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Abstract 

The aim of this paper is to construct a geometric structure over both an hyperring and 
a multiplicative hyperring. In order to accomplish this goal we will need to define a particular 
class of planar hyperrings. Moreover, the notions of hyperaffine plane, affine map, translation 
and homothety are given. Finally, in the first case an hyperaffine plane having all homotheties 
centered in 0 is obtained; in the second case an hyperaffine translation plane is built. 

1. Introduction 

First  of all we will recall some algebraic definitions that  will be used in the paper.  
An hyperring [2] (A, O , ' )  is a set A with an hyperopera t ion  0) and a product -  

such that  the following propert ies  hold: 
(i) Va, b, c e A :  a O ( b @ c ) = ( a @ b ) @ c ,  

(ii) Va, b e A : a O b = b O a ,  
(iii) 3 0 ~ A / ` c a ~ A : O O a = a O O = a ,  

(iv) Va e A3! a'  ~ A: a • a '~0  (a' = - a), 
(v) Va, b , c ~ A / a ~ b O c ~ c E a - b ( c ~ a O b ' ) ,  

(vi) Va, b, c E A: (a- b) '  c = a'(b" c), 
(vii) Va, b, c E A: (a • b)" c -= a" c • b" c, 

(viii) 'Ca, b, c E A: a "(b • c) = a" b • a 'c ,  

(ix) " C a ~ A : a . 0 = 0 . a = 0 ,  
We recall that  (A, O)  satisfying (i)-(v) is called canonical  hypergroup.  

Let us observe that  axiom (v) is equivalent  to (v)' and also to (v)": 
(v)' "Ca, b E A :  - ( a O b ) = - a - b ,  

(v)" "Ca, b, c, d ~ A: (a • b)n(c • d) ~ 0 ~ (c - a )n(b  - d) 4: 0. 

~" Research supported by G.N.S.A.G.A. 
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An hyperr ing A is called hyperfield if (A*, ')  is a group,  where A* = A\{0}. 
We will consider a part icular  class of hyperrings satisfying the following properties: 
(x) Va, b, e, d ~ A/(a @ b)c~(c E) d) # 0 =*" (a • b) ~_ (e • d) or (c E) d) _ (a @ b) 

(xi) Va, b e A/(a ~ b)~a =~ a ~ b = {a}. 

If the canonical hypergroup (A, @) satisfies (x) and (xi) then it is called strongly 
canonical. 

A multiplicative hyperrin9 [4] (A, + ,  o ) is an abelian group (A, + )  together with an 
hyperproduct  satisfying the following properties: 

(i) Va, b, c e A: a o (b o c) = (a ob) o c; 

(ii) Va,  b, c e A: (a + b) o c _c a o c + b o c; 

(iii) Va, b, c ~ A: a o (b + c) _ a o b + a o c; 

(iv) Va, b e A: ( - a) o b = a o ( - b) = - (a o b). 

If a multiplicative hyperr ing satisfies, instead of properties (ii) and (iii), the following: 
(ii)' Va, b, c e  A: (a + b ) o c = a o c  + boc, 

(iii)' Va, b, c e A: a o (b + c) = a o b + a o c, 

then (A, + ,  o ) is called stronoly distributive. Moreover ,  (A, + ,  o ) is stronoly left (rioht) 
distributive if (ii)' ((iii)') holds. 

2. Hyperaf l ine  planes: basic  definit ions and propert ies  

Let n be a non-empty  set whose elements will be called points and let R be a family 
of subsets of n whose elements will be called lines such that  the following properties 
hold: (i) VP, P' e n, 3r e R such that  P, P '  e r; (ii) Vr e R and V P ~ n, Per, 3s ~ R 
such that P e s and snr  = O or s = r almost  always; (iii) 3P, P', P " ~  n such that  
P, P', P"¢s Vs ~ R. The pair (n, R) satisfying the previous three conditions will be 
called hyperaffine plane. In n it is possible to define the relation: r [I s ¢:- r = s almost 
always or rns  = 0; we observe that this relation is in general non-transit ive since we 
do not  request a unique line in (ii). 

If(n,  ~ )  and (W, ~ ' )  are two hyperaffine planes, an affine map from (n, ~ )  to (n', ~ ' )  
is a triple (q~, (o*, ~o -1 . )  where 

(o 'n  ~ n' is a bijection, 

~o* : ~ ~ ~ ( ~ ' ) ,  

q ~ - l . : ~ ,  ~ ~ ( ~ ) ,  

such that the following conditions are verified: 
(1) r] ,  r~ e q~*(r) =~/1 II r~., 
(1') ra, r2 e tp- 1 . ( / )  ~ rl  [I r2, 
(2) P e r  ~ ¢p(P)e U{r': r ' e  q)*(r)}, 
(2') P' er '  ~ q~-l(P')¢U{r:req~- '*(r ' )}  , 
(3) r' e q~*(r) ¢> r e q~-l*(r'), 
(4) r II s ~ [r' II s': Vr'  e ~o*(r), Vs' e g,*(s)], 
(4') r' I[ s' = ,  [r II s: V r  e ~o- X*(r'), V s  e ~o- l * ( s ' ) ] .  
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If ~¢ is the set of all affine maps in an hyperaffine plane (rt, R) and 
(q~,rp*, tp-~*),(O,O*,O-l*)e~¢,  then we can define a composit ion between 
(tp, q~*,~o -1 . )  and (~,,~k*,O - 1 . )  as ((p,~o*,~o-l*).(O,O*,~,-a*)=((poO, (q~o~,)*, 
((po~O)-l*), where (q~°O)*(r)=ljq~*(rl),r'~•O*(r), and, similarly, (~oo~,) - 1 .  
(s) = ~O-l*(s i )  with si e q~-l*(s). 

Proposition 2.1. The set ~ is a group with respect to the composition of maps. 

Proof. First of all if (~o, ~o*, (/9 - 1 . )  and (q/, ~,*, tO -1 . )  are two affine maps of (n, ~) ,  
then (qg, q~*, q~-l*).(~O, ~*, ~ - 1 . ) e  ~¢; in fact, (po qJ is a bijection of n and (1), (1') 
follow from (4), (4'). As for property (2), V P e r t ,  P e r ,  (q~o~,)(P)er", where 
r" e (~o o ¢)*(r) as ~O(P) e r', for some r' e ~O*(r), thus r" e (q~ o ~,)*(r) exists such that 
~o(¢(P)) e r"; similarly for property (2'). Property (3) holds since both ~o and ¢ satisfy 
it; in fact, r" • (~oo ~,)*(r) - -  ~ q 0 * ( r ' i )  , r' i E ~b*(r) ¢*, r e ~1- l * ( r ' i )  and r'i • q~- l*(r") "~ 

r e (~o o i f)-  a*(r"). Similarly, properties (4) and (4') are verified for 
(q~, ~o*, ~o- 1"). (~k, ~,*, i f -  1,) because they hold for (~o, ~o*, ~o- 1,) and (~b, ~k*, i f -  x,). The 
associative law being obvious, we observe that, by defining id* ( r )=  {r}, 
(id, id*,id -1 . )  is the unity of ~1; moreover, by definition of (~o,~o*,~o-1"), 
(~o, ~p*, ~o- 1 , ) -  1 = (~o- 1, ~o- 1,, ~9") • ~1 and thus (~¢, ") is a group. 

An element of ~¢, (z, z*, r -  1 ,), is called translation if either is the unity of ~1 or is an 
affine map such that  

(1) z(P) ~ P, V P  e u, 
(2) r II r', Vr ~ ~ ,  Vr' e ~:*(r). 
An hyperaffine plane (re, ~ )  is called translation plane if, and only if, VP, Q e n, 

a translation (z, z*, z - 1 . )  exists such that  z(P) = Q. 

An element of ~¢, (o9, ~o*, m-  1,), is an homothety centered in 0 (where O • n) if, and 
only if, either is the unity of ~¢ or is an affine map such that  

(i) ~(O) = O, 
(ii) ~(P)  ~ P V P  • n, P v~ O, 

(iii) r l t r ' ; V r e ~ , V r '  •t~*(r ). [] 

Proposition 2.2. The set 3- of the translations of the hyperaffine plane rt is a normal 
subgroup of ~ whenever the product of two translations is a translation. 

Proof. First we observe that  if ( z , z * , z - l * ) • Y - ,  then ( z , z * , z - l * ) - l =  
(z- 1, z -  1., z*) • ~ ;  in fact, VP • n ~ z-  l (p)  ~ p. Moreover, i fr '  • ~ ,  z-  l*(r') = {ri: 

ri II rj} and, by property (3), z*(rl)~r'; since (z,z*, z -1 . )  is a translation, the lines 
contained in z*(ri) are all parallel to ri, thus r' is parallel to every ri. 

Let now ( z , z * , z - l * ) e J  and (~o,~o*,q~-l*)e~¢, we want to prove that 
(~o, ~o*, ~o - 1,) 1. (z, z*, z -  1 , ) .  (~o, tp*, ~o - 1,) e ~-. First of all tp - 1 o z o ~ has no fixed 
points; in fact, if P = (~o -1 o zo~o)(p), then ~o(P)= z(~o(P)) that  is z = id and 
~o -1o r o~o = id. Let us now prove that all lines contained in (~o -1o r o ~o)*(r) are 
parallel to r; if ~o*(r)--{r,: rillrj} then (zo~o)*(r ) - -Uz(r , )=  {Ski: Sk~llrl} and 
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(q~-~ozoq~)*(r)=Utp-X*(Ski) .  F r o m  ri[lSki it follows that  if l ~ ¢ p - l * ( S k i )  and 

l '~  q~-a*(ri) then It[ 1', but  q~-~*(ri)~r and this implies 1 [I r V l ~ q~-i*(su). Thus,  Y- is 
a no rma l  subgroup  of ~¢. [ ]  

3. Hyperafline planes over a multiplicative hyperring 

Let A be a s t rongly right distr ibutive multiplicative hyperr ing such that: (~) Va ~ A, 

Aa = A, (fl) Va ~ A, ~ = {ax: x s A } is a par t i t ion of A, (~) 3c, d e A* / Va e A: c e a0, 

Oq~ad; such hyperr ing will be called planar. 

In A x A = A 2 we consider  the family ~ = ~ x U ~ 2 w ~ 3 ,  where 

r ~ l  ~ [ ~ k ~ A  such that  r = { ( k , y ) ; y ~ A } ] ,  

r e ~ 2  ~ [ 3 h ~ A  such that  r = { ( x , h ) ; x ~ A } ] ,  

r e ~ i a  ~ [Sa, b ~ A  such that  r = {(x,y)  ~ A2; y ~ a x  + b}].  

The  elements of  A ~ will be called points  and the elements of ~ lines. 

It  is now possible to prove  the following proposi t ion.  

Proposition 3.1. (A 2, R) is an hyperaffine plane. 

Proof.  Let  P1 = (xl ,  Yl) and P2 = (x2, Yz) be two elements of A2; if x l  = x2 = k, then 
P1 and P2 belong to the line r = {(x, y ) / x  = k}. Similarly, if Yl = Y2 = h, the line 
r = {(x, y)/y  = h} contains  P1 and P2. We must  prove  now that  if x l  # x2 and 
Yl ¢ Y2, then a line r exists containing both  points. To  do that  let us consider 

x ~ - x 2 ,  y l - y z ~ A ,  by proper ty  (00 an element a ~ A  exists such that  

Yl - -  Y2 ~ a(x~ -- x2); i.e. y~ -- Y2 ~ ax~ -- ax 2 or yx -- Y2 = S - -  t with s ~ axx and 
t E a x  2 .  If  we consider the line r ~ Ra, r = {(x, y) /y  ~ ax + Y2 - -  t},  then P1 E r since 

ya ~ ax t  + Y2 - -  t and Pz e r since 0 = t - t ~ ax  2 - -  t f rom which Y2 6 ax2 + Y2 - -  t. 

Let us notice that  the line r passing through P1 and P2 is not  necessarily unique, since 

an element  c ¢ a could exist with the condit ion y~ - Y2 ~ C ( X l  - -  X2). In this way we 
have proved  the first ax iom for an hyperaffine plane; let us consider the second one. 

Let  P1 = ( x l ,  Yl )  e A 2 and r ~ R1 such that  Pa¢r; then s E Rx exists, 
s = {(x, y): x = x l} ,  such that  P1 6 s and s II r. Similarly, we can proceed if r ~ R2: 

thus, let us consider r e Ra, r = {(x, y): y ~ ax + b}, and P i e r ,  that  is y l C a x l  + b. If 
b' ~ Yl - ax l  and a '  = a, then the line s = {(x, y): y ~ a ' x  + b'} contains P1 by defini- 
t ion of b'; we must  now prove  that  s II r. To  do that  let P = (z, w ) ~  rots; then 

z ~ ( a w + b ) c T ( a w + b ' ) ,  i.e. z = e + b = f + b ' ,  e , f ~ a w .  Thus,  b = f - e + b '  
a w - a w + b ' = a O + b ' ~ a O + y a - a x ~ = y ~ - a x ~  and this is impossible since 
ya¢axa + b; f rom this we have the required condi t ion s I[ r. In order  to complete  our  
p roo f  we need to prove  that  three non-coll inear  points exist; let P1 = (0, 0), and 
P2 = (0, c) and P3 = (d, 0) where c and d are the elements considered in p roper ty  (~). 
We observe that  a line passing through P~, P2 and P3 should be of the following type 
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r = {(x, y): y ~ ax  + b}; if P~ e r then 0 ~ a0 + b, i.e. b e - a0, P2 6 r implies 
c e a0 + b = a0: finally P3 ~ r would imply 0 e ad + b = ad which is impossible by the 

hypothesis  (7). Thus,  the point  P3 is not  collinear with P1 and P2. [ ]  

In order  to unders tand  bet ter  the structure of  such a plane, let us characterize the 
condi t ions for parallel lines through their equations.  

Proposition 3.2 In  (A 2, R), i f  r, s ~ R,  r ~ s, then (i) r, s ~ R~: rc~s = 0; (ii) r, s e R2: 

r n s = 0 ;  (iii) r e R ~ , s e R 2 :  I r n s [ =  l; (iv) r e R x , s e R 3 :  Irc~sl>l l; (v) r ~ R 2 ,  

s e R 3 :  I r n s l > ~ l ;  (v i ) r ,  s e R a , r = { ( x , y ) :  y e a x  + b } ,  s = { ( x , y ) :  y e a ' x  + b ' } :  

r n s  = 0 ¢~ a = a'. 

Proof. (i), (ii) and (iii) are obvious.  To  prove  (iv) let r = {(x, y): x = k} and s = {(x, y): 
y E ax  + b}; then, Vh ~ ak + b, the point  (k, h) ~ m s .  N o w  let r = {(x, y): y = h} and 

s = {(x, y): y ~ ax  + b}: by p roper ty  (/~) an element k e A exists such that  h - b ~ ak, 

thus (k, h) ~ rc~s and (v) is proved.  Finally, let r = {(x, y): y ~ ax  + b} and s = {(x, y): 

y ~ a 'x  + b'}. I f a  = a'  then the condi t ion r # s implies that  a point  P = (xl ,  Yl) exists 

such that  P ~ r, Pq~s; f rom P ~ r we get y l  ~ ax~ + b while f rom P ~ s  ylq~ax~ + b' 

follows, i.e. b'$y~ - axe .  If  Q = (x', y') ~ rn s ,  then y' = e + b = f +  b' with e , f ~  ax'  

and this implies that  b ' = e + b - f ~ a x ' + b - a x ' = a O + b ~ _ a O + y ~ - a x l =  

Yl  - a x l  and this is absurd.  Conversely,  if a # a', by p roper ty  (1~), z ~ A exists such 
that  b' - b ~ (a - a')z ~_ az - a' z, i.e. b' - b = u - v, u ~ az, v E a' z; f rom this we have 
u + b = v + b ' ,  thus w ~ A  exists such that  w ~ ( a z + b ) c ~ ( a ' z + b ' )  and 
(z, w) e r n s .  [] 

We observe that,  as a consequence of the previous result, the parallel ism relation in 
(A 2, R) is transitive; thus, the set of t ranslat ions is a group. 

Proposition 3.3. In (A z, R), /fr,  s ~ R3, r = {(x, y): y ~ ax + b}, s = {(x, y): y ~ ax + c}, 

then r = s ¢~ b - c ~ aO. 

Proof. Let r = s ;  then given P = ( u , v )  [ v ~ a u + b c ~ v e a u + c ]  = ~ b - c e a O  

results. Similarly, if b - c ~ a 0  and P = ( u , v )  belongs to r, then v e a u + b ~ _  

au + aO + c = au + c, i.e., P belongs to s. If  P ~ s, then v ~ au + c with c ~ b - a0; thus 
v ¢ a u - a O  + b = a u  + b. [] 

Proposition 3.4. In  (A 2, R), /f r e R3, r = {(x y): y e ax  + b}, and Pq~r, P = (Xx, Yl), 
a unique line s ~ P  belonging to R3 exists,  such that  r l] s. 

Proof.  F r o m  Propos i t ion  3.2, the line s will be such that  s = {(x, y): y ~ ax  + c}; 
since P ~ s, then c E Yl  - a x l .  If  s' = {(x, y): y ~ ax  + d}, s' II r, contains P, then 
d ~ Yl  - a x l ,  thus c - d e a0; by Propos i t ion  3.3, s = s'. [ ]  
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Proposition 3.5. T h e  hyperaff ine plane (A 2, R )  is a translat ion plane. 

Proof.  Let P = (xl ,  Yx) and Q = (x2, y2) be two different points  o f A  2 and z : A z ~ A z 

such that  z ( (x ,  y ) )  = (x', y ' )  where x'  = x + x2 - x~ and y' = y + Y2 - Yl. Trivially, 
z is a bijection wi thout  fixed points; moreover ,  z ( P ) =  Q. We want  to prove  that  

z induces a t ranslat ion over  (n ,R) .  Let r e R 1 ,  r = {(x,y): x = k} and s e R 2 ,  

s = {(x, y): y = h}; then we define z*(r)  = {(x, y): x = k + x :  - x~ } and z*(s)  = {(x, y): 

y = h + Y2 - Yl }. Finally, if t e R3 ,  t = {(X, y): y e a x  + b}, we define 

z*( t )  = {ti = {(x, y): y e a x  + b + cti + Y2 - Yl }, ei e a ( x l  - x2)}; we observe that  
[z*(t)[ = 1 since (see Propos i t ion  3.3) e i -  ~seaO.  In such a way we obtain  that  
if (z ,z* ,z  -~*) is an affine map,  it is a translat ion.  Let us prove  the charac-  

terizing properties:  (1) and (1') are true by definition. As (2) is trivially satisfied 

for P e r  or P e s ,  we prove  it for T = ( u , v ) e t ;  in that  case z ( T ) =  

( u ' , v ' ) = ( u + x 2 - - x l ,  v + y 2 - - y l )  and v ' = v + y 2 - y l e a u + b + y 2 - Y l  = 

a(u' - x2 + Xl) + b + Y2 - Yl = au' + a(xx  - x2) + b + Y2 - Yl which implies 
z ( T )  e t' where t' = z*(t) ,  t' = {(x, y): y e a x  + b + ei + Y2 - -  Yl }, Vei e a(x l  - x2). 

Let  us prove  p roper ty  (3). First  we observe that  "r2-1((X,y))=(X--X2 + X l ,  

Y - - Y 2  + Yl); moreover ,  z - l * ( r )  = {(x,y): x = k -  x2 + x l } ,  z - l * ( s )  = {(x,y): 

y = h - Y2 + Yl }, z -  1"(0 = t" = {(x, y): y e ax  + b + flh + Yl -- Y2}, Vflh e a(x2 -- x l )  

(Proposi t ion  3.3). Thus,  in order  to prove  p roper ty  (3) we must  verify that  t = z -  ~*(t'), 

t ' = z * ( t ) = { ( x , y ) :  y e a x + b + o ' i + Y 2 - y l } ,  o ~ i e a ( x l - - X 2 ) .  For  t' we have 

z -  a. (t') = {(x, y): y e ax  + b + cti + Y2 - -  Yl d- flh d- Yl -- Y2 } and (b + cti + Y2 - -  Yl q- 

flh d- Yl --  Y2) --  b = ei + flh e a0; thus t = z -  x*(t'). The  inverse implicat ion is p roved  
exactly in the same way. 

P roper ty  (2') is obviously true since it is the exact ana logous  of p roper ty  (2) with 
respect to (z-1,  z -1" ,  z*) since z -~  and z act  in the same way. Similarly, the p roof  for 

p roper ty  (4) is the same as that  for p roper ty  (4'). 
P roper ty  (4) is trivial for the lines belonging to Ra and  RE; let us consider two 

parallel  lines h ,  t2 e R3, then t I = {(X, y): y e ax  + b} and t2 = {(X, y): y e ax  + c}.  

Since z* (h )  = t'l = {(x, y): y e ax  + b + ~ + Y2 - Y l } ,  ~ e a ( x l  - x2), and z*( t2)  = 

t~ = {(x, y): y e a x  + c + fl + Y2 - Yl }, fl e a(xa - x2), by Propos i t ion  3.2 we have 

t'~l]t'2. [] 

Observation. The  pair  (Z  2, R ' ) ,  where R~ = R1, R~ = R2, R ;  = { {x, y) e 
A 2 / x  e ay  + b, a, b e A } }, is an hyperaffine plane; moreover ,  the following proposi t ion  
holds. 

Proposition 3.6. I f  A is a planar hyperf ield such that, V x ,  y e A ,  y e ax,  a ~ O, 

¢~ x e a - l y ,  then there ex i s t s  an affine map be tween  (A 2, R )  and (A 2,R') .  

Proof. Let c t : a  2---~ a 2 such that  ~((u, v)) = (v, u) and ~ * : R  ~ ~ ( R )  defined as 
follows: if r e R1, r = {(x, y): x = k}, ~*(r) = {(x, y): y = k} e R2; i f s  e R2, s = {(x, y): 
y = h } , ~ * ( s ) = { ( x , y ) :  x = h } e R a .  Finally, if t e R 3 ,  t = { ( x , y ) :  y e a x + b } ,  
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a*(t) = {{(X, y): X ~ a-~y + c}, c ~ ( - - a - ~ b ) } .  The map (a, ~*, a -x*)  is trivially an 
affine map. [ ]  

4. Hyperattine planes over hyperrings 

In this section we consider the case of hyperrings [23. 
If A is an hyperring such that: (i) Va, b , c , d ~ A ,  a ~ b ,  c ~ d ,  

3 z e A / ( a - b ) z c h ( c - d ) ~ O ;  (ii) Va, b,c, d e A ,  a ~ b ,  c ~ d ,  3 z ~ A / z ( a - b ) n  

(c - d) ~ 0; (iii) Vw ~ A, ~ = {{w G y}: y e A) is a partition of A; (iv) au ~ b = au @ c 

for some u ~ az t~ b --- az G c for all z e A such that 0, b, c do not  belong to one of 
such sets, then A will be called planar hyperring. 

In  A 2 = A × A let us consider the following family ~ of subsets of A2: ~ = ~1 Y'~2 

where 

r ~ l  ¢~ [ 3 k ~ A  such that r = {(k,y): y e A } ] ,  

r ~ 2  ~ [3a, b ~ A  such that r = { (x ,y )~  A2; y ~ a x ~  b}]. 

Then  it is possible to prove that: 

Proposition 4.1. For the intersection of two distinct lines the following hold: 

(1) r,r' e R l , r v ~ r '  ~ rnr '=O;  (2) r e R l , r '  ~R2 ~ rnr'  ~O; (3) r,r' ~R2,  

r = {(x, y): y ~ a x @ b } , r ' =  {(x, y): y e c x G d }  ~ (rc~r'= 0 = a  = c). 

Proof.  Let  r = {(x,y): x = k} and r ' =  {(x,y): x = h}; then if h ~ k obviously 
rnr'  = 0. I f r  = {(x, y): x = k} and r' = {(x, y): y E ax ~ b} the point  P = (k, u) belongs 
to rnr'  Vu ~ ak ~) b. Finally, i f r  = {(x, y): y ~ ax ~) b} and r' = {(x, y): y ~ cx • d} let 
us suppose a ¢ c ,  b Cd ;  by proper ty  (i) an element z e A  exists such that 
( a - c ) z n ( d - b ) v ~ O ,  i.e. ( a z - c z ) n ( d - b ) ¢ O .  Then we have (see [3]) 
(az ~) b)n(cz ~ d) ~ 0, i.e. 3w ~ (az • b)n(cz G d) and P = (z, w) ~ mr ' .  We observe 
that  if a ¢ c and b = d, the point  (0, b) e m r ' .  

If a = c, let P = (u, v) e rn r ' ;  then v E au ~) b and v ~ au • d from which, by (iii), 
a u G b = a u G d .  Thus, V Q = ( z , w )  belonging to r, i.e. w ~ a z t ~ b ,  such that  
O, b, dq~az G b, by proper ty  (iv), w ~ az • d; therefore Q e r'. Similarly for a point  
Q' ~ r' which implies r = r' almost  always. 

As for the case of multiplicative hyperrings, the previous result implies that the 
parallelism induced by the previous result is an equivalence. 

Proposition 4.2. (A 2, R) is an hyperaffine plane. 

Proof.  First of all let P1 = (xl ,  Yl) and P2 = ( X 2 ,  Y2) be two points. If xl  = x 2 = k, the 
line r -- {(x, y): x = k} contains P1 and P2; if Yl = Y2 ---- h the two points belong to 
r = {(x, y): y = h}. Let  us now suppose xl  ¢ x2 and Yl :~ Y2; then by (ii) an element 
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a e A exists such that  (YI - y 2 ) n a ( x l  - x2) ~ 0, i.e. (Yl - y2 )~ (ax l  - ax2) ~ 0 which 

implies (see I-3]) (YI - axl)c~(y2 - ax2) ~ O. Let b ~ (YI - ax l )n ( y2  - ax2); then 

Yl ~ axl  @ b and Y2 ~ ax2 @ b, thus P~, P2 ~ r = {(x, y): y ~ ax ~ b }. F r o m  above, the 
first axiom for hyperaffine planes follows. 

Let r = {(x, y): x = k} ~R~ and P~ = (x l , y~)¢r ;  the line s = {(x, y): x = x l}  con- 

tains e~ and r II s. Fo r  r = {(x, y): y ~ ax  ~ b} ~ R2 and P~¢r, then the line s = {(x, y): 

y e a x ~ d }  such that  d ~ y x - a x ~  contains P~ since d 6 y a - a x a  implies 

y~ ~ ax~ ~ d; moreover ,  r II s by Propos i t ion  4.1. We observe that  the line s is not  

unique; in fact, i f s '  = {(x, y): y ~ ax  ~ c} is parallel to r and P~ ~ s', then c ~ YI - axx 
therefore, by proper ty  (iii), axa ~ d = ax l  @ c and, by proper ty  (iv), au ~ d = au @ c, 

i.e. s = s', a lmost  always. Thus, we have proved the second axiom. 

In order  to prove the third axiom, let P~ = (0, 0), P2 = (0, c) and P3 = (c, 0),c # 0; 

trivially any line in R~ cannot  contain all the three points. If  r = {(x,y): 

y ~ ax ~ b} ~ Rz  is a line containing Pi, i = 1, 2, 3, then 0 ~ a0 ~ b, c ~ a0 ~ b and 

0 ~ ac ~) b; the first relation implies b = 0 and this, together with the second relation, 

implies c = 0. Since this is impossible we have proved that  three non-coll inear points 
exist. 

Proposition 4.3. I f  A is a planar hyperfield then, for  every pair o f  points P and 

Q collinear with 0 = (0, O) in the hyperaffine plane (A 2, R), an homothety q~ centered in 
0 exists such that cp(P) = Q. 

Proof. First of  all we need to know what  kind of  line can contain the three distinct 

points P = (xl,  Yl), Q = (x2, y2) and O = (x3, Y3) = (0, 0); if xl  = xz = 0 then YI ~ 0 

and Y2 ~ 0 and r = {(x, y): x = 0} in R1 contains the three points. We observe that no 
line s = {(x, y): y ~ ax  ~ b} in R2 can contain P, Q and O since 0 e s implies b = 0, i.e. 

s = {(x, y): y = ax}  and then P = Q = O. Similarly, if yl  = Y2 = 0, then xl  ~ 0, x2 ~ 0 
and the unique line containing the three points is s = {(x, y): y = 0} E R2. Finally, if 

xl  ~ 0 and yx ~ 0 we can prove that x2 ¢ 0; in fact, x2 = 0 would imply that no line in 
R~ can obviously contain  P, Q and O. The same is also true for any line s = {(x, y): 

y ~ ax ~ b} ~ R2 since O e s implies b = 0 and Q e s implies y2 = 0, i.e. Q = o;  sim- 

ilarly, if x~ ~ 0 and y~ ¢ 0, Y2 must  be different from zero. Under  these hypothesis 
a line containing the three points is s = {(x, y): y = ax},  where a = y~x~ ~ = y2x2~; 
moreover,  s is unique. 

In the three considered cases we have to define the required homothety;  if 

x~, x2, y~, Y2 are all different f rom zero, we can consider the map q~:A 2 ~ A 2 such 

that  q~((x ,y))= (x" , y" )  where x " =  xc  and y " =  yc with c = y- ( ly  2 = x~Xx2. This 
map  is a bijection, q~(O) = O and q~(P) = Q; let us study the induced map  q~*. I f R  ~ r, 

r = {(x,y): x = k} ~R1 and R = (k,y), then ¢p(R)= (kc, yc); from this we obtain 
q~*(r) = {(x, y): x = kc} ~ R~. N o w  we recall that  a line s passing through O = (0, 0) is 
of  the form s = {(x, y): y = ax}; then a point  S belongs to s if and only i fS  = (x, ax), 
thus q~(S) = (xc, axc) i.e. q~*(s) = s. Finally, let T = (x, y), T ~ t = {(x, y): y ~ ax • b}, 
t e R2; then ~o(T) = (x", y")  where y" = yc ~ (ax ~ b)c = axe • be = ax" @ be. Thus, 
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q~*(t) = t' wi th  t '  = {(x, y): y ~ ax  • bc} ~ R2 a n d  t' II t by  P r o p o s i t i o n  4.1. All t ha t  has  
been  p r o v e d  impl ies  t ha t  ~0" m a p s  each  line r exac t ly  in one  line r'; m o r e o v e r ,  e i ther  

r = r '  or rtlr ' .  

In  o r d e r  to  p r o v e  t ha t  (q~, ~0", q~-1.)  is an  affine m a p  we m u s t  s tudy  the  m a p s  q~-1 
a n d  q~ - 1 . ;  easi ly  we o b t a i n  q~- 1 ((x, y)) = ( x c -  1, y c -  1 ), thus  it is o b v i o u s  t ha t  ~0 - 1 a n d  

~0 - 1 .  w o r k  exac t ly  as q~ a n d  ~0". 

Le t  us cons ide r  the  six cond i t i ons  for  an  affine m a p ;  (1), (1'), (2) and  (2') a re  trivial ,  

whi le  (3) b e c o m e s  ~p - l* (q~*( r ) )=  r a n d  q~* (q~- l* ( r ' ) ) - - r ' .  In  o rde r  to  p r o v e  (4), if 

r, s 6 R1,  r [I s, o b v i o u s l y  ~o*(r) II tp*(s); if r, s e R2,  r 11 s, r = {(x, y): y ~ ax • b} and  
s = { ( x , y ) :  y 6 a x O d } ,  thus  q ~ * ( r ) = { ( x , y ) :  y e a x O b c }  and  q ~ * ( s ) = { ( x , y ) :  

y ~ ax • dc}, i.e. (p*(r) [1 ~o*(s) by  P r o p o s i t i o n  4.1. Similar ly ,  we can  p r o v e  (4'). 

Thus ,  we have  p r o v e d  tha t  (qh q~*, q~- 1.)  is an  h o m o t h e t y  cen te red  in 0 m a p p i n g  

P in Q; we  obse rve  t ha t  it is a lso a classical  h o m o t h e t y .  

W e  m u s t  n o w  cons ide r  the  cases Xl = x 2  = 0  a n d  Yl = Y 2  = 0 .  I f  P = (0, y l ) ,  
Q = (0, y2), 0 = (0, 0), we define q~ "A 2 ~ A 2 such tha t  ¢p((x, y)) = (x", y")  whe re  

x" = xc  a n d  y" = yc with  c = y~- ly2; if P = (x l ,  0), Q = (x2, 0), 0 = (0, 0), we define 
q~ A 2 ~ A 2 such t ha t  q~((x, y)) = (x", y") whe re  x"  = xc a n d  y"  = yc wi th  c = xi- lx2.  

U n d e r  these  cond i t i ons  we can  repea t  the  p r ev ious  a r g u m e n t s  a n d  c o m p l e t e  the  
p roof .  [ ]  
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