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This paper studies English reverse auctions within a unified framework for preference-
based English reverse auctions. In this context, and particularly for electronic auctions,
representing and handling the buyer’s preferences, so as to enable him/her to obtain the
best possible outcome, is a major issue. Existing auction mechanisms, which are based
on single or multi-attribute utility functions, are only able to represent transitive and
complete preferences. It is well known, however, in the preference modeling literature that
more general preference structures, allowing intransitivity and incomparability, are more
appropriate to capture preferences. On the other hand, we must also consider properties
on the evolution and, above all, on the outcome of any auction executed by an auction
mechanism. These properties, as well as properties of non-dominance and fair competition
defined for multiple criteria auctions, impose restrictions on the preference relation. This
leaves room for interesting preference models to be implemented within English reverse
auction mechanisms.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The automation of auctions over the web has been raising new research perspectives, ranging across various domains
such as auction theory [12,21], agent technology [19,22,35,36], and decision theory [5,15,25,32]. An auction is a competitive
mechanism to allocate resources to a buyer based on predefined rules. These rules define the bidding process, how the
winner is determined, and the final agreement. Software agents are increasingly being used to represent humans in elec-
tronic auctions [1,4,14,18–20,23,35]. These agents can systematically conduct a wide variety of auctions, on behalf of buyers,
mediators, or sellers, and can make rapid decisions about bid selection, winner determination, or bid submission.

The four basic auction protocols are English, Dutch, first-price, and second-price or Vickrey (see, e.g., [21]). The reverse
version of these protocols, used in e-procurement markets, is when a buyer plays the role of the auctioneer, whereas
sellers play the role of bidders. Among these, the English reverse auction protocol is the most popular one for procurement
processes. In this paper we focus on the English reverse auction protocol. The price-only English reverse auction protocol,
which is prevailing, is an iterative process with a deadline, where sellers compete on the price in order to sell a single item
to a unique buyer [11,21]. The buyer specifies the opening bid price and a bid decrement. At each round, each seller may
overbid by proposing a bid which is cheaper than the current best bid by at least the bid decrement. The auction stops
with the current best bid and the corresponding seller when no other seller can overbid. Multi-attribute auctions represent
an extension to standard auction theory [7,27]. They allow negotiating on multiple attributes, involving not only the price,
but also other attributes such as quality, delivery terms and conditions. The buyers reveal their preferences on the item to
be purchased and sellers compete both on price and non-price attributes to win the contract. The multi-attribute English
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reverse auction protocol has been applied in various domains related to provision of goods [6] and allocation of services [8,
13,34]. In particular, it has been adopted officially by the European Community through directives on public procurement
whose stated objectives are to decrease contracting costs, increase transparency and achieve better economic outcomes as
a result of increased competition [10,30].

A crucial issue in the design of multi-attribute auctions is the way of modeling and exploiting the buyer’s preferences
so as to ensure the best possible outcome for the buyer. Multi-attribute auction mechanisms proposed in the literature are
often based on a linear or quasi-linear utility function representing the buyer’s preferences. Che [9] first introduced first-
price and second-price auction mechanisms for two-dimensional reverse auctions in which suppliers bid on both price and
quality. Then, David et al. [13,14] extended Che’s work to an arbitrary number of attributes; they also designed an English
reverse auction protocol for the general case of multi-attribute auctions. Still in the context of iterative reverse auctions,
Parkes and Kalagnanam [28] designed an auction mechanism, where sellers are iteratively required to set a price for each
attribute value. Engel and Wellman [16] extended this work considering dependencies among attributes. Other approaches
are based on the explicit construction of criteria. Bichler [6] implemented and experimented multi-attribute auctions in a
market place, where criterion values are aggregated using a weighted sum. As an alternative to the weighted sum, Bellosta
et al. proposed a multiple criteria English reverse auction mechanism based on reference points [3,4], where the buyer’s
preferences and relative importance of criteria are not expressed in terms of weights, but more directly in terms of required
values on the criteria.

All the above-mentioned auction mechanisms are based on a value or scoring function, which amounts to considering
that the preference relation is transitive and complete. However, as well known in the literature on preference modeling,
imposing these properties is questionable when aiming to represent preferences. Indeed, transitivity of indifference is of-
ten contradicted in practice. This occurs, in particular, when slight differences between two alternatives are not deemed
significant and give rise to an indifference between these alternatives. In this case, a chain of such indifferences may cor-
respond to a large difference between the first and last alternatives of this chain, leading to a preference for one over the
other (see, e.g., [24]). Even for strict preference, one may observe intransitivities [26,33], particularly when preferences are
multidimensional. Moreover, it is sometimes relevant to model preferences using incomparability, e.g. when the objects to
be compared have strongly conflicting evaluations [29]. Consider for instance a buyer willing to purchase a car on the basis
of two criteria, price and speed. This buyer may not wish to compare a fast but expensive car to a cheap but slow car,
above all if he/she is interested in cars with medium price and speed. In the specific context of multiple criteria auctions,
De Smet [15] also suggested considering incomparability situations when bids to be compared are quite different. For these
reasons, we assume in this paper that the buyer’s preferences are represented by a binary preference relation which is not
necessarily transitive and complete.

We must take into account, however, that we are representing preferences in the context of auctions for which we
should also consider some natural properties regarding the evolution and, above all, the final result of the auction. This
last point refers to the issue of efficiency of the auction [38]. In this paper, we study the impact of intransitivity and/or
incomparability on these properties and identify minimal conditions on the buyer’s preference relation which ensure such
properties.

Moreover, since many auction mechanisms are based on multidimensional preferences, we also focus on the case where
the buyer’s preference relation results from the aggregation of several criteria. In this context, additional properties in terms
of non-dominance of the winning bid and fair competition between non-dominated bids should be satisfied. Such properties are
commonly used in multiple criteria decision analysis [37] to characterize a decision procedure:

• Non-dominance requires that a decision procedure selects a non-dominated alternative, i.e. an alternative such that any
other alternative which is better on one criterion, is worse on another criterion.

• Fair competition is satisfied by a decision procedure if for any non-dominated alternative there exists at least one set of
values of the aggregation model parameters which enables the procedure to select the alternative.

In the context of preference-based English reverse auctions, we need to adapt these properties taking into account the
fact that an auction is an iterative process where bids are progressively available. Moreover, a given potential bid is not
necessarily proposed during an auction since this depends on each seller strategy and on the pressure of the competition
between sellers. We investigate, here again, minimal conditions on the buyer’s preference relation which ensure satisfaction
of these properties. Considering these conditions, typical classes of preference relations are evaluated and discussed.

The main contribution of this paper is threefold. First, we propose a conceptual framework, called PERA (Preference-
based English Reverse Auctions), for designing preference-based English reverse auctions within which buyer’s preferences
are represented by a binary preference relation. The basic purpose of this framework is to study all the auction mechanisms
in a unified way. This framework can take into account price-only and existing multi-attribute auctions mechanisms, as well
as mechanisms based on more general preference relations, relaxing transitivity and completeness. Second, we focus on
mechanisms which involve preference relations resulting from the aggregation of multiple criteria. The framework allows us
to analyze them according to two fundamental properties (non-dominance of the winning bid and fair competition between
bids). Since most classical auction mechanisms do not satisfy both properties, we show how to design mechanisms which
satisfy them. Finally, this framework integrates a generic algorithm that allows a buyer agent to manage English reverse
auctions providing bid evaluation, bid selection and request formulation.
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The remainder of this paper is structured as follows. Section 2 introduces framework PERA and the generic algorithm,
which supports the execution of preference-based English reverse auctions, both in asynchronous and synchronous modes.
Section 3 identifies and investigates properties related to the improving nature and efficiency of auctions executed by PERA.
A specialization of PERA, called MERA, in the case where preferences result from the aggregation of the multiple criteria is
introduced in Section 4. Properties of non-dominance of the winning bid and fair competition between non-dominated bids
are introduced and studied respectively in Sections 5 and 6. Section 7 shows how to design auction mechanisms ensuring
these properties and provides a detailed illustrative example. Conclusions are provided in a final section.

2. Framework PERA

Framework PERA integrates a generic algorithm that allows a buyer agent to manage Preference-based English reverse
auctions. In this section, we present this algorithm and show how it can be customized for asynchronous and synchronous
auctions. Finally, we define the notion of a PERA mechanism.

We first introduce the following notations.

• B , the set of potential bids, where any bid is characterized by a vector of attribute values.
• Bs , the set of potential bids of seller s.
• B−s , the set of potential bids of all sellers except seller s.
• P i , the set of bids received at round i.
• P i , the set of bids received until round i: P i = ⋃i

j=1 P j .
• P , the set of bids received during the auction.
• �, the preference relation defined on B that models the buyer’s preferences on the item to be purchased. Three basic

relations can be defined from �:
◦ a strict preference relation �, corresponding to the asymmetric part of �, where a � b if and only if a � b and

¬(b � a),
◦ an indifference relation ∼, corresponding to the symmetric part of �, where a ∼ b if and only if a � b and b � a,
◦ an incomparability relation ?, where a?b if and only if ¬(a � b) and ¬(b � a).

• Given two binary relations R and S defined on B , R ⊂ S is equivalent to aRb ⇒ aS b.

2.1. Algorithm PERA

Algorithm PERA, described in Algorithm 1, generalizes the price-only English reverse auction algorithm in two ways:

• The price criterion, used to compare bids, is replaced by the buyer’s preference relation �.
• The beat-the-quote rule [38], requiring that a new bid has a lower price than the current best bid by a given decrement,

is generalized taking into account a relation �r defined on B , called the request relation. Relation �r is asymmetric and
stronger than relation �, that is such that �r ⊂ �. Thus, the generalized rule requires that a new bid must be �r -
preferred to the current best bid.

The main assumptions of algorithm PERA are:

• Each auction deals with a single unit of an item, a fixed set of sellers, and has a fixed deadline.
• Each seller proposes at most one bid at each round.
• The seller who proposed the best bid at the current round is not called upon for the next round.
• At any round, if none of the called upon sellers has provided a bid before the round time limit then none of them owns

a bid satisfying the request constraint.

Algorithm 1 PERA(�,�r )
1: Announce to the sellers requirements on the item to be purchased, the round time limit, and the closing time
2: best0 ← nil
3: i ← 1
4: repeat
5: Collect the set of valid bids Pi until the round time limit is reached
6: if Pi 	= ∅ then
7: Select the current best bid: besti ← select(�, P i)

8: Compute the new request constraint: ci ← request(�r ,besti)

9: Announce the new request ci to the sellers
10: i ← i + 1
11: end if
12: until (Pi = ∅) or (t > closing time)
13: b∗← besti−1

14: return b∗
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At the beginning of the auction, the buyer indicates to the set of sellers the requirements on the item to be purchased,
the round time limit, and the closing time. The buyer collects the set of bids until the round time limit is reached. When
the set of bids proposed during the current round is not empty, the buyer selects the current best bid as the reference bid
and formulates feedback information for the next round. Feedback information consists of a request constraint that forces
any new bid to beat the current best bid. The auction ends either when no bid has been proposed within the round time
or when the closing time is reached. In the first case, the auction is said to end naturally. At the end of the auction, the
current best bid becomes the winning bid.

Selection of the current best bid (step 7 of Algorithm 1). The current best bid is selected applying a function called select
which takes as arguments a preference relation � and a non-empty set X of bids, and returns one bid from set X :

select(�, X) ∈ X

This function is defined precisely according to the synchronization mode.

Definition of the request constraint (step 8 of Algorithm 1). The request constraint is defined applying a function called
request which takes as arguments a request relation �r and a bid a, and returns a constraint imposing that bids should be
�r -preferred to bid a:

request(�r,a)(b) ⇔ b �r a

At each round i � 1, the request constraint ci = request(�r,besti) asks for bids that are �r -preferred to the current best bid
besti . The bids that satisfy the request constraint ci are said to be valid.

Owing to the definition of the request constraint, we get the following remarks.

Remark 1. In any PERA auction where the request relation �r is transitive, any seller unable to satisfy the current request
constraint at round i, is unable to satisfy further request constraints, unlike where the request relation �r is intransitive.

Remark 2. In any PERA auction, we have besti+1 �r besti , for i � 1.

This remark provides an obvious necessary and sufficient condition in order to prevent cycling in the algorithm.

Proposition 1. Algorithm PERA(�,�r) does not cycle if and only if relation �r is acyclic.

As a consequence, we impose that relation �r used in algorithm PERA(�,�r) is acyclic.
In the next two subsections, we introduce two specialized versions of algorithm PERA called respectively asynchronous-

PERA and synchronous-PERA.

2.2. Asynchronous PERA auctions

Asynchronous English reverse auctions often occur in the context of real-time bid submissions and are largely used in
sourcing of heterogeneous goods and services [2,14,31,34].

In an asynchronous PERA auction, any seller may propose a valid bid at any moment before the closing time is reached.
The round time limit is reached as soon as one bid is received. Thus, at each round, the buyer collects only one bid.
Therefore, function select merely consists of returning this element as the current best bid.

The following remark outlines the behavior of any asynchronous PERA auction.

Remark 3. In any asynchronous PERA auction, we have P i = {besti} and P i = {best1, . . . ,besti}, for i � 1.

2.3. Synchronous PERA auctions

Synchronous English reverse auctions often occur in the context of sealed bid auctions where each seller proposes his/her
bid without knowing the bids of the other sellers. They are recommended in government procurement procedures [10,30]
because they ensure fair competition between sellers.

At each round of a synchronous PERA auction, each seller either sends one valid bid before the round time limit or
informs that he/she does not participate at this round. The buyer collects the set of bids proposed by the sellers and selects
the current best bid as the reference bid. Therefore, function select is defined as follows.

Given a preference relation � and a non-empty set of bids X , function select selects arbitrarily any element in the set of
maximal elements of X :

select(�, X) ∈ M(�, X) = {
b ∈ X

∣∣ ∀b′ ∈ X,¬(
b′ � b

)}
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We recall that acyclicity of relation � is a necessary and sufficient condition to ensure that M(�, X) is not empty for
any non-empty set X . Thus, we impose that relation � is acyclic to ensure that function select always returns one bid in
any non-empty set of bids.

2.4. PERA mechanisms

Various mechanisms can be defined as restrictions of algorithm PERA by specifying a class of preference relations and a
class of request relations. A PERA mechanism, denoted by PERAP ,r , is defined by:

• P , a class of preference relations,
• r, a request mapping function that associates to any preference relation �∈ P a class of request relations denoted by r(�).

Depending on the synchronization mode, we get the following definition of a well-defined mechanism.

Definition 1. A mechanism PERAP ,r is well-defined if and only if:

1. For any �∈ P , any �r ∈ r(�) is stronger than �, i.e. such that �r ⊂ �.
2. For any �∈ P , any �r ∈ r(�) is acyclic.
3. In the synchronous mode, for any �∈ P , � is acyclic.

Condition 1 corresponds to the generalization of the beat-the-quote rule. Conditions 2 and 3 guarantee that algo-
rithm PERA does not cycle.

Considering that any transitive and complete relation defined on a finite or countable set can be represented by a utility
(or value) function u (see, e.g., [17]), we introduce the following mechanism.

Example 1. Mechanism PERAPU ,rU , denoted by PERAU , is defined by:

• PU , the class of preference relations � such that

a � b ⇔ u(a) � u(b)

where u denotes a utility (or value) function.
• rU (�), the class of request relations �r such that

a �r b ⇔ a � b and u(a) � u(b) + ε

where ε � 0 is an increment on u.

Observe that when ε = 0, relation �r coincides with �, i.e. a �r b if and only if u(a) > u(b) and when ε > 0, we get
a �r b if and only if u(a) � u(b) + ε. Choosing a request relation �r ∈ r(�) amounts to setting an auction step ε. In this way
the beat-the-quote rule is directly satisfied.

Moreover, mechanism PERAU is well-defined since it satisfies all the conditions of Definition 1.

In this section, we introduced framework PERA allowing the management of auctions while accepting general prefer-
ence relations not necessarily transitive and complete. The main restriction is acyclicity of the request relation �r , for the
asynchronous mode, and acyclicity of the asymmetric part of the preference relation �, for the synchronous mode.

3. Properties of PERA auctions

In this section, we first study properties related to the evolution of PERA auctions. Finally, we investigate efficiency of
PERA auctions.

3.1. Evolution of PERA auctions

Evolution of reverse English auctions refers to properties which could be considered as the auction progresses [38,15].
The price-only English auction achieves its improving nature by requiring that a new bid be cheaper than the current best
bid. In PERA auctions, this property is generalized into three properties in order to take into account preference relations
which are not necessarily complete and transitive:

• [MBB] Maximality of the current best bid. At each round i � 1, none of the bids received until round i is preferred to the
current best bid: besti ∈ M(�, P i).
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• [IBB] Improved best bids. At each round i � 2, the current best bid is strictly preferred to any previous best bid: besti �
best j , for j = 1, . . . , i − 1.

• [NCB] No cycling on bids. At each round i � 2, any proposed bid has not been proposed previously: P i ∩ P i−1 = ∅.

For both synchronization modes, the only dependence between the above properties is:

Proposition 2. [MBB] ⇒ [NCB].

Proof. Assume, by contradiction, that [NCB] is not satisfied. Then, there exists i � 2 and b ∈ P i−1 such that b ∈ P i , i.e. such
that b �r besti−1 and thus such that b � besti−1, since �r ⊂ �. This contradicts [MBB] for besti−1. �

The three above properties are trivially satisfied by any auction PERA(�,�r), when both relations � and �r are transitive,
but might not be satisfied otherwise as shown in the illustrative example presented in Section 7 .

3.1.1. Evolution of asynchronous PERA auctions
We provide conditions on relations � and �r so that asynchronous-PERA ensures satisfaction of properties [MBB], [IBB],

and [NCB]. First we give the following results.

Proposition 3. In any asynchronous PERA auction we have:

1. [IBB] ⇒ [MBB].
2. [NCB] is satisfied.

Proof. See Appendix A.1. �
Proposition 4. Algorithm asynchronous-PERA(�,�r) ensures:

• [MBB] if and only if

∀n � 3, ∀b1, . . . ,bn ∈ B, b j+1 �r b j, j = 1, . . . ,n − 1 ⇒ ¬(
b1 � bn) (1)

• [IBB] if and only if

∀n � 3, ∀b1, . . . ,bn ∈ B, b j+1 �r b j, j = 1, . . . ,n − 1 ⇒ bn � b1 (2)

Proof. See Appendix A.2. �
As corollaries of Proposition 3, we provide now more interpretable sufficient conditions to ensure satisfaction of [MBB]

and [IBB].

Corollary 1. If � is acyclic then algorithm asynchronous-PERA(�,�r) ensures [MBB].

Proof. Since �r ⊂ �, b j+1 �r b j implies b j+1 � b j , j = 1, . . . ,n − 1. Acyclicity of � implies then ¬(b1 � bn) and estab-
lishes (1) in Proposition 4. �
Corollary 2. If � is transitive or if �r is transitive, then algorithm asynchronous-PERA(�,�r) ensures [MBB] and [IBB].

Proof. If � is transitive or if �r is transitive, (2) in Proposition 4 is satisfied due to �r ⊂ �. Thus [IBB] is satisfied. From
Proposition 3, satisfaction of [IBB] implies satisfaction of [MBB]. �
3.1.2. Evolution of synchronous PERA auctions

We first provide necessary and sufficient conditions on relations � and �r so that synchronous-PERA ensures satisfaction
of properties [MBB], [IBB], and [NCB] for any auction it executes.

Proposition 5. Algorithm synchronous-PERA(�,�r) ensures:

• [MBB] if and only if

∀n � 2, ∀a,b1, . . . ,bn ∈ B, ¬(
a � b1) and b j+1 �r b j, j = 1, . . . ,n − 1 ⇒ ¬(

a � bn) (3)
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Table 1
Sufficient conditions on � and �r ensuring [MBB], [IBB], and [NCB].

[MBB] [IBB] [NCB]

Asynchronous-PERA
(minimal condition: �r acyclic)

�r acyclic – – �
� acyclic � – �
�r transitive � � �
� transitive � � �

Synchronous-PERA
(minimal condition: � acyclic)

� acyclic – – –
�r transitive – � �
� transitive � � �

• [IBB] if and only if

∀n � 3, ∀b1, . . . ,bn ∈ B, b j+1 �r b j, j = 1, . . . ,n − 1 ⇒ bn � b1 (4)

• [NCB] if and only if

∀n � 2, ∀a,b1, . . . ,bn ∈ B, ¬(
a � b1) and b j+1 �r b j, j = 1, . . . ,n − 1 ⇒ ¬(

a �r bn) (5)

Proof. See Appendix A.3. �
As corollaries of the previous propositions, we provide now more interpretable sufficient conditions on relations � and

�r to ensure satisfaction of [MBB], [IBB], and [NCB].

Corollary 3. If � is transitive then algorithm synchronous-PERA(�,�r) ensures [MBB], [IBB], and [NCB].

Proof. Observe that, since �r ⊂ �, b j+1 �r b j implies b j+1 � b j , j = 1, . . . ,n − 1. Then transitivity of � implies bn � b1.
This establishes (4) in Proposition 5, ensuring [IBB].

Using the same observation, for all a ∈ B , such that ¬(a � b1), bn � b1 and transitivity of � imply ¬(a � bn). This
establishes (3) in Proposition 5, ensuring [MBB]. Finally, from Proposition 2, [NCB] is also satisfied. �
Corollary 4. If �r is transitive then algorithm synchronous-PERA(�,�r) ensures [IBB] and [NCB].

Proof. Observe that, by transitivity of �r , b j+1 �r b j , j = 1, . . . ,n − 1, implies bn �r b1.
Then inclusion �r ⊂ � implies bn � b1 and this establishes (4) in Proposition 5, ensuring [IBB].
From inclusion �r ⊂ �, we get ¬(a � b1) implies ¬(a �r b1). Moreover, using the initial observation, we get bn �r b1.

Then, transitivity of �r implies ¬(a �r bn). This establishes (5) in Proposition 5, ensuring [NCB]. �
The above results, summarized in Table 1, allow us to draw some general conclusions. First, when � is transitive, the

three properties are satisfied for both synchronization modes. Therefore, classical auction mechanisms, which are based on
transitive and complete preference relations, do satisfy these properties. Nevertheless, this shows also that we can consider
auction mechanisms, handling non-transitive indifference or admitting incomparability, while preserving the three proper-
ties. Second, conditions to satisfy these properties are always stronger in the synchronous mode than in the asynchronous
mode.

3.2. Efficiency

Efficiency of a price-only auction requires that one of the bidders with the cheapest bid wins the auction. Equiva-
lently, none of the bidders, except maybe the winning bidder, can propose a bid cheaper than the winning bid. These
two definitions, although equivalent, generalize into two different formulations in the context of preference-based auc-
tions: efficiency requires first that if one of the bidders can provide a bid strictly preferred to any other bid, then he/she
wins the auction, and second that none of the bidders, except may be the winning bidder, can propose a bid which is
strictly preferred to the winning bid. However, the use of a bid decrement ε in a price-only auction, does not ensure
efficiency but only a weaker form of efficiency within ε. In a preference-based auction, which uses a relation �r to for-
mulate requests, efficiency is extended in order to take into account relation �r instead of �. This leads to the following
definition.



1456 M.-J. Bellosta et al. / Artificial Intelligence 175 (2011) 1449–1467
Definition 2. A preference-based auction is said to be quasi efficient if and only if:

• The winning bid b∗ , proposed by the winning seller s∗ is �r -maximal in the set B−s∗: ∀b ∈ B−s∗ ,¬(b �r b∗).
• If one of the sellers, s̃, owns at least one bid �r -preferred to any potential bid in B−s̃ , then seller s̃ wins the auction.

Obviously, any form of efficiency cannot be ensured if the auction is stopped prematurely due to the closing time. There-
fore, such properties are meaningful only under the assumption that the auction ends naturally. We will not state the
assumption for the sake of brevity.

Proposition 6. Algorithm PERA ensures quasi efficiency.

Proof.

• The winning bid is such that no seller, except possibly the winning seller, can provide a bid that is �r -preferred to the
winning bid.

• If one of the seller, s̃, owns one bid, bs̃ , �r -preferred to any other bid, then he/she wins the auction. Indeed, if needed,
seller s̃ is always able to propose bs̃ to win the auction. �

One should notice that quasi efficiency is ensured without imposing any additional restriction on � or �r . Actually, this
is an intrinsic property of algorithm PERA.

4. Multiple criteria English Reverse Auctions

From now on, we focus on auctions using preference relations resulting from the aggregation of multiple criteria. This
corresponds to situations where preferences regarding the item to be purchased are multidimensional and conflicting. In
the following, this specific class of PERA mechanisms is referred to as MERA (Multiple criteria English Reverse Auctions).
Some of these MERA mechanisms are based on a utility function which aggregates these criteria. In this case, the preference
relations are transitive and complete. However, we also consider MERA mechanisms which involve preference relations using
veto thresholds, which are not necessarily transitive and complete.

In this context, any bid b ∈ B is characterized by p criterion values (c1(b), . . . , cp(b)), where c j is a criterion function
that associates to any bid a value in domain C j ⊂ R such that for any b,b′ ∈ B , c j(b) � c j(b′) implies that b is at least as
good as b′ for the buyer, regarding the viewpoint represented by criterion c j , j = 1, . . . , p. In the following, we denote for
simplicity b j = c j(b).

Let us now recall some common concepts and notations.

• C = C1 × · · · × C p ⊂ R
p , the criterion space.

• �, the dominance relation defined on B such that for any b,b′ ∈ B , b�b′ if and only if b j � b′
j , j = 1, . . . , p. We denote

by � the asymmetric part of �, where b�b′ if and only if b�b′ and there exists j ∈ {1, . . . , p} such that b j > b′
j .

A bid b ∈ X ⊂ B is non-dominated in X if and only if there is no b′ ∈ X such that b′�b. Moreover, we assume that any
preference relation � defined on B does not violate dominance, i.e. satisfies �⊂ �.

• Considering a function u : R
p → R, u is:

– monotonically increasing if and only if for any z, z′ ∈ R
p , z j � z′

j , j = 1, . . . , p, implies that u(z) � u(z′),
– strongly monotonically increasing if and only if for any z, z′ ∈ R

p , z j � z′
j , j = 1, . . . , p and z 	= z′ , implies that

u(z) > u(z′).
By reversing the previous inequality, we obtain definitions for monotonically decreasing and strongly monotonically
decreasing functions.

4.1. Multiple criteria English Reverse Auction mechanisms based on an aggregation function

Mechanism MERAPU ,rU , denoted by MERAU , is a PERAU mechanism based on a real aggregation function u defined on R
p .

We illustrate now some particular MERAU mechanisms based on aggregation functions often used or proposed in prac-
tice: the weighted sum [10,6], reference point-based functions [4,3] and the lexicographic order [10].

Example 2. Mechanism MERAPΣ,rΣ , denoted by MERAΣ is a MERAU mechanism based on a weighted sum function uω ,
which is a strongly monotonically increasing function defined as follows:

uω(a) =
p∑

j=1

ω ja j where ω j > 0 is the weight associated to criterion j, j = 1, . . . , p
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Table 2
Impacts of veto thresholds.

� �v

a � b a (�v ∪?v )b
a ? b a ?v b
a ∼ b a (�v ∪ �−1

v ∪ ?v ∪ ∼v )

Example 3. Mechanism MERAP R ,rR , denoted by MERAR , is a MERAU mechanism using a reference point-based function uα ,
which is a monotonically decreasing function defined as follows:

uα(b) = max
j=1,...,p

{
λ j(α j − b j)

}
where α ∈ C specifies the aspiration point of the buyer on the item to be purchased, and λ j , j = 1, . . . , p, is a scaling factor
aiming at normalizing differences expressed on heterogeneous criterion scales.

Example 4. Mechanism MERAPL ,rL , denoted by MERAL , is a mechanism based on the lexicographic order which can be
viewed as a strongly monotonically increasing function. This mechanism is defined by:

• PL , the class of preference relations � such that:

a � b ⇔

⎧⎪⎨
⎪⎩

a = b or

∃k ∈ {1, . . . , p}, aπ(k) > bπ(k) and

aπ( j) = bπ( j), for j � k − 1

where π denotes a permutation of set {1, . . . , p}.
• rL(�), the class of preference relations �r such that:

a �r b ⇔

⎧⎪⎨
⎪⎩

a � b and

∃k ∈ {1, . . . , p}, aπ(k) � bπ(k) + θπ(k) and

aπ( j) � bπ( j), for j � k − 1

where θ ∈ R
p + is an increment vector.

Observe that when the increment vector θ = 0, �r coincides with �.

4.2. Mechanisms based on veto thresholds

In some situations, the buyer may consider that even if bid a is better than bid b on most criteria, a is so worse than
b on one criterion, say criterion j, that assertion ‘a is preferred to b’ cannot be accepted. In this case criterion j opposes a
veto to the assertion ‘a is preferred to b’. This corresponds to the idea of discordance often used in multiple criteria decision
analysis (see, e.g., [29]). To implement this concept, one needs to define a veto threshold v j associated to each criterion j
such that a j < b j − v j implies ‘a is not preferred to b’. This leads to the definition of mechanisms based on veto thresholds.

Definition 3. From any mechanism MERAP ,r , a mechanism MERAPV ,rV is defined by:

• Pv , the class of preference relations �v such that

a �v b ⇔ a � b and a j � b j − v j, j = 1, . . . , p

where v = (v1, . . . , v p), v j > 0, j = 1, . . . , p, is a vector of veto thresholds.
• rv(�v), the class of request relations �rv such that

a �rv b ⇔ a �r b and a j � b j − v j, j = 1, . . . , p

The asymmetric part of �v is defined by:

a �v b ⇔ a j � b j − v j, j = 1, . . . , p and

{
a � b or(
a ∼ b and ∃k ∈ {1, . . . , p}, bk < ak − vk

)
The possible impacts of applying veto thresholds to a given relation � in order to obtain a relation �v are summarized

in Table 2. Applying veto thresholds to relation � leads to a relation �v such that �v is not necessarily acyclic. This is
due to the fact that from a ∼ b we can obtain a �v b and thus create cycles in �v . This impacts on the well-definedness of
mechanism MERAPV ,rV as follows.
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Proposition 7.

• Any mechanism MERAPV ,rV is well-defined in asynchronous mode.
• Any mechanism MERAPV ,rV is well-defined in synchronous mode if and only if any �v ∈ PV is acyclic.

Proof. From the above definitions of �v and �rv , we have �rv ⊂ �v . We have also �rv ⊂ �r , which involves that �rv is
acyclic, since �r is imposed to be acyclic. Referring to conditions of well-definedness, presented in Definition 1, we get the
results for each synchronization mode. �

The following corollary applies this result to the mechanisms previously defined.

Corollary 5. Let MERAΣ V , MERAR V and MERALV denote mechanisms resulting from applying veto thresholds respectively on mecha-
nism MERAΣ , MERAR and MERAL .

1. Mechanisms MERAΣ V and MERAR V are not well-defined in synchronous mode.
2. Mechanism PL is well-defined in synchronous mode.

Proof. 1. Consider an item described using three criteria, the weighted sum function uω defined using ω1 = ω2 = ω3 = 1/3,
and the following bids a(10,20,30), b(20,30,10), c(30,10,20). We have a ∼ b, b ∼ c, and a ∼ c. However, when introducing
veto thresholds v1 = v2 = v3 = 15, we get a cycle a �v b, b �v c, and c �v a. The same result is obtained considering the
reference point-based function uα with α = (40,40,40) and λ1 = λ2 = λ3 = 1.

2. The symmetric part ∼ of any �∈ PL is restricted to identity on the criterion values. Therefore, we get ∼v =∼ and
�v ⊂ �. In this case, starting from a transitive and complete relation �∈ PL , we obtain a partial relation �v , whose
asymmetric part �v is acyclic. �
5. Non-dominance of the winning bid

In multiple criteria decision analysis, a natural requirement is that a decision procedure should select a non-dominated
alternative. In the context of auctions, we need to adapt this requirement by imposing non-dominance of the winning bid
with respect to all bids that could be proposed by the non-winning sellers. However, we do not require that the winning bid
be non-dominated with respect to bids that could be proposed by the winning seller. This leads to the following definition.

Definition 4. A multiple criteria auction satisfies non-dominance if and only if the winning bid b∗ proposed by the winning
seller s∗ is non-dominated in B−s∗: ∀b ∈ B−s∗ , ¬(b�b∗).

As for efficiency, non-dominance cannot be ensured if the auction is stopped prematurely due to the closing time. There-
fore, all propositions and corollaries presented in this section assume that the auction ends naturally. Here again, we will
not state explicitly this assumption for the sake of brevity.

Proposition 8. Algorithm MERA(�,�r) ensures non-dominance if and only if � ⊂�r .

Proof. See Appendix A.4. �
The following corollaries are a direct application of the previous result to mechanisms based on an aggregation func-

tion u.

Corollary 6. When function u is strongly monotonic, mechanism MERAU ensures non-dominance if �r coincides with �, i.e. if ε = 0.

Proof. Since u is strongly monotonic, we have a�b implies u(a) > u(b), i.e. � ⊂�=�r . �
From this corollary, we get that mechanism MERAΣ ensures non-dominance if ε = 0. In the same way, mechanism MERAL

ensures non-dominance if θ = 0.

Corollary 7. If function u is monotonic, but not strongly monotonic, mechanism MERAU does not ensure non-dominance.

Proof. Function u being monotonic, but not strongly monotonic, there exist z, z′ ∈ R
p such that z > z′ and u(z) = u(z′).

Then, there may exist a, b ∈ B such that a j = z j and b j = z′
j for 1, . . . , p, and thus such that a�b and u(a) = u(b). Therefore

we have a�b and ¬(a �r b), for any �r associated to u. This shows that ¬(� ⊂�r). �
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Fig. 1. Relation �σ . The hatched area represents the set of bids a such that (a�b and ¬(a�σ b)) and the grey area represents the set of bids a such that
a�σ b.

From this corollary, we get that mechanism MERAR cannot ensure non-dominance.
However, launching an auction with a step ε = 0 may make the auction too slow to end naturally. As a consequence,

non-dominance may not be satisfied. This is why we may consider a weaker form of non-dominance when using strictly
positive auction steps. To this end, we need to allow the winning bid to be dominated, provided that this dominance is not
too strong. This requires to define a concept of strong dominance. While several definitions are possible, we suggest the
following definition of quasi non-dominance which uses a significance threshold on each criterion. The corresponding idea of
strong dominance is then that, besides classical strict dominance, we should observe a significant improvement on at least
one criterion so as to accept strong dominance.

Definition 5. Let σ be a vector of p positive significance thresholds, an associated strong dominance relation �σ (see Fig. 1
in the bicriteria case) is defined by:

a�σ b ⇔
{

a�b and

∃k ∈ {1, . . . , p}, ak > bk + σk
(6)

This concept of strong dominance relation allows us to relax the condition of Definition 4.

Definition 6. A multiple criteria auction satisfies quasi non-dominance for a given significance threshold vector σ , if and only
if the winning bid b∗ proposed by the winning seller s∗ is �σ -non-dominated in B−s∗: ∀b ∈ B−s∗ , ¬(b�σ b∗).

Proposition 9. Algorithm MERA(�,�r) ensures quasi non-dominance for a given significance threshold vector σ , if and only if
�σ ⊂�r .

Proof. The proof is similar to the one given for Proposition 8 (Appendix A.4) by replacing � by �σ . �
Since results on mechanisms based on an aggregation function u depend on the precise definition of u, the following

corollaries deal with mechanisms based on the weighted sum function, the lexicographic order, and the reference point-
based function, respectively.

Corollary 8.

1. Mechanism MERAΣ ensures quasi non-dominance if we set σ j = ε/ω j , j = 1, . . . , p.
2. Mechanism MERAL ensures quasi non-dominance if we set σ j = θ j , j = 1, . . . , p.

Proof. 1. Consider a,b ∈ B such that a�σ b, with σ j = ε/ω j, j = 1, . . . , p. We have a j � b j, j = 1, . . . , p, and there exists
k ∈ {1, . . . , p}, ak > bk + ε/ωk , which implies

∑p
j=1 ω ja j >

∑p
j=1 ω jb j + ε, i.e. uω(a) > uω(b) + ε, and thus a �r b. This

proves that �σ ⊂�r .
2. Consider a,b ∈ B such that a�σ b, with σ j = θ j, j = 1, . . . , p. We have a j � b j, j = 1, . . . , p, and there exists k ∈

{1, . . . , p}, such that ak > bk + σk . Considering k′ = π−1(k), we get aπ(k′) > bπ(k′) + θπ(k′) and aπ( j) � bπ( j), for j � k′ − 1,
which implies a �r b. This proves that �σ ⊂�r . �
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Corollary 9. Mechanism MERAR does not ensure quasi non-dominance.

Proof. We show, for any strong dominance relation �σ , the possible existence of a,b ∈ B such that a�σ b and uα(a) =
uα(b). Consider for this, bid b(b1,b2) ∈ B , λ1 = λ2 = 1 and the reference point α(b1,b2), there may exists t > σ1 such that
a(b1 + t,b2) ∈ B . We have then a�σ b and uα(a) = uα(b) = 0.

Since uα(a) = uα(b), we have ¬(a �r b) for any �r associated to �. Therefore, �σ ⊂�r is not satisfied. �
The use of veto thresholds affects quasi non-dominance in the following way.

Proposition 10. If algorithm MERA(�,�r) ensures quasi non-dominance for a given significance threshold vector σ , algorithm
MERA(�v ,�rv) also ensures quasi non-dominance for σ :

• in the asynchronous mode,
• in the synchronous mode if �v is acyclic.

Proof. We show that �σ ⊂�r implies �σ ⊂�rv . Indeed, a�σ b implies a j � b j and thus a j � b j − v j , j = 1, . . . , p, which,
together with a �r b, imply a �rv b. Moreover, in the synchronous mode, we need to impose acyclicity of �v in order to get
a well-defined mechanism (see condition 3 of Definition 1 ). �

The following corollary applies this result on mechanisms MERALV and MERAΣ V .

Corollary 10. Mechanism MERALV ensures quasi non-dominance in both synchronization modes and MERAΣ V in the asynchronous
mode only.

6. Fair competition between non-dominated bids

In multiple criteria decision analysis, a decision procedure relies on an aggregation model to capture the decision maker’s
preferences and aims to select a preferred alternative among the set of non-dominated alternatives. A decision procedure
satisfies fair competition between non-dominated alternatives, if for any non-dominated alternative, there exists at least one
set of values of the aggregation model parameters which enables the procedure to select this alternative or any of its
equivalents, i.e. any alternative with the same criterion values. This is clearly a crucial issue since, if fair competition is not
satisfied, potentially interesting alternatives are rejected a priori because of technical limitations of the aggregation model.

In the context of auctions, fair competition should be evaluated between non-dominated bids from the set B S = ⋃
s∈S Bs

of bids that could be proposed by the competing sellers. We cannot ensure, however, that a given bid will be effectively
proposed during the auction and, thus, will win. Therefore, we need to adapt this property by requiring only that any
non-dominated bid is valid, i.e. liable to be proposed, at any round; moreover if any of its equivalents, including itself, is
proposed then it wins the auction. This leads to the following definition.

Definition 7. Any mechanism MERAP ,r satisfies fair competition if and only if for any bid a, non-dominated in B S , there
exists at least one preference relation �∈ P and one request relation �r ∈ r(�) ensuring that any bid equivalent to bid a is
valid at any round, and wins if proposed.

As observed before, fair competition does not ensure that any bid a, non-dominated in B S , wins any auction MERA(�,�r ),
where � and �r represent the relations associated to a. However, this property ensures that:

• Any auction MERA(�,�r ), which ends naturally, is won by one of the sellers which owns bid a or one of its equivalents.
• When at least two different sellers own bid a or one of its equivalents, any auction MERA(�, �r ), which ends naturally,

is won by bid a or one of its equivalents.

Otherwise, in both cases, the current winning bid could be beaten by bid a or one of its equivalents.
We provide now a necessary and sufficient condition for fair competition.

Proposition 11. Both for asynchronous and synchronous modes, any mechanism MERAP ,r satisfies fair competition if and only if the
following condition holds:

∀B, ∀a ∈ B, ∃ �∈ P, ∃ �r ∈ r(�), ∀b ∈ B, ¬(b�a) ⇒ a �r b (7)

Proof. See Appendix A.5. �
The following corollaries apply this result to the mechanisms presented in Section 4.
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Corollary 11. Mechanism MERAΣ , using the weighted sum function, and mechanism MERAL , using the lexicographic order, do not
satisfy fair competition.

Proof. Let us consider the set of potential bids B = {a, b, c} with criterion values a(40,40), b(100,0) and c(0,100) and let
us show that fair competition cannot be obtained for bid a since condition (7) is violated.

• For all weight vector (ω1,ω2) ∈ [0,1]2 such that ω1 + ω2 = 1, we have uω(a) = 40, uω(b) = 100ω1, and uω(c) =
100 − 100ω1. Then we can check easily that b is optimal when 0.5 � ω1 � 1 and c is optimal when 0 � ω1 � 0.5.
Hence, we have

∀ �∈ PΣ, ∃b ∈ B, ¬(b�a) and ¬(a � b)

and thus ¬(a �r b),∀ �r ∈ r(�), since �r ⊂ �.
• For any lexicographic order, bid a(40,40) cannot be optimal and thus condition (7) is violated. �

Corollary 12. Mechanism MERAR , using the reference point-based function, satisfies fair competition.

Proof. Mechanism MERAR satisfies condition (7) for any set of potential bids B and any bid a ∈ B taking α = (a1, . . . ,ap)

as aspiration point and ε = 0 as step of the request. We have indeed, uα(a) = 0 and uα(b) > 0 for any b ∈ B such
that ¬(b�a). �

The use of veto thresholds affects fair competition in the following way.

Proposition 12. Considering P a class of preference relations, mechanism MERAPV ,rV , if well-defined, satisfies fair competition if
and only if mechanism MERAP ,r satisfies fair competition.

Proof. Assuming that MERAPV ,rV is well-defined and that MERAP ,r satisfies fair competition, condition (7) associates to any
a ∈ B a relation �∈ P and a relation �r ∈ r(�). Then condition (7) remains satisfied by relations �v ∈ PV and �rv ∈ rv(�v)

respectively defined from � and �r , using any veto thresholds such that bid a remains comparable to any bid that does not
dominate it. Such thresholds, if chosen large enough, always exist.

Assuming that MERAPV ,rV satisfies fair competition, condition (7) associates a relation �v ∈ PV and a relation �rv ∈ rv(�v
) to any a ∈ B . Then taking relations � and �r underlying respectively �v and �rv allows us to satisfy condition (7), since
we have �rv ⊂ �r . �

As a consequence of this proposition, we get:

Corollary 13. Mechanism asynchronous-MERAR V , using the reference point-based function and veto thresholds, satisfies fair compe-
tition.

Remark 4.

1. When using veto thresholds with the reference point-based function, we must pay attention to setting these thresholds
in such a way that the aspiration point is preferred to any bid that does not dominate it. This is not restrictive since
the concept of aspiration point, by its very definition, imposes that the only bids that are preferred to it are the ones
which dominate it.

2. As shown in Section 4, mechanism MERAR V cannot be used in the synchronous mode, since veto thresholds may
introduce cycles into relations defined from the reference point-based function.

7. Hybrid mechanisms

As shown in the previous section, standard aggregation models satisfy either quasi non-dominance or fair competition.
In order to satisfy both properties, it is natural to try to combine models of each type. To define such a combination, it
should be pointed out that aggregation models satisfying fair competition but not quasi non-dominance are able to return
all non-dominated bids but also dominated ones. More precisely, provided that such a model corresponds to a monotonic
function, which is usually the case, the only situation where dominated bids are returned is when there also exists at
least one non-dominated bid achieving the same optimal value on the function. Conversely, aggregation models satisfying
quasi non-dominance but not fair competition only return non-dominated bids but may miss some of them. Therefore, the
only possible combination consists in using first a model satisfying fair competition and, in case of multiple candidate bids,
filtering them using a model satisfying quasi non-dominance.

In this section, we first define such a hybrid mechanism. Then, we present a detailed illustrative example of an auction
process using this mechanism.
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Table 3
Value functions.

Car type

Value hatchback convertible roadster SUV coupé sedan large SUV large sedan

Score 20 40 40 60 60 80 80 100

Car color

Value white yellow blue grey red purple black green

Score 40 40 60 60 80 80 100 100

7.1. Mechanism MERARLV

Mechanism MERARLV is a hybrid mechanism with veto thresholds which uses the reference point-based function as the
main aggregation model and resolves ties with the lexicographic model. It is defined with:

• P RLV , the class of preference relations �v such that

a �v b ⇔

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a j � b j − v j, j = 1, . . . , p and (

uα(a) < uα(b) or

(uα(a) = uα(b) and (a = b or (∃k ∈ {1, . . . , p}, aπ(k) > bπ(k) and

aπ( j) = bπ( j), for j � k − 1))))

• rRLV (�), the class of request relations �rv such that

a �rv b ⇔

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a �v b and (

uα(a) � uα(b) − ε or

(uα(b) − ε < uα(a) � uα(b) and

∃k ∈ {1, . . . , p},aπ(k) � bπ(k) + θπ(k) and aπ( j) � bπ( j), for j � k − 1))

where ε � 0 is a decrement on uα and θ ∈ R
p + an increment vector on the criterion values.

Observe that when we have ε = 0 and θ j = 0, j ∈ {1, . . . , p}, relation �rv coincides with �v .
Moreover, the use of the lexicographic order in the preference relation, even at the second place, prevents cycles in

the asymmetric part, �v , of any preference relation �v ∈ P RLV . Therefore mechanism MERARLV is well-defined in both
synchronization modes. Finally, mechanism MERARLV ensures quasi non-dominance from Corollary 8 and Proposition 10, and
fair competition from Corollary 12 and Proposition 12.

7.2. The auction context

The auction context is a synchronous auction, where one buyer agent negotiates with three sellers s1, s2, and s3 over
a car, described by three attributes: price, type, and color. The set of potential bids for each seller is given in Table 5,
Appendix B. Before starting the auction, the buyer defines his/her preference relation on the item to be purchased as follows:

• Each attribute is encoded so as to reflect preferences on the corresponding viewpoint. This gives rise to the three
criterion functions: price, type, and color. For the sake of simplicity, we use a linear transformation for the criterion
price:

b1 = (
50000 − price(b)

)
/(50000 − 10000) × 100.

Moreover, for the attribute type, the buyer expresses the following preferences:
large sedan � large SUV � sedan � SUV ∼ coupé � convertible ∼ roadster � hatchback which are encoded in Table 3.
For the attribute color, the buyer expresses the following preferences:
green ∼ black � purple ∼ red � blue ∼ grey � yellow ∼ white which are encoded in Table 3.
This way, we define criterion functions to be maximized and taking values in [0,100].

• α = (65,60,60), the aspiration point;
• λ = (1,1,1), the vector of scaling factors;
• (price, type, color), the lexicographic order of the criteria;
• v = (40,45,45), the vector of veto thresholds;
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Table 4
Auction process.

i Current constraint ci s1 s2 s3

1 (∗)

(34000, large sedan, purple)
(40,100,80)

uα(bs1,1) = 25

(41000, coupé, purple)
(23,60,80)

uα(bs2,1) = 42

(30000, hatchback, blue)
(50,20,60)

uα(bs3,1) = 40

2 (b2 � 55 and b3 � 35) and
(uα(b) � 20 or
(20 < uα(b) � 25 and
(b1 � 45 or
(b1 � 40 and b2 � 100 and b3 � 85))))

current winner (∗)

(32000, coupé, green)
(45,60,100)

uα(bs2,2) = 20

(13500, coupé, yellow)
(91,60,40)

uα(bs3,2) = 20

3 (b1 � 5 and b2 � 15 and b3 � 55) and
(uα(b) � 15 or
(15 < uα(b) � 20 and
(b1 � 50 or
(b1 � 45 and b2 � 65))))

(∗)

(21000, roadster, grey)
(73,40,60)

uα(bs1,3) = 20

current winner
(21000, convertible, blue)
(73,40,60)

uα(bs3,3) = 20

4 (b1 � 33 and b3 � 15) and
(uα(b) � 15 or
(15 < uα(b) � 20 and
(b1 � 78 or
(b1 � 73 and b2 � 45) or
(b1 � 73 and b2 � 40 and b3 � 65))))

current winner (∗)

(28000, sedan, grey)
(55,80,60)

uα(bs2,4) = 10

(13500, coupé, yellow)
(91,60,40)

uα(bs3,4) = 20

5 (b1 � 10 and b2 � 35 and b3 � 15) and
(uα(b) � 5 or
(5 < uα(b) � 10 and
(b1 � 60 or
(b1 � 55 and b2 � 85) or
(b1 � 55 and b2 � 80 and b3 � 65))))

no bid current winner (∗)

(22000, large SUV, blue)
(70,80,60)

uα(bs3,5) = 0

6 (b1 � 30) and b2 � 35 and b3 � 15 and
(uα(b) � −5 or
−5 < uα(b) � 0 and
(b1 � 75 or
(b1 � 70 and b2 � 85) or
(b1 � 70 and b2 � 80 and b3 � 65)))

no bid no bid current winner

Observe that, we have b j � 100 for any potential bid b and α j + v j > 100, j = 1, . . . , p. Thus, as required in Remark 4,
the aspiration point α is preferred to any bid that does not dominate it. Therefore, it is liable to win at any round, if it is
non-dominated in Bs1 ∪ Bs2 ∪ Bs3

.
The buyer defines his/her request relation by setting:

• ε = 5, the increment on uα ;
• θ = (5,5,5), the increment vector on the criterion values for the lexicographic aggregation function.

At the beginning of the auction, the buyer agent indicates to the sellers the criterion functions, the aspiration point and
the criterion order. Then, each seller identifies his/her proposals that match the item to be purchased.

7.3. The auction process

The auction takes place in 6 rounds reported in Table 4. At the first round, each seller provides a bid that satisfies
the initial requirement. Since we have bs1,1 �v bs2,1 and bs1,1 �v bs3,1, M(�v , P 1) = {bs1,1} and bid bs1,1 is selected as the
current best bid. Its corresponding seller s1 becomes the current winner and is not called upon at the next round. The
current constraint c1 (described in Table 4), asking for bids that are �rv -preferred to bs1,1, is sent to sellers s2 and s3.

At round 2, bs2,2 and bs3,2 are incomparable. Indeed, we have bs3,2 � bs2,2 (the same value on uα , but a better value

of bs3,2 on price), but the third criterion opposes a veto to bs3,2 �v bs2,2 since bs3,2
3 = 40 < bs2,2

3 − v3 = 100 − 45. Thus,

M(�, P 2) = {bs2,2,bs3,2}. We assume that bid bs2,2 is arbitrary selected as the current best bid.
At round 3, since bid bs1,3 and bs3,3 are equivalent, we have M(�, P 3) = {bs1,3,bs3,3}. We assume that bid bs1,3 is

arbitrary selected as the current best bid.
At round 4, seller s3 is able to propose the same bid as at round 2. Since we have bs2,4 �v bs3,4, M(�, P 3) = {bs2,4} and

bid bs2,4 is selected as the current best bid.
At round 5, seller s1 cannot propose a valid bid. Thus, we have M(�, P 3) = {bs3,5} and bid bs3,5 is selected as the current

best bid. At round 6, sellers s1 and s2 cannot propose a valid bid. Thus, bid bs3,5 = (70,80,60) becomes the winning bid.
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The winning bid corresponds to a blue large SUV with a price of $22000. Thus, the buyer obtains an agreement on an item
with two attributes, type and price, which are over his/her aspirations.

It is interesting to observe the evolution of the auction and the properties that are satisfied.

• [MBB] is not satisfied. Indeed, we have best3 = bs1,3 and bs3,2 �v best3. Thus, best3 is not a maximal element among
the set of bids previously received.

• [IBB] is not satisfied. Indeed, we have best1 = bs1,1 and best1 ? best3. Thus, best3 is not preferred to best1.
• [NCB] is not satisfied, since seller s3 has proposed the same bid twice, first at round 2 and second at round 4.

Even if this evolution does not respect any of the ‘natural’ properties [MBB], [IBB], and [NCB], the final result of the
auction is satisfactory. Indeed, as expected, the auction is quasi efficient. First, none of the non-winning sellers can propose a
bid which is �r -preferred to the winning bid. Second, observing from Table 5, Appendix B, that seller s3 owns the potential
bid (65,80,80), which is �r -preferred to any potential bid of sellers s1 and s2, he/she should win any auction. Indeed, seller
s3 does win the auction described in Table 4. Observe finally that quasi non-dominance is satisfied since the winning bid
bs3,5 is non-dominated in B−s3

.

8. Conclusions

This paper proposed a study of English reverse auction mechanisms in a unified framework by considering that the
buyer’s preferences are represented by a binary preference relation. Existing mechanisms are based on a single or multidi-
mensional utility function, which corresponds to a transitive and complete preference relation. One of our main goals in this
study was to allow for more general preference relations, relaxing transitivity and completeness, in order to be able to model
more elaborate and more realistic preferences. On the other hand, the necessity of integrating preferences within an auction
mechanism which should respect some properties imposes restrictions on the preference relations. After precisely defining
such properties and providing minimal conditions on the preference relations so as to satisfy these properties, it appears
that the main restriction is acyclicity of the request relation or of the asymmetric part of the preference relation. Moreover,
we showed that quasi efficiency is satisfied with no additional restriction on the preference relations. This leaves room for
interesting preference models that accept intransitivity and incomparability. In particular, when considering auction mecha-
nisms based on multiple criteria, we showed that aggregation models including veto thresholds can be implemented while
preserving properties related to non-dominance and fair competition. Regarding these two basic properties, we pointed out
that classical multiple criteria auction mechanisms usually satisfy one of them, but not both of them. We showed, however,
how to satisfy both properties by using hybrid aggregation models.

Even if our framework is devoted to the reverse version of the English protocol, it can be adapted to other protocols. This
is particularly easy for one-round protocols. Indeed, we only need a simplified version of our framework, without defining
a request function. In first-preferred auctions, which would generalize first-price auctions, the winning seller must provide
an item corresponding to the winning bid. In second-preferred auctions, which would generalize second-price or Vickrey
auctions, the winning seller only has to provide an item corresponding to the second most preferred bid. In this case, we
need to redefine concepts and properties using only the preference relation. On the contrary, adapting our framework to
the reverse Dutch protocol would require focusing on the request function whereas the select function would not play any
part. In this case, indeed, we need to define a scheme of less and less demanding constraints until the first seller who
proposes a bid wins the auction. For all these protocols, it would be interesting to investigate conditions for efficiency, bid
non-dominance, and fair competition.

Our framework can be deemed as the first milestone to providing an agent-based auction system where an autonomous
buyer agent conducts auctions on behalf of a buyer and communicates with several autonomous seller agents that bid for
selling an item on behalf of sellers. Thus, providing a framework which helps designing such seller agents would be a useful
complementary research work. The three main tasks on the research agenda would be:

• modeling of the seller’s preferences on items he/she sells using binary preference relations,
• automated definition of the bids taking into account requests from the buyer agent, seller’s preferences and strategy,
• definition of desirable properties for the sellers and study of the conditions to achieve these properties.

Finally, integrating more elaborate preference models in more complex types of auctions, such as multi-item, double, or
combinatorial auctions, would be a challenging research project.

Appendix A. Proofs

A.1. Proof of Proposition 3

[IBB] ⇒ [MBB]. We have P i = {best1, . . . , besti} for i � 1. Thus, assuming [IBB], we have besti � best j , for i � 2 and j < i.
So we get M(�, P i) = {besti} and [MBB] is satisfied.

[NCB] is satisfied since relation �r is imposed to be acyclic.
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A.2. Proof of Proposition 4

1. The condition is sufficient. We have best j+1 �r best j , for i � 2 and j = 1, . . . , i − 1, due to the request constraints. This
implies, according to (1), that ¬(best j � besti), for i � 2 and j = 1, . . . , i − 1. Thus, we have besti ∈ M(�, P i), for i � 2.
Moreover, for i = 1, we have trivially best1 ∈ M(�, P 1).
The condition is necessary. Let us assume by contradiction that (1) is false:

∃n � 3,∃b1, . . . ,bn ∈ B, b j+1 �r b j, j = 1, . . . ,n − 1, and b1 � bn

We show now the existence of an auction which does not satisfy [MBB]. Consider for this, n sellers s j with b j ∈ Bs j
,

j = 1, . . . ,n. At round j, seller s j proposes b j , j = 1, . . . ,n. This sequence of bids is valid, since it satisfies the request
constraint at each round. Observe, however, that Pn = {b1, . . . ,bn} and bestn = bn /∈ M(�, Pn), since b1 � bn .

2. The condition is sufficient. We have best j+1 �r best j for i � 2 and j = 1, . . . , i − 1, due to the request constraints. This
implies, according to (2), that besti � best j for i � 2 and j = 1, . . . , i − 1. Thus, [IBB] is satisfied.
The condition is necessary. Let us assume by contradiction that (2) is false:

∃n � 3, ∃b1, . . . ,bn ∈ B, b j+1 �r b j, j = 1, . . . ,n − 1, and ¬(
bn � b1)

We show now the existence of a PERA auction which does not satisfy [IBB].
Consider for this, n − 1 sellers s j with b1,bn ∈ Bs1

and b j ∈ Bs j
, j = 2, . . . ,n − 1. At round j, seller s j proposes b j ,

j = 1, . . . ,n − 1. Then, at round n, s1 proposes bn . Observe that we have b1 = best1, bn = bestn , and ¬(bn � b1).

A.3. Proof of Proposition 5

1. The condition is sufficient. For any a ∈ P i , there exists k � i, such that a ∈ Pk . We have ¬(a � bestk) due to the selection
of bestk from Pk . Moreover we have best j+1 �r best j for j = k, . . . , i − 1 due to the request constraints. Using (3), we
get ¬(a � besti ) and thus besti ∈ M(�, P i). Moreover, for i = 1, we have trivially best1 ∈ M(�, P 1).
The condition is necessary. Let us assume by contradiction that (3) is false:

∃n � 2, ∃a,b1, . . . ,bn ∈ B, ¬(
a � b1) and b j+1 �r b j, j = 1, . . . ,n − 1, and a � bn

We show now the existence of a synchronous PERA auction which does not satisfy [MBB]. Consider n sellers s j with
Bs j

= {a,b1, . . . , bn}, j = 1, . . . ,n. The auction starts with s1 proposing b1 and the other sellers proposing a. Assume that
bid b1 is selected. At round i, i = 2, . . . ,n, all sellers except seller si−1 propose bi . Assume that bid bi is accepted as besti

for seller si . Thus, we have Pn = {a,b1, . . . ,bn} with b j = best j , j = 1, . . . ,n. Since a � bestn , we get bestn /∈ M(�, Pn).
2. The condition is sufficient. We have best j+1 �r best j for i � 2 and j = 1, . . . , i − 1, due to the request constraint. This

implies, according to (4), that besti � best j for i � 2 and j = 1, . . . , i − 1.
The condition is necessary. Let us assume by contradiction that (4) is false:

∃n � 3, ∃b1, . . . ,bn ∈ B, b j+1 �r b j, j = 1, . . . ,n − 1, and ¬(
bn � b1)

Consider n sellers s j with Bs j
= {b1, . . . , bn}, j = 1, . . . ,n. The auction starts with all the sellers proposing b1. Assume

that bid b1 is selected from seller s1. At round i, i = 2, . . . ,n, all sellers except seller si−1 propose bi . Assume that bid bi

is accepted as besti for seller si . For this auction, ¬(bn � b1) corresponds to ¬(bestn � best1). Thus [IBB] is not satisfied.
3. The condition is sufficient. For any a ∈ P i−1, there exists k � i − 1, such that a ∈ Pk . We have ¬(a � bestk) due to

the selection of bestk from Pk . Moreover we have best j+1 �r best j for j = k, . . . , i − 1 due to the request constraints.
Using (5), we get ¬(a �r besti) for any a ∈ P i−1 and thus P i ∩ P i−1 = ∅.
The condition is necessary. Let us assume by contradiction that (5) is false:

∃n � 2, ∃a,b1, . . . ,bn ∈ B, ¬(
a � b1) and b j+1 �r b j, j = 1, . . . ,n − 1, and a �r bn

We show now the existence of a synchronous PERA auction which does not satisfy [MBB]. Consider n sellers s j with
Bs j = {a,b1, . . . ,bn}, j = 1, . . . ,n. The auction starts with s1 proposing b1 and the other sellers proposing a. Assume
that bid b1 is selected. At round i all sellers except seller si−1 propose bid bi . Assume that bid bi is accepted as besti

for seller si , i = 2, . . . ,n. Since a �r bn , all sellers except seller sn propose bid a at round n + 1. Observe that a has been
proposed at rounds 1 and n + 1, and thus [NCB] is not satisfied.

A.4. Proof of Proposition 8

Proof. The condition is sufficient. Indeed, consider an auction running according to Algorithm MERA(�,�r). The assumption
of natural end implies that for all b ∈ B−s∗ , we have ¬(b �r b∗) and thus ¬(b�b∗).



1466 M.-J. Bellosta et al. / Artificial Intelligence 175 (2011) 1449–1467
The condition is necessary. Let us assume by contradiction that we have ¬(� ⊂�r). Thus, there exists two bids a,b ∈ B
such that a�b and ¬(a �r b). Consider now two sellers s and s′ with Bs = Bs′ = {a,b} and the following asynchronous and
synchronous auctions. At the first round, sellers s proposes bid b (asynchronous auction) or sellers s and s′ propose bid b
which is selected from s (synchronous auction). At the second round, seller s′ cannot propose any bid. Thus, seller s wins
the auction with bid b which is dominated in B−s . �
A.5. Proof of Proposition 11

Proof. The condition is sufficient. Consider any bid a ∈ Bs non-dominated in Bs and relations � and �r associated to a
by (7). Let Equ(a) denote the set of bids containing a and its equivalents. Considering any bid b ∈ Bs \ Equ(a), we have
¬(b�a′), for any a′ ∈ Equ(a). This implies that a′ �r b, ensuring the validity of any bid a′ equivalent to a, at any round and
for any mode. Moreover, asymmetry of �r and the inclusion �r ⊂ � imply respectively ¬(b �r a′) and a′ � b, showing that
any bid a′ equivalent to a wins if proposed in any mode.

The condition is necessary. Let us consider a mechanism MERAP ,r that does not satisfy (7), i.e. such that:

∃B, ∃a ∈ B, ∀ �∈ P, ∀ �r ∈ r(�), ∃b ∈ B, ¬(b�a) and ¬(a �r b) (A.1)

Let us consider bid a defined by (A.1), any �∈ P , any �r ∈ r(�) and two sellers s and s′ such that Bs = {a,b} and
Bs′ = {b}, where bid b satisfies (A.1). Let us assume that at the first round of an asynchronous auction seller s′ proposes
bid b and that at the first round of a synchronous auction, sellers s and s′ propose bid b which is selected from s′ .

In both cases, bid a is not valid at the second round, since we have ¬(a �r b) from (A.1). Seller s′ wins the auction
with bid b. Bid a, which is non-dominated by any bid in Bs , is not capable of winning when bid b is proposed at the first
round. �
Appendix B. Seller’s potential bids

Table 5
Sellers’ potential bids described on attribute, criterion, and aggregation values. Each bid has a price between the reserve
price and the catalog price. uα is computed with α = (60,60,65).

Seller s1

bid criterion values uα

([13500, 15000], hatchback, yellow) ([88, 91], 20, 40) 40
([25000, 27000], hatchback, blue) ([58, 63], 20, 60) 40
([34000, 35500], hatchback, red) ([36, 40], 20, 80) 40
([38500, 40000], hatchback, black) ([25, 29], 20, 100) 40
([18000, 19500], convertible, yellow) ([76, 80], 40, 40) 20
([20000, 21500], roadster, grey) ([71, 75], 40, 60) 20
([30000, 31500], coupé, grey) ([46, 50] , 60, 60) [15, 19]
([13000, 14500], convertible, yellow) ([89, 93], 40, 40) 20
([32500, 34000], large sedan, purple) ([40, 44], 100, 80) [21, 25]

Seller s2

bid criterion values uα

([13000, 15000], convertible, white) ([88, 93], 40, 40) 20
([20000, 22000], convertible, blue) ([70, 75], 40, 60) 20
([30000, 32000], convertible, green) ([45, 50], 40, 100) 20
([29000, 31000], roadster, black) ([53, 48], 40, 100) 20
([16000, 18000], SUV, yellow) ([80, 85], 60, 40) 20
([29000, 31000], SUV, grey) ([48, 53], 60, 60) [12, 17]
([40000, 42000], coupé, purple) ([20, 25], 60, 80) [40, 45]
([31000, 33000], coupé, green) ([43, 48], 60, 100) [17, 22]
([25000, 27000], large sedan, yellow) ([58, 63], 100, 40) 20
([26000, 28000], sedan, grey) ([55, 60], 80, 60) [5,10]
([24000, 26000], large SUV, red) ([60, 65], 80, 80) [0, 5]

Seller s3

bid = (price, type, color) criterion values uα

([11500, 13500], coupé, yellow) ([91, 96], 60, 40) 20
([30000, 32000], SUV, blue) ([45, 50], 60, 60) [15, 20]
([38000, 40000], coupé, red) ([35, 40], 60, 80) [25, 30]
([20000, 22000], large SUV, blue) ([70, 75], 80, 60) 0
([22000, 24000], sedan, purple) ([65, 70], 80, 80) [−5, 0]
([19500, 21000], sedan, grey) ([73, 76], 80, 60) 0
([28000, 30000], hatchback, yellow) ([50, 55], 20, 40) 40
([34000, 36000], large sedan, purple) ([35, 40], 100, 80) [25,30]
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