmetry of the Yn and, if that were the case, whether

such a symmetry could be a manifest symmetry of the vacua we find in flux compactifica-

tions. Due to the large order of M24 which is |M24| ≈ 2 × 109 such a symmetry would be

very surprising and tremendously interesting. That a sporadic group appears as symmetry

group of the internal space used in a string compactifications is of course at the heart of

Monstrous moonshine [32]. Monstrous moonshine is essentially explained by the fact that

the Z2 orbifold of R24/Λ, where Λ is the Leech lattice, has as its symmetry group the Mon-

ster group. Compactifying the (left-moving) bosonic string theory on this space leads to

a theory with Monster symmetry and the partition function, which is Klein’s J-function,

can therefore be expanded in such a way that the coefficients are (sums of) irreducible

representations of the Monster group. Likewise it is clear that the newly discovered mock

modular moonshine phenomena involving the Mathieu groups M22 and M23 [33] tell us

that superstring compactifications on asymmetric Z2 orbifolds of R8/ΛE8
, with ΛE8

denot-

ing the E8 root lattice, have the symmetry group M22 or M23. For the case of Mathieu

moonshine, however, things are not yet understood and there does not seem to be a direct

connection between the Mathieu group M24 and the symmetry groups of non-linear sigma

models with N = (4, 4) worldsheet symmetry and K3 target space [11]. Thus, the fasci-

nating connection between the Gromov-Witten invariants of the Xn and the periods of the

holomorphic 3-form Ω of the Yn is currently not understood. Nevertheless, it is interesting

to understand whether such a symmetry, if it is found to exist, would remain unbroken in

flux compactifications. This is what we are explicitly doing for the case of type IIB flux

compactifications.

In type IIB flux compactifications on CY3 manifolds we can turn on the NSNS 3-form

flux H3 and the RR 3-form flux F3. It is useful to combine these into the complex flux

G3 = F3 − τH3, where τ = C0 + ie−φ is the axio-dilaton. We can expand the G3 flux in

the basis (A.6) as

G3 = (M i − τM̃ i)αi − (Nj − τÑj)β
j , i = 0, 1, . . . , h2,1 . (4.2)

Introducing the flux vectors f = (Ni,−M
I ,−M0) and h = (Ñi,−M̃

I ,−M̃0) where I =

1, 2, . . . , h2,1, we can write the full flux superpotential as

W =

∫

CY3

G3 ∧ Ω = (f − τh) ·Π , (4.3)

where the period vector Π is given in (2.15). As we have argued by duality, the instanton

numbers (cf. (2.16)) that appear at different powers of qi in the period vector (2.15) are
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related to sums of dimensions of different irreducible representations of M24. Therefore

it seems clear that Π does not transform in any well defined way under a potential M24

symmetry group. We also notice from equation (4.3) that Π is contracted with a fixed flux

vector. This flux vector arises from the expansion of the fluxes in term of 3-forms (4.2)

and may consist of arbitrary integers, provided they satisfy the tadpole cancellation condi-

tion. Since there does not seem to be any M24 symmetry acting on the third cohomology

class of the Xn or Yn (cf. (A.6)), the flux vector should be invariant under any potential

M24 symmetry.

So the lack of a well defined transformation of Π together with the contraction with the

invariant flux vectors clearly breaks any potential M24 symmetry of the Xn or Yn. Thus the

resulting flux vacua do therefore not have in any obvious way a large sporadic symmetry

group. However, this by no means excludes the exciting possibility that one could define

an M24 action on the curves that give rise to the Gromov-Witten invariants that seem to

be connected the M24.

5 Mathieu representations in Yukawa couplings

Compactifications of the heterotic string theory on CY3 manifolds give rise to four di-

mensional N = 1 theories with a variety of gauge groups and chiral matter. These com-

pactifications have been studied for decades and have been textbook material for a long

time [34]. Here we review a few basic facts and show explicitly how the connection between

M24 and the Gromov-Witten invariants as well as the holomorphic 3-form Ω manifests itself

in the Yukawa couplings of the four-dimensional theories obtained from compactifying the

heterotic string theory on the Xn or Yn.

For compactifications of the heterotic E8 ×E8 string theory on a CY3 manifold M we

have to solve the H3 Bianchi identity which in the absence of NS5-branes reads

dH3 =
α′

4
[Tr (R2 ∧R2)− TrV (F2 ∧ F2)] . (5.1)

If we set the gauge connection equal to the spin connection, then this equation is trivially

satisfied and all other equations of motion are equally satisfied for H3 = 0 and constant

string coupling. The resulting four dimensional theory preserves N = 1 supersymmetry

and has a vanishing cosmological constant. Equating the spin and the gauge connection

breaks one of the E8’s to an E6 GUT group and leaves a second unbroken E8. These gauge

groups can be further broken by modding out by discrete groups and turning on Wilson

lines or by giving expectation values to certain moduli. However, we refrain from doing so

to keep the presentation of the connection to M24 as transparent as possible. It would be

interesting to check whether more involved compactifications on the Xn or Yn can give rise

to semi-realistic models while still preserving the connection to M24.

The low energy effective action and the number of chiral multiplets in these compact-

ifications are determined by the topological data of the CY3 manifold M . Denoting the

Hodge numbers by hp,q one finds h1,1 chiral multiplets Ψi in the 27 of E6 and h2,1 chi-

ral multiplets Φα in the 27 of E6 [34].9 In addition there are several uncharged chiral

9Here we use different conventions than [34] for ease of presentation.
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multiplets like the h1,1 Kähler moduli ti, the h2,1 complex structure moduli uα and the

axio-dilaton s whose vacuum expectation value controls the tree-level holomorphic gauge

kinetic coupling f tree = s. The Kähler potential for the uncharged Kähler and complex

structure moduli as well as the axio-dilaton is given by10

K1(t, t̄) = − ln

(

1

6

∫

M
J ∧ J ∧ J

)

= − ln

(

−
i

6
κ0ijk(t

i − t̄i)(tj − t̄j)(tk − t̄k))

)

, (5.2)

K2(u, ū) = ln

(

i

∫

M
Ω(u) ∧ Ω̄(ū)

)

, (5.3)

K3(s, s̄) = − ln(s+ s̄) . (5.4)

The Kähler potential for the matter fields Ψi and Φα is

Kmatter = e
K2−K1

3
∂2K1(t, t̄)

∂ti∂t̄j
ΨiΨ̄j + e

K1−K2
3

∂2K2(u, ū)

∂uα∂ūβ
ΦαΦ̄β . (5.5)

We see that the holomorphic 3-form Ω appears in the Kähler potential of the four-

dimensional theory and therefore M24 irreps will appear in the kinetic terms for the uα and

Φα in compactifications on the Yn. Even more interesting is the superpotential. There are

non-zero Yukawa couplings for the matter fields that depend on the vacuum expectation

values of the uncharged moduli. In particular the superpotential takes the form

W (t, u,Ψ,Φ) =
1

6
κ0ijk[M ]ΨiΨjΨk +

1

6

∂3F (u)

∂uα∂uβ∂uγ
ΦαΦβΦγ

=
1

6
κ0ijk[M ]ΨiΨjΨk +

1

6
κ̄αβγ [M ]ΦαΦβΦγ , (5.6)

where the gauge indices are contracted with the E6 invariants. We see that the Yukawa

couplings for the Φα are derivatives of the prepotential. For compactifications withM = Yn
these are therefore directly related to M24. The above Kähler and superpotential receive

non-perturbative instanton corrections. In particular one expects that the Kähler potential

K1(t, t̄) and the superpotential for the Ψi receive corrections. Due to the invariance under

mirror symmetry of these compactifications that preserve (2, 2) worldsheet supersymmetry,

we expect that these corrections are exactly such that κ0ijk[M ] becomes κijk[M ] (cf. equa-

tion (A.11)). This means that for compactifications on the Xn the Yukawa couplings for

the fields transforming as 27 are connected to the Mathieu group M24 as well, due to the

connection between the Gromov-Witten invariants that appear in the instanton-corrected

triple intersection numbers and M24. As we have argued before at least for n = 2, 4, 6, 12

there is also a connection between the holomorphic 3-form of the Xn and the Gromov-

Witten invariants of the Yn, so at least for these spaces we expect M24 to play a role in

both Yukawa couplings.

For compactifications of the heterotic string theory on the Yn, we can explicitly calcu-

late the Yukawa couplings in the STU basis up to non-perturbative corrections in S, which

10We slightly abuse the notation and label the multiplets and the scalar field in the multiplet by the same

letter.
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makes the connection to M24 quite transparent. We find the following Yukawa couplings

κ̄αβγ [Yn] = ∂α∂β∂γF (S, T, U) with F (S, T, U) given in (2.8) (cf. also [35, 36])

κ̄STU [Yn] = 1 ,

κ̄UUU [Yn] = 2− 2
∑

k>0,l∈Z
k=0,l>0

c(kl) l3
(

1

1− qkT q
l
U

− 1

)

= −2
E4(qU )E4(qT )E6(qT )

η(qT )24(J(qU )− J(qT ))
,

κ̄TTT [Yn] = −2
∑

k>0,l∈Z

c(kl) k3
(

1

1− qkT q
l
U

− 1

)

= −2
E4(qT )E4(qU )E6(qU )

η(qU )24(J(qT )− J(qU ))
,

κ̄UUT [Yn] = −2
∑

k>0,l∈Z

c(kl) l k2
(

1

1− qkT q
l
U

− 1

)

,

κ̄UTT [Yn] = −2
∑

k>0,l∈Z

c(kl) l2 k

(

1

1− qkT q
l
U

− 1

)

, (5.7)

where we used the fact that ∂3xLi3(e
x) = ex

1−ex . All other Yukawa couplings vanish per-

turbatively in S. For κ̄TTT [Yn] and κ̄UUU [Yn] a closed form was given in [35]. There it

was also argued that κ̄UUT [Yn] and κ̄UTT [Yn] likewise have a pole for T = U that goes like

(J(qU )− J(qT ))
−1. However, we did not try to find a closed form for the latter two since

the sums make the connection to M24 much more transparent. (Recall that the connection

between M24 and the Yukawa couplings arises due to the relation between the c(m) defined

in (2.9) and M24; see section 2). We thus see that perturbatively in S all non-zero Yukawa

couplings, except the trivial κ̄STU [Yn], are linked to M24.

From the explicit calculation of the periods that we do in the appendix, we can get the

Yukawa couplings to arbitrarily high powers in qU , qT as well as qS and we spell them out to

a certain order in appendix B. It is a natural question to ask whether these non-perturbative

corrections in S are likewise related to the Mathieu group M24. As explained in [14], based

on the recursion relation derived in [22, 23], one expects that the answer is yes. Explicitly,

on the type IIA side these corrections to the prepotential F that are non-perturbative in S

are determined by equations that use as seed the term in F that is perturbative in S and

linear in e−2π(T−U). This term is nothing but −2E4E6/η
24 which is directly related to M24

as explained in section 2. Thus we see that essentially all terms in the Yukawa couplings

are implicated in Mathieu moonshine (albeit in a potentially complicated way).

6 Conclusion

Mathieu moonshine is an intriguing and not yet understood connection between the elliptic

genus of K3 and the largest Mathieu group M24. In this short paper we extend previous

results and explicitly exhibit a link between the periods of certain CY3 manifolds and

M24. In particular, based on string dualities it was argued in [14] that the Gromov-Witten

invariants of the CY3 manifolds Xn, that are elliptic fibrations over Fn, exhibit a connection

to M24. We extended the checks of this duality that were performed in [14] and argued that

this then implies a link between the holomorphic 3-form Ω of the mirror manifolds Yn and

M24. Based on the explicit construction of mirror pairs we have shown that (at least for
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n = 2, 4, 6, 12) there is a subspace of the complex structure moduli space for the Xn that

is likewise related to M24. This then directly implies that a subset of the Gromov-Witten

invariants of the Yn (for at least n = 2, 4, 6, 12) are also connected to M24.

These connections lead to a variety of interesting implications, two of which we dis-

cussed in detail. Firstly, flux compactifications on the CY3 manifolds that are implicated in

Mathieu moonshine lead to superpotentials with coefficients that are related to the dimen-

sions of representations of M24. We noted however that even if these CY3 manifolds have

an underlying M24 symmetry, then this symmetry should be broken by the Gukov-Vafa-

Witten superpotential. Secondly, for simple compactifications of the heterotic E8 × E8

string theory on the CY3 manifolds connected to M24, we have shown that the Yukawa

couplings of the matter fields have an interesting connection to M24. In these theories this

thus leads to a relation between particle masses and dimensions of representations of the

largest Mathieu group M24.

It would be interesting to find and study further such connection between physical

quantities in four dimensional theories and the Mathieu group M24. For example, the action

of supersymmetric D6-branes wrapping 3-cycles inside a CY3 manifold involves integrals

over the holomorphic 3-form Ω [37]. This should lead to a relation between M24 and

intersecting D6-brane models for compactifications on the CY3 manifolds whose periods

are connected to M24.

Interestingly, we noticed that E4E6/η
24 also governs a subclass of Ooguri-Vafa in-

variants of the three-modulus system composed of the degree-18 CY3 in WP1,1,1,6,9 and a

particular A-brane. See section 3.2 of [38] for details of this setup. We noticed that for

certain worldsheets wrapping the elliptic fiber of the CY3, these open string analogues of

Gromov-Witten invariants were given by exactly E4E6/η
24. We computed these invariants

to tenth order as a simple check. On the B-model side, the computation of these invariants

could be mapped to computations of the periods of a certain K3 given as a hypersurface

in WP1,1,4,6, much like the K3 fiber of the CY3 manifolds studied in this paper! Therefore,

it is natural to ask if there is a geometrical explanation for the appearance of this modular

form in the periods of these special K3s. Of course, the symplectic automorphisms of such

K3s are strictly subgroups of M23, so such an explanation is far from obvious. We may at

least be able understand its appearance using restrictions from modularity. While we think

such a question is of interest in understanding M24’s connection to K3 surfaces, it may

have further implications for string compactifications as well. In particular, it may suggest

that more CY3s (possibly with brane) containing such a K3 fiber (or submanifold, up to

a change in variables) will have some of its enumerative geometry governed by moonshine.

As we discussed in this paper, these invariants manifest in certain quantities in type II and

heterotic compactifications.

Relatedly, in [39] the authors observe that the dimensions of irreducible representations

of M24 seem to appear in the stable pair invariants of K3 fibered CY3 manifolds. This

seems to provide another link between the geometry of K3-fibered CY3 manifolds and

Mathieu moonshine and it would be very interesting to explore potential connections to

our work via the Gromov-Witten/stable pairs correspondence. For example, we do not yet

understand how to “twine” our Gromov-Witten invariants by simple geometric symmetries,
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and so we cannot compute twining genera to support the connection between moonshine

and geometry. The work of [39], however, may suggest natural geometric twinings, perhaps

analogous to the eta-product twinings computed in Mason’s moonshine, which would realize

an interesting subgroup of M24 symmetries acting directly on geometric invariants. This

would also be fascinating from the spacetime perspective, as it would translate to an M24

action on the algebra of BPS states.

Recently two new moonshine phenomena were discovered in [33]. It would be very

interesting to understand how they can be connected to explicit string theory compactifi-

cations. This should undoubtedly give rise to new interesting physical and mathematical

connections involving the Mathieu groups M22 and M23.
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A Brief review of mirror symmetry

In this section, we will provide a brief review of some of the basic techniques in mirror

symmetry that we used in our computations. Our presentation will mostly follow [24, 40, 41]

and will use the notation of [41]. For a comprehensive review of mirror symmetry, see the

excellent text [42]. For an explicit computation in the one-modulus example of the quintic,

we refer the reader to the seminal paper [43].

Mirror symmetry relates the A- and B-model topological string theories on the mir-

ror manifolds Xn, Yn. The A-model is sensitive only to Kähler deformations and hence

computes the Gromov-Witten invariants on Xn; the B-model probes the complex structure

moduli space through variations of the Hodge structure. The mirror manifolds are topo-

logically distinct, and their Hodge structures map to one another via a diagonal reflection

on their Hodge diamonds. One computes a “mirror map” ti, which is nothing but a special

set of local coordinates, to relate the two theories.

A.1 Toric data

In this paper, we focus on closed string mirror symmetry between two CY3 manifolds

representable as hypersurfaces in toric varieties. The hypersurfaces are specified by reflex-

ive rational convex polyhedra (∆,∆∗) and their associated rational fans. The polyhedra

will contain the origin, which we denote ν0. Other integral points in ∆, including ver-

tices, will be denoted νi. Given a reflexive polyhedron ∆ as a function of the weights,

wi, of an ambient weighted projective space W = WPw1,w2,w3,w4,w5
one can construct its

dual, ∆∗, which specifies the topological data of the mirror Calabi-Yau. This is a con-

venient algorithmic language for finding mirror manifolds which reproduces and extends
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the Greene-Plesser procedure, which constructs mirrors by orbifolding Xn by some abelian

group [19](see also [44] for a procedure to find mirrors away from the Fermat point). For

example, Batyrev [45] found a simple formula computing the Hodge numbers of the mirror

pair in terms of the numbers of integral points on the faces and interiors of the polyhedra.

If the polyhedron is Gorenstein,11 as are the Xn, n = 2, 4, 6, 12, the dual is simply

given by:

∆∗(w) :=

{

(x1, . . . , x5) ∈ R
5|

5
∑

i=1

wixi = 0, xi ≥ −1

}

. (A.1)

In this case, the origin is the only interior point of ∆. Note that the polyhedra satisfy

(∆∗)∗ = ∆.

Normally, we define a hypersurface in weighted projective space as the zero locus of

a quasi-homogeneous polynomial p(z) = 0, which will be nonsingular if it satisfies the

transversality conditions. That is, it never fulfills p(zp) = dp(zp) = 0 for any point zp.

We can define a toric hypersurface in W ∗ as the zero locus of the Laurent polynomial

f∆∗(a,X) = a0 −
∑

i aiX
ν∗i , f∆∗ ∈ C(X±1

1 , . . . , X±1
4 ), where ν∗i are the integral points in

∆∗ and ai are complex constants parametrizing the complex structure deformations of the

B-model geometry. We have used the notation Xν∗i :=
∏4

j=1X
ν∗i,j
j . Similar definitions hold

for the dual (unstarred) quantities.

For some Calabi-Yau X, its complex structure moduli space is encapsulated by lattice

points in the polyhedron ∆∗. Each lattice point corresponds to a monomial perturbation.

Points in the dual polyhedron correspond to exceptional divisors and therefore encode

the Kähler moduli space. Mirror symmetry says that if two Calabi-Yaus X and Y are a

mirror pair, each realized by a toric hypersurface as described above, then the polyhedra

associated to X, (∆X ,∆
∗
X), are isomorphic to the polyhedra associated to Y , (∆∗

Y ,∆Y ).

This exchanges the complex structure and Kähler moduli spaces. For simplicity of notation,

we have dropped the X,Y subscripts above and in what follows, since we will only care

about the pair (∆X ,∆
∗
Y ). In this way, we differ slightly from the notation of [41], but hope

our meaning is clear.

The last important toric quantity to introduce is the Mori cone. There are 5 + h2,1

integral points ν∗i , including the origin ν∗0 that do not lie in the interior of faces of codimen-

sion one. These are the points that we used to construct the Laurent polynomial above.

We define a lattice of relations of the form
∑

i liν
∗
i = 0, li ∈ Z. There are h2,1(Yn)(= 3

for our computations on the B-model side) generators of this lattice. Once we find this

lattice, we define extended vectors (lα0 , {l
α
i }) := (−

∑

i l
α
i , {l

α
i }). The Mori cone generates

the lattice of relations and it will show up in the computation of the periods.

A.2 Periods and Picard-Fuchs equations

With topological data in hand, we may now study the B-model on Yn to extract its holo-

morphic (3, 0) form Ω and compute the periods thereof. Following the previous section,

11The polyhedron will be Gorenstein if the least common multiple of all the weights wi divides the degree

d of the hypersurface.
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this is the mirror manifold associated to ∆∗ so we will explicitly use the ∗ notation to label

toric quantities. The period integrals are given by

Π(a) =

∫

γi

a0
f(a,X)

n
∏

j=1

dXj

Xj
, (A.2)

where f∆∗(a,X) = a0 −
∑

i aiX
ν∗i is the defining polynomial for the hypersurface in terms

of complex structure moduli ai and Xj are inhomogeneous coordinates on (C∗)4 in the

ambient projective space. We have again employed the common notation Xν∗i :=
∏

j X
ν∗i,j
j .

The number of periods is dim(H3) = 2(h2,1(Yn) + 1) = 2(h1,1(Xn) + 1), which equals 8 for

Xn being an elliptic fibrations over Fn and n = 0, 1, 2.

The periods are solutions to the Picard-Fuchs equations and are readily computable

in the large complex structure limit, or around the point of maximal unipotent mon-

odromy. This point will be mapped to the large radius limit of Xn via the mirror

map. Given the Mori cone and complex structure moduli, it is convenient to define

the variables uα :=
∏

a
lαi
i , α = 1, . . . , h1,1(Xn). The large complex structure point is

then uα = 0. First, one computes the fundamental period directly by choosing the cycle

Γ =
{

(X1, X2, X3, X4 ∈ C
4)
∣

∣|Xi| = 1
}

and computing the integral in the a0 → ∞ limit.

The result is

w0(u) =
∑

nα

(−
∑

α l
α
0nα)!

∏

i>0(l
α
i nα)!

∏

α

unα
α , (A.3)

where the sum is such that the integral nα do not let the arguments of the factorials become

non-negative.

Now we may set up the GKZ hypergeometric system of partial differential equations

which the fundamental period satisfies and a subset of this solution space is the solution

space of the Picard-Fuchs (PF) system itself. By examining recursion relations satisfied by

the coefficients of the fundamental period, one can find linear differential operators that

annihilate the periods:

(

pβ

(

uα
d

duα
, uβ

d

duβ

)

− uβqβ

(

uα
d

duα
, uβ

d

duβ

))

w(u) = 0 , (A.4)

where p and q are polynomials in the logarithmic derivatives shown. One may then extract

the PF system from this GKZ system (sometimes with difficulty, though it is straightfor-

ward in our case).

Now, a variation of Hodge structure will change the type of Ω(u). We can write the

cohomology class H3(Yn) =
⊕3

p=0H
3−p,p by Hodge decomposition, which will vary over

the moduli space of complex structures. Indeed, one may think of H3(Yn) as the fiber of a

vector bundle over the moduli space of complex structures, equipped with a flat connection

called the Gauss-Manin connection. One can derive this connection from the PF equations

but we will not do so here. For our purposes, we note that we can identify derivatives

of Ω with Hodge filtration spaces and can find linear combinations of derivatives that

span the whole filtration. The dimensions of the spaces (F 3, F 2/F 3, F 1/F 2, F 0/F 1) are

(1, h2,1, h2,1, 1) and integrating the vector obtained from a section of this filtration gives
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the period vector. Note that the entry corresponding to the 1-dimensional filtration space

F 3 is, of course, Ω(u) itself, and the other entries are logarithmic derivatives thereof.

Let’s find the vector of periods from the PF equations more concretely, around the

point u = 0. If we apply the method of Frobenius to the PF equations around this

point, the result is one power series solution (the fundamental period), and logarithmic

solutions, up to a gauge transformation. We analytically continue the fundamental period

by swapping the factorials for gamma functions and we add h2,1 new variables ρα such

that w0(u, ρ) =
∑

c(n+ ρ)un+ρ. We recover the fundamental period by setting ρ = 0. In

the language of Frobenius, ρ are called the indices, or solutions to the indicial equations,

and they turn out to be maximally degenerate and zero at the point of maximal unipotent

monodromy. Turning the crank, we find that the period vector is

Π =















w0(u)

1
2πi∂ρiw0|ρ=0

1
2

1
(2πi)2

∑

κ0ijk[Xn]∂ρj∂ρkw0|ρ=0

−1
6

1
(2πi)3

∑

κ0ijk[Xn]∂ρi∂ρj∂ρkw0|ρ=0















. (A.5)

Note that the dimensions are (1, h2,1, h2,1, 1) as promised. The constants κ0ijk[Xn] turn out

to be the classical triple intersection numbers of Xn in a particular basis.

A.3 Flat coordinates and the mirror map

Before we discuss the mirror map, we first introduce the symplectic basis of H3(Yn,Z).

Since the moduli space of complex structures enjoys the properties of special geometry,

this will be the appropriate basis to reexpress the periods in terms of the holomorphic

prepotential. As usual, it is

∫

Aj

αi = −

∫

Bi

βj =

∫

Yn

αi ∧ β
j = δji , i = 0, 1, . . . , h2,1 . (A.6)

In this basis, the periods are written as

zi =

∫

Ai

Ω, Fi(z) =

∫

Bi

Ω . (A.7)

The zi are the special projective coordinates on the moduli space (not to be confused with

the coordinates of W ) and will be identified with wi(u). Griffiths transversality gives the

condition
∫

Ω∧ ∂Ω
∂zi

= 0, which implies Fi =
∂F
∂zi

, where F is the holomorphic prepotential.

We can go to a physical gauge by dividing by z0 and defining new coordinates ti = zi/z0.

In this basis, the triple intersection numbers are κ̄ijk =
∫

Ω ∧ ∂3

∂titjtk
Ω. Moreover, the

period vector becomes












1

ti

∂
∂ti

F
(z0)2

2 F
(z0)2

− ti ∂
∂ti

F
(z0)2













. (A.8)
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The mirror map is given by identifying the new coordinates ti with the solutions of the PF

equations that are linear in logarithms (i.e. the first subspace of dimension h2,1):

ti(u) =
wi(u)

w0(u)
. (A.9)

A.4 Triple intersection numbers and Gromov-Witten invariants

As discussed in the previous section, the triple intersection numbers κ̄ijk are readily com-

puted once we have found the periods. In terms of the prepotential, these are simply

rewritten as
∑h2,1

l=0 (z
l∂i∂j∂kFl − Fl∂i∂j∂kz

l). We now wish to find the triple intersection

numbers on the mirror manifold Xn.

If we define F = w2
0F , they are:

κijk[Xn] = ∂ti∂tj∂tkF (t) =
1

w0(u(t))2
∂uα
∂ti

∂uβ
∂tj

∂uγ
∂tk

κ̄αβγ [Yn](u(t)) . (A.10)

If we wish to express the triple intersection numbers in terms of ti, which we know to be

the Kähler moduli in the limit of large radius, we must invert the mirror map. To do

this, we define the variable qj = e2πit
j

. Then we can perform a series inversion ui(t) fairly

laboriously order-by-order. For the simple example of the quintic, this is outlined nicely

in [46]. For our three-modulus Hirzebruch surfaces, this is best done with a computer

program like Mathematica [47].

We can write these full instanton corrected triple intersection numbers as

κijk[Xn] = κ0ijk[Xn] +
∑

ni

N({ni})ninjnk
∏

l q
nl

l

1−
∏

l q
nl

l

, (A.11)

where ni =
∫

C hi ∈ Z, hi ∈ H1,1(Xn,Z). This expression comes from performing a geo-

metric series coming from multiple coverings of the curve C. The integers N({ni}) then

count the number of (isolated, non-singular) rational curves C of degree {ni}. Hence,

these are the integral genus-zero Gromov-Witten invariants. This expression follows from

the geometrical definition of the corrected triple intersection numbers, using the fact that
∫

C J =
∑

tini, where J is the Kähler form.

We note that the classical contribution to the triple intersection numbers, κ0ijk, are

given in a basis corresponding to the variables uα. It is easy to compute them in the basis

of harmonic (1, 1) forms hJ , hD1
, . . . , hD

h1,1−1
, which correspond to the complex structure

moduli ai. In the toric language, the computation is described explicitly in [24]. To

compute them in the basis of divisors (or harmonic forms) corresponding to the u variables,

we perform the change of variables hJ = h1, hDi
=

∑

α l
α
i+5hα.

Lastly, we note that the prepotential can then be written as

F = (z0)
2

(

κ0ijk[Xn]

6
titjtk + (1/2)aijt

itj + bit
i + c/2 +

1

(2πi)3

∑

(ni)

N(ni)Li3(q
(ni))

)

, (A.12)

where, up to monodromy transformations, aij = 0, bi =
1
24

∫

Xn
c2 ∧hi, c =

1
(2πi)3

χ(Xn)ζ(3).

Substituting this expression into the period vector makes the dependence of the periods

on the Gromov-Witten invariants manifest.
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B Data for elliptically fibered threefolds

Here we present some results of our mirror symmetry computations for elliptic fibrations

over Fn, n = 0, 1, 2. We list the Mori cone generators, classical topological ring, and the

Fourier expansion of the triple intersection numbers κijk[Xn] = κ̄ijk[Yn] to 5th order in

the moduli q1, q2, q3 that are related to the STU moduli as indicated below. From this

expansion, one can easily read off the Gromov-Witten invariants, via (A.11). For all three

manifolds, χ(Xn) = −480, n = 0, 1, 2.

We also list our bi =
1
24

∫

Xn
c2 ∧ hi, expressed in the same basis of hi as [41], which we

describe in A. Observables like the flux superpotential are, of course, independent of basis

choices.

B.1 F0

l1 =
(

−6 3 2 1 0 0 0 0
)

l2 =
(

0 0 0 −2 1 1 0 0
)

l3 =
(

0 0 0 −2 0 0 1 1
)

(B.1)

q1 = qU , q2 =
qS
qU

, q3 =
qT
qU

. (B.2)

24b1 = 92, 24b2 = 24, 24b3 = 24 . (B.3)

κ0111[Xn] = 8 , κ0112[Xn] = 2 , κ0113[Xn] = 2 , κ0123[Xn] = 1 . (B.4)

κ111[Xn] = 8 + 480q1 + 4320q2
1
+ 13440q3

1
+ 35040q4

1
+ 60480q5

1
+ 480q1q2 (B.5)

+ 2263104q2
1
q2 + 460581120q3

1
q2 + 30561073920q4

1
q2 + 4320q2

1
q2
2
+ 460581120q3

1
q2
2

+ 480q1q3 + 2263104q2
1
q3 + 460581120q3

1
q3 + 30561073920q4

1
q3 + 1440q1q2q3

− 1808640q2
1
q2q3 + 1390953600q3

1
q2q3 + 2400q1q

2

2
q3 − 3617280q2

1
q2
2
q3 + 3360q1q

3

2
q3

+ 4320q2
1
q2
3
+ 460581120q3

1
q2
3
+ 2400q1q2q

2

3
− 3617280q2

1
q2q

2

3
+ 16800q1q

2

2
q2
3

+ 3360q1q2q
3

3
+ . . .

κ112[Xn] = 2 + 480q1q2 + 1131552q2
1
q2 + 153527040q3

1
q2 + 7640268480q4

1
q2 + 4320q2

1
q2
2

(B.6)

+ 307054080q3
1
q2
2
+ 1440q1q2q3 − 904320q2

1
q2q3 + 463651200q3

1
q2q3 + 4800q1q

2

2
q3

− 3617280q2
1
q2
2
q3 + 10080q1q

3

2
q3 + 2400q1q2q

2

3
− 1808640q2

1
q2q

2

3
+ 33600q1q

2

2
q2
3

+ 3360q1q2q
3

3
+ . . .

κ113[Xn] = 2 + 480q1q3 + 1131552q2
1
q3 + 153527040q3

1
q3 + 7640268480q4

1
q3 (B.7)

+ 1440q1q2q3 − 904320q2
1
q2q3 + 463651200q3

1
q2q3 + 2400q1q

2

2
q3 − 1808640q2

1
q2
2
q3

+ 3360q1q
3

2
q3 + 4320q2

1
q2
3
+ 307054080q3

1
q2
3
+ 4800q1q2q

2

3
− 3617280q2

1
q2q

2

3

+ 33600q1q
2

2
q2
3
+ 10080q1q2q

3

3
+ . . .

κ123[Xn] = 1 + 1440q1q2q3 − 452160q2
1
q2q3 + 154550400q3

1
q2q3 + 4800q1q

2

2
q3 (B.8)

+ 10080q1q
3

2
q3 − 1808640q2

1
q2
2
q3 + 4800q1q2q

2

3
− 1808640q2

1
q2q

2

3
+ 67200q1q

2

2
q2
3

+ 10080q1q2q
3

3
+ . . .

κ133[Xn] = 480q1q3 + 565776q2
1
q3 + 51175680q3

1
q3 + 1910067120q4

1
q3 + 1440q1q2q3 (B.9)

− 452160q2
1
q2q3 + 154550400q3

1
q2q3 + 2400q1q

2

2
q3 − 904320q2

1
q2
2
q3 + 3360q1q

3

2
q3

+ 4320q2
1
q2
3
+ 204702720q3

1
q2
3
+ 9600q1q2q

2

3
− 3617280q2

1
q2q

2

3
+ 67200q1q

2

2
q2
3

+ 30240q1q2q
3

3
+ . . .
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κ222[Xn] = − 2q2 + 480q1q2 + 282888q2
1
q2 + 17058560q3

1
q2 + 477516780q4

1
q2 − 2q2

2
(B.10)

+ 4320q2
1
q2
2
+ 136468480q3

1
q2
2
− 2q3

2
− 2q4

2
− 2q5

2
− 4q2q3 + 1440q1q2q3

− 226080q2
1
q2q3 + 51516800q3

1
q2q3 − 48q2

2
q3 + 19200q1q

2

2
q3 − 3617280q2

1
q2
2
q3

− 216q3
2
q3 + 90720q1q

3

2
q3 − 640q4

2
q3 − 6q2q

2

3
+ 2400q1q2q

2

3
− 452160q2

1
q2q

2

3
− 260q2

2
q2
3

+ 134400q1q
2

2
q2
3
− 2970q3

2
q2
3
− 8q2q

3

3
+ 3360q1q2q

3

3
− 880q2

2
q3
3
− 10q2q

4

3
+ . . .

κ223[Xn] = − 4q2q3 + 1440q1q2q3 − 226080q2
1
q2q3 + 51516800q3

1
q2q3 − 24q2

2
q3 (B.11)

+ 9600q1q
2

2
q3 − 1808640q2

1
q2
2
q3 − 72q3

2
q3 + 30240q1q

3

2
q3 − 160q4

2
q3 − 12q2q

2

3

+ 4800q1q2q
2

3
− 904320q2

1
q2q

2

3
− 260q2

2
q2
3
+ 134400q1q

2

2
q2
3
− 1980q3

2
q2
3
− 24q2q

3

3

+ 10080q1q2q
3

3
− 1320q2

2
q3
3
− 40q2q

4

3
+ . . .

κ233[Xn] = − 4q2q3 + 1440q1q2q3 − 226080q2
1
q2q3 + 51516800q3

1
q2q3 − 12q2

2
q3 (B.12)

+ 4800q1q
2

2
q3 − 904320q2

1
q2
2
q3 − 24q3

2
q3 + 10080q1q

3

2
q3 − 40q4

2
q3 − 24q2q

2

3

+ 9600q1q2q
2

3
− 1808640q2

1
q2q

2

3
− 260q2

2
q2
3
+ 134400q1q

2

2
q2
3
− 1320q3

2
q2
3
− 72q2q

3

3

+ 30240q1q2q
3

3
− 1980q2

2
q3
3
− 160q2q

4

3
+ . . .

κ333[Xn] = − 2q3 + 480q1q3 + 282888q2
1
q3 + 17058560q3

1
q3 + 477516780q4

1
q3 − 4q2q3 (B.13)

+ 1440q1q2q3 − 226080q2
1
q2q3 + 51516800q3

1
q2q3 − 6q2

2
q3 + 2400q1q

2

2
q3

− 452160q2
1
q2
2
q3 − 8q3

2
q3 + 3360q1q

3

2
q3 − 10q4

2
q3 − 2q2

3
+ 4320q2

1
q2
3
+ 136468480q3

1
q2
3

− 48q2q
2

3
+ 19200q1q2q

2

3
− 3617280q2

1
q2q

2

3
− 260q2

2
q2
3
+ 134400q1q

2

2
q2
3
− 880q3

2
q2
3

− 2q3
3
− 216q2q

3

3
+ 90720q1q2q

3

3
− 2970q2

2
q3
3
− 2q4

3
− 640q2q

4

3
− 2q5

3
+ . . .

B.2 F1

l1 =
(

−6 3 2 1 0 0 0 0
)

l2 =
(

0 0 0 −2 1 1 0 0
)

l3 =
(

0 0 0 −1 0 −1 1 1
)

(B.14)

q1 = qU , q2 =
qT
qU

, q3 =
qS

(qUqT )
1

2

. (B.15)

24b1 = 92, 24b2 = 36, 24b3 = 24 (B.16)

κ0111[Xn] = 8 , κ0112[Xn] = 3 , κ0122[Xn] = 1 , κ0113[Xn] = 2 , κ0123[Xn] = 1 . (B.17)

κ111[Xn] = 8 + 480q1 + 4320q2
1
+ 13440q3

1
+ 35040q4

1
+ 60480q5

1
+ 480q1q2 (B.18)

+ 2263104q2
1
q2 + 460581120q3

1
q2 + 30561073920q4

1
q2 + 4320q2

1
q2
2
+ 460581120q3

1
q2
2

+ 252q1q3 + 41040q2
1
q3 + 1478520q3

1
q3 + 26873280q4

1
q3 − 960q1q2q3

+ 945360q2
1
q2q3 + 5029579008q3

1
q2q3 − 1920q1q

2

2
q3 + 2712960q2

1
q2
2
q3 − 2880q1q

3

2
q3

− 73764q2
1
q2
3
− 18191520q3

1
q2
3
− 82080q2

1
q2q

2

3
+ 2400q1q

2

2
q2
3
+ . . .

κ112[Xn] = 3 + 480q1q2 + 1131552q2
1
q2 + 153527040q3

1
q2 + 7640268480q4

1
q2 (B.19)

+ 4320q2
1
q2
2
+ 307054080q3

1
q2
2
− 960q1q2q3 + 472680q2

1
q2q3 + 1676526336q3

1
q2q3

− 3840q1q
2

2
q3 + 2712960q2

1
q2
2
q3 − 8640q1q

3

2
q3 − 41040q2

1
q2q

2

3
+ 4800q1q

2

2
q2
3
+ . . .

κ113[Xn] = 2 + 252q1q3 + 20520q2
1
q3 + 492840q3

1
q3 + 6718320q4

1
q3 − 960q1q2q3 (B.20)

+ 472680q2
1
q2q3 + 1676526336q3

1
q2q3 − 1920q1q

2

2
q3 + 1356480q2

1
q2
2
q3 − 2880q1q

3

2
q3

− 73764q2
1
q2
3
− 12127680q3

1
q2
3
− 82080q2

1
q2q

2

3
+ 4800q1q

2

2
q2
3
+ . . .
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κ122[Xn] = 1 + 480q1q2 + 565776q2
1
q2 + 51175680q3

1
q2 + 1910067120q4

1
q2 (B.21)

+ 4320q2
1
q2
2
+ 204702720q3

1
q2
2
− 960q1q2q3 + 236340q2

1
q2q3 + 558842112q3

1
q2q3

− 7680q1q
2

2
q3 + 2712960q2

1
q2
2
q3 − 25920q1q

3

2
q3 − 20520q2

1
q2q

2

3
+ 9600q1q

2

2
q2
3
+ . . .

κ123[Xn] = 1− 960q1q2q3 + 236340q2
1
q2q3 + 558842112q3

1
q2q3 − 3840q1q

2

2
q3 (B.22)

+ 1356480q2
1
q2
2
q3 − 8640q1q

3

2
q3 − 41040q2

1
q2q

2

3
+ 9600q1q

2

2
q2
3
+ . . .

κ133[Xn] = 252q1q3 + 10260q2
1
q3 + 164280q3

1
q3 + 1679580q4

1
q3 − 960q1q2q3 (B.23)

+ 236340q2
1
q2q3 + 558842112q3

1
q2q3 − 1920q1q

2

2
q3 + 678240q2

1
q2
2
q3 − 2880q1q
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. (B.29)
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