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Abstract

The aim of this paper is to construct a geometric structure over both an hyperring and
a multiplicative hyperring. In order to accomplish this goal we will need to define a particular
class of planar hyperrings. Moreover, the notions of hyperaffine plane, affine map, translation
and homothety are given. Finally, in the first case an hyperaffine plane having all homotheties
centered in 0 is obtained; in the second case an hyperaffine translation plane is built.

1. Introduction

First of all we will recall some algebraic definitions that will be used in the paper.
An hyperring [2] (4, @,) is a set A with an hyperoperation @ and a product-
such that the following properties hold:
(i) Va,b,ce A: a® (bBc)=a@®b)Dc,
() Va,bc A:a@b=bDaq,
(i) 0 ed/VacA:0@a=a®0=q,
(iv) Vae AAd e d:a®a'30 (@ = — a),
(V) Va,b,ce AJaeb®c=cea—b(cea@®)),
(vi) Va,b,ce A:(@"b)-c=a-(bc),
(vil) Va,b,ce A:(a@®b) c=a-c@b-c,
(vii) Va,b,ce d:a-(b®c)=a b@a-c,
(ix) Vae A:a-0=0-a=0,
We recall that (4, @) satisfying (i)—(v) is called canonical hypergroup.
Let us observe that axiom (v) is equivalent to (v)’ and also to (v)":
(v) Va,be A: —(a®b)= —a—b,
V)Y Va, b,c,de A: (@@ b (c@d)#0 = (c — a)n(b —d) #0.
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An hyperring A is called hyperfield if (4*,-) is a group, where A* = 4\{0}.

We will consider a particular class of hyperrings satisfying the following properties:

(X) Va,b,c,de A/a@b)n(c@d)#0 = (a®Db)s(cDd)or(c@Dd) = (ad®b)

(xi) Va,be Ala@b)aa = a® b = {a}.

If the canonical hypergroup (4, @) satisfies (x) and (xi) then it is called strongly
canonical.

A multiplicative hyperring [4] (4, +, °)is an abelian group (4, +)together with an
hyperproduct satisfying the following properties:

(i) Va,b,ce A:ao(boc)=(acb)ec

(i) Va,b,ce A:(a+ b)oc S a°c+bog

(iii) Va,b,ce A:a°(b+c)Sa°b+acc

(iv) Va,be A: (—a)eb=a°(—b)= — (a°h).

If a multiplicative hyperring satisfies, instead of properties (ii) and (iii), the following:

(ily Va,b,ce A:(a+b)ec=a°c+bec,

(iiiy Va,b,ceA:ac(b+c)=a°b+a-c,
then (4, +, ©)is called strongly distributive. Moreover, (4, +,° ) is strongly left (right)
distributive if (i) ((iii)’) holds.

2. Hyperaffine planes: basic definitions and properties

Let 7 be a non-empty set whose elements will be called points and let R be a family
of subsets of = whose elements will be called lines such that the following properties
hold: (i) VP, P'en,3r € R such that P,P'er; (i) VreR and VPen, P¢r, 3seR
such that Pes and snr =@ or s =r almost always; (iii) 3P, P, P” € = such that
P, P’ P’¢s Vse R. The pair (n, R) satisfying the previous three conditions will be
called hyperaffine plane. In = it is possible to define the relation: 7 || s < r = s almost
always or rns = §; we observe that this relation is in general non-transitive since we
do not request a unique line in (ii).

If (=, &) and (7', #’) are two hyperaffine pianes, an affine map from (n, &) to (n', #’)
is a triple (@, @*, ¢ ~1*) where

¢@:m — 7 18 a bijection,

o* R > P(R),

oA — P(R),
such that the following conditions are verified:

(1) i, rae@*(r) = ri ||,

(1) ry,r2 €97 () = 1y 72,

(2) Per= @(P)eY{r:reo*r)},

(2) Per =9 Y (P)eY{rreo *(r)},

(3) rep*(r) = re e *(r),

@) rls=[rs:Vree*r), Vs ep*(s)],

@) r|s=>[rlsVrep (), Vseo 1*)].
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If o is the set of all affine maps in an hyperaffine plane (n, R) and
(@, 0%, 0™ *), (Y, y*, Yy '*)e o/, then we can define a composition between
(0, 0%, 07 1*) and (b, Y* ¥ 1*) as (@, 0% @7 *) (Y, Yy *) = (9°y, (p°¥)%,
(poy)™'*), where (poy)*(r)=o*(r}), riey*(r), and, similarly, (@oy) '*
(s) = U¢~1*(s;) with 5;€ @~ 1¥(s).

Proposition 2.1. The set .7 is a group with respect to the composition of maps.

Proof. First of all if (¢, o*, ¢ "'*) and (Y, Y*, iy ~'*) are two affine maps of (n, %),
then (@, o*, @ 1*)- (Y, Y*, ¥ " 1*) e o; in fact, @oy is a bijection of © and (1), (1)
follow from (4), (4'). As for property (2), VPen, Per, (poy)(P)er”", where
r"e{@oy)*(r) as Yy(P)er, for some r' € Y*(r), thus r’ e (¢ o ¥ )*(r) exists such that
@(Y(P)) e r"; similarly for property (2'). Property (3) holds since both ¢ and  satisfy
it; in fact, 1" e (@Y )*(r) = Uo*(ri), rieY*(r) = rey™'*(r) and ric o7 1*(r") =
re(pey) '*(”). Similarly, properties (4) and (4) are verified for
(@, @*, @™ 1*)- (W, ¥*, ¥~ 1*) because they hold for (¢, @*, ¢~ '*)and (¥, ¥*, ¥~ *). The
associative law being obvious, we observe that, by defining id*(r)= {r},
(id,id*,id~'*) is the unity of /; moreover, by definition of (¢, p* @ **),
(0, 0%, 07 *) L =(p" 1, ¢~ '* ¢*) e o and thus (o, ) is a group.

An element of 7, (z, t*, 77 1*), is called translation if either is the unity of & or is an
affine map such that

(1) 1(P)# P,VPenm,

2y r|¥,Vre®,Nr et*(r).

An hyperaffine plane (r, #) is called translation plane if, and only if, VP,Q e,
a translation (t, *, 77 '*) exists such that 1(P) = Q.

An element of .o/, (0, w*, @~ '*), is an homothety centered in O (where O € n) if, and
only if, either is the unity of &/ or is an affine map such that

(1) w(0) =0,
(i) w(PY#PVPen P #0,
(i) r||r; Vre R, Vrew*{r). [

Proposition 2.2. The set 7 of the translations of the hyperaffine plane n is a normal
subgroup of <4 whenever the product of two translations is a translation.

Proof. First we observe that if (r,t*, 1t '*)ed, then (r,7* 1 %) !=
(t7ht ™, t*) e T;infact, VPen = t~ }(P) # P. Moreover, if ¥ € &, 1~ *(r') = {r;
rill7;} and, by property (3), t*(r;)3r’; since (1, t* 1~ '*) is a translation, the lines
contained in 7*(r;) are all parallel to r;, thus r’ is parallel to every r;.

Let now (r,7t% 1t '*)eJ and (¢, ¢* ¢ '*)e.o/, we want to prove that
(@, @*, @ 1) 1-(1, 7%, 17 1%) (@, 0*, @ '*) e 7. First of all ¢ !o10¢ has no fixed
points; in fact, if P=(p 'o1°@)(P), then ¢(P)=1(¢(P)) that is 1 =1id and
@ 'oto@ =1id. Let us now prove that all lines contained in (¢~ 1o @)*(r) are
parallel to r; if @*(r)={r: r;|r;} then (to@)*(r)=Ut(r;) = {sii sulr:;} and
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(@ toto@)*(r) = o '*(si;). From r;| sy it follows that if e @ '*(s,) and
I'e 9 1*(r;) then || I', but ¢ ~1*(r;)>r and this implies [ | r VI e ¢~ 1*(sy;). Thus, 7 is
a normal subgroup of &/. []

3. Hyperaffine planes over a multiplicative hyperring

Let A be a strongly right distributive multiplicative hyperring such that: (x) Va € A4,
Aa=A,(f)Vae A, ? = {ax: x € A} is a partition of 4, (y) Ic,d € A* /Va e A: c € a0,
O¢ad; such hyperring will be called planar.

In Ax A = A? we consider the family # = #, 0%, %5, where

re#, < [Ike Asuch that r = {(k, y); y€ A}],
re#, « [Ihe A such that r = {(x, h); x e A}],
re R3 <> [da,be A such that r = {(x, y) e A% yeax + b}].

The elements of A2 will be called points and the elements of £ lines.
It is now possible to prove the following proposition.

Proposition 3.1. (42, R) is an hyperaffine plane.

Proof. Let P; = (x;, y;) and P, = (x,, y,) be two elements of 4% if x; = x, = k, then
P, and P, belong to the line r = {(x, y)/x = k}. Similarly, if y; = y, = h, the line
r ={(x, y)/y = h} contains P, and P,. We must prove now that if x, # x, and
y1 # ¥;, then a line r exists containing both points. To do that let us consider
Xi — X3, ¥1 —y2€4, by property («) an element ae A exists such that
Y1 —ya€a(xy — x3); i.e. y3 —y,€ax; —ax; or y; —y, =s —t with seax; and
t € ax,. If we consider the line r € R3, r = {(x, y)/y € ax + y, — t}, then P, € r since
yi€ax; +y,—tand P,ersince 0 =t — t € ax, — t from which y, e ax, + y, — t.
Let us notice that the line r passing through P, and P, is not necessarily unique, since
an element ¢ # a could exist with the condition y; — y; € ¢(x; — X;). In this way we
have proved the first axiom for an hyperaffine plane; let us consider the second one.
Let P;=(x1,y;)€A%> and reR, such that P,¢r, then seR; exists,
s ={(x, y):x = x; }, such that P; € s and s| r. Similarly, we can proceed if r € R;:
thus, let us consider r € Ry, r = {(x, y): ye ax + b}, and P,¢r, that is y,¢éax; + b. If
b’ €y, — ax; and a' = g, then the line s = {(x, y): y e a’x + b’} contains P, by defini-
tion of b; we must now prove that s|r. To do that let P = (z, w)erns; then
ze(aw + b)n(aw + b'), ie. z=e+b=f+b, e, feaw. Thus, b=f—e+ b€
aw —aw+b' =a0+ b <al + y; — ax; = y; —ax, and this is impossible since
yiéax, + b; from this we have the required condition s || r. In order to complete our
proof we need to prove that three non-collinear points exist; let P, = (0, 0), and
P, = (0, c¢) and P; = (d, 0) where ¢ and d are the elements considered in property ().
We observe that a line passing through P, P, and P; should be of the following type
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r={(x,y) yeax +b}; if P,er then 0€a0 + b, ie. be —a0, P,er implies
¢ € a0 + b = a0: finally P, € r would imply 0 € ad + b = ad which is impossible by the
hypothesis (y). Thus, the point P is not collinear with P, and P,. [

In order to understand better the structure of such a plane, let us characterize the
conditions for parallel lines through their equations.

Proposition 3.2 In (A%, R), if r,se R, r #s, then (i) r,se Ry roas =@; (ii) 7, s € Ry
rns=@; (i) reR,,se Ry |rns|=1; (iv) reRy,seRy |rns|=1; (v) reR,,
S€Ry: [rns|=1; (vi) r,se Ry, r={(x,y): yeax+b}, s={(x,y) yedx+b}
rns=0 < a=ada.

Proof. (i), (ii) and (iii) are obvious. To prove (iv) let r = {(x, y): x =k} and s = {(x, y):
ye€ax + b}; then, Vh e ak + b, the point (k, h) e rns. Now let r = {(x, y): y = h} and
s ={(x, y): ye ax + b}: by property (B) an element k € A exists such that h — b € ak,
thus (k, h) e rns and (v) is proved. Finally, let r = {(x, y): ye ax + b} and s = {(x, y):
yea'x + b'}. If a = a then the condition r # s implies that a point P = (x,, y,) exists
such that Per, Pé¢s; from Per we get y, €ax, + b while from P¢s y,¢ax, + b’
follows, ie. b'¢y, —ax;. f Q =(x',y')erns, then y=e+ b =f+ b with e, fc ax’
and this implies that ¥ =e+b—feax' +b—ax'=a0+b<=al +y, —ax, =
y1 — ax; and this is absurd. Conversely, if a # a’, by property (f), z € A exists such
thatb' —be(a—a)z Saz —a'z,ie. b’ — b =u — v, ue az, ved'z; from this we have
u+b=v+b, thus weAd exists such that we(az +bn(@ z+b) and
(z,werns.

We observe that, as a consequence of the previous result, the parallelism relation in
(A2, R) is transitive; thus, the set of translations is a group.

Proposition 3.3. In (A% R),ifr,s€ Rs,r = {(x,y):y€ax + b}, s = {(x, y): y e ax + c},
thenr =5 < b —ceal.

Proof. Let r=35; then given P=(u,v) [veau+b<veau+c] =b—ceald
results. Similarly, if b —cea0 and P = (u,v) belongs to r, then veau+bc
au + a0 + ¢ = au + ¢,i.e., P belongs to s. If P € 5, then v € au + ¢ with ¢ € b — a0; thus
veau—a0+b=au+b. [

Proposition 3.4. In (A%, R), if re Ry, r = {(x y): y€ax + b}, and Pé¢r, P = (xy, y;),
a unique line s3 P belonging to Ry exists, such that r | s.

Proof. From Proposition 3.2, the line s will be such that s = {(x,y): yeax +c};
since Pes, then cey, —ax;. If s ={(x,y) yeax +d}, s |r, contains P, then
dey, —ax,, thus ¢ — d € a0; by Proposition 3.3, s =¢5.
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Proposition 3.5. The hyperaffine plane (A%, R) is a translation plane.

Proof. Let P = (x;, y;)and Q = (x,, y,) be two different points of A2 and t: 42 — A?
such that 7((x, y)) = (x, y') where x’ = x + x, — x; and ¥y = y + y, — y,. Trivially,
7 is a bijection without fixed points; moreover, 1(P) = . We want to prove that
7 induces a translation over (m, R). Let re Ry, r={(x,y): x =k} and seR,,
s = {(x, y): y = h}; then we define t*(r) = {(x, y): x = k + X, — x; } and t*(s) = {(x, y):
y=h+y,—y}. Finally, if teRs, t={(x,y: yeax+b}, we define
™) ={t; ={(x, ) yeax +b+o;+y, — y1}, s, €a(x; — x,)}; we observe that
[t*(¢)| = 1 since (see Proposition 3.3) o; — a;e€a0. In such a way we obtain that
if (r,7t*,17!*) is an affine map, it is a translation. Let us prove the charac-
terizing properties: (1) and (1’) are true by definition. As (2) is trivially satisfied
for Per or Pes, we prove it for T =(u,v)et; in that case ©(T)=
W, ) =(u+x,—xy, v+y,—y;) and v =v+y,—y;€au+b+y,—y, =
a —xs+x1)+b+y,—y,=au +alxy, —x;)+b+y,—y; which implies
©(T)et where t' =1*@t), ' = {(x,y): yeax + b+ o; + y; — y1 }, Vo, € a(xy — x3).

Let us prove property (3). First we observe that t~!((x,y)) = (x — x5 + X1,
y—y2+y); moreover, 1) ={(c)) x=k—x;+x}, 1 ()= {(xy)
y=h—ys+y}, T =0"={x)): yeax +b+ By +y1 — 2}, VBy€alx; — x1)
(Proposition 3.3). Thus, in order to prove property (3) we must verify that t = 1~ 1*(¢'),
V=1*t)={(x,y): yeax+b+a;+y2—y1}, w;€a(x; —x;). For ¢ we have
)= {0,y yeax+ b+ o+ y —yi+ B+ y1—y2} and b+ +y, —yi +
By + y1 — ¥2) — b = o; + B € a0; thus t = ¢~ 1*(¢'). The inverse implication is proved
exactly in the same way.

Property (2') is obviously true since it is the exact analogous of property (2) with
respect to (t %, v 1*, t*) since 1! and 7 act in the same way. Similarly, the proof for
property (4) is the same as that for property (4').

Property (4) is trivial for the lines belonging to R; and R,; let us consider two
parallel lines ¢,, ¢, € R, then t; = {(x, y): yeax + b} and t, = {(x,y): yeax + c}.
Since t*(t;) =11 = {(x,yy yeax + b+ a+ y, — y;}, a€a(x; — x;), and t*(t;) =
th={(x,y): yeax+c+ B+ y,—y}, Bea(x; — x,), by Proposition 3.2 we have
filz. O

Observation. The pair (4% R’), where Ry =R,, Ry=R,, Ry={{x,ye
A*/x € ay + b,a, b e A}},is an hyperaffine plane; moreover, the following proposition
holds.

Proposition 3.6. If A is a planar hyperfield such that, Vx,ye A, yeax,a #0,
<> x € a” 'y, then there exists an affine map between (A%, R) and (A%, R’).

Proof. Let a:A4% — A% such that a((u, v)) = (v,u) and a*:R — 2(R) defined as
follows:if re Ry, r = {(x, y): x =k}, a*(r) = {(x, y): y =k} e Ry; if se Ry, s = {(x, y):
y=h},oa*s)={(x,y: x=h}eRy. Finally, if teR,, t={(x,y): yeax+b},
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a*(t) = {{(x,y): xea 'y + ¢}, ce(—a"'b)}. The map (o, a* o~ '*) is trivially an
affine map. [

4. Hyperaffine planes over hyperrings

In this section we consider the case of hyperrings [2].

If A4 is an hyperring such that (i) Va,b,c,de A, a#b, c#d,
Ize Afla—b)zn(c —d)#0;, (i) Va,b,c,de A, a#b, c#d, 3ze Ajz(a —b)n
(c—d)#0; (i) Vwe A, P={{w® y}: ye A} is a partition of 4; (iv) au@® b =au®c
for some u = az@® b = az @ ¢ for all z € A4 such that 0, b, ¢ do not belong to one of
such sets, then A4 will be called planar hyperring.

In A® = A x A let us consider the following family # of subsets of A% # = #, V%,
where

re &, <> [3k € A such that r = {(k, y): ye A}],
re R, <> [Ia,be Asuch that r = {(x,y) e A% ye ax @ b}].

Then it is possible to prove that:

Proposition 4.1. For the intersection of two distinct lines the following hold:
WD) rnreR,r#r =ror =0, (2 reR,reR,=rnr#0;, (3)r,rekR,,
r={x,y:yeax@b},r ={(x,y): yecx@®d} = (rnr' =0 =a =c).

Proof. Let r={(x,y): x =k} and r ={(x,y): x =h}; then if h# k obviously
ror =0.1fr = {(x,y): x = k}and ¥ = {(x, y): y € ax @ b} the point P = (k, u) belongs
tornr' Vueak @ b. Finally, ifr = {(x, y: yeax® b} and ¥ = {(x,y): yecx ® d} let
us suppose a #c, b#d;, by property (i) an element z€ A exists such that
(@a—~znd—b)#0, ie (az—cz2)n(d—b)#0. Then we have (see [3]
(az@b)n(cz@d) #0, i.e. Iwe(az @ b)(cz® d) and P = (z, w) e rnr’. We observe
that if a # ¢ and b = d, the point (0, b) e rr’.

Ifa=c,let P=(u,v)ernr; then veau® b and v € au ® d from which, by (iii),
au®@b=au®d. Thus, VQ =(z,w) belonging to r, ie. weaz@®b, such that
0, b, d¢az @ b, by property (iv), w € az @ d; therefore Q e +'. Similarly for a point
Q' e ¥ which implies r = r’ almost always.

As for the case of multiplicative hyperrings, the previous result implies that the
parallelism induced by the previous result is an equivalence.

Proposition 4.2. (4%, R) is an hyperaffine plane.
Proof. Firstofalllet P, = (x,, y;)and P, = (x,, y,) be two points. If x; = x, = k, the

line r = {(x, y): x = k} contains P, and P,; if y; = y, = h the two points belong to
r = {(x, y): y = h}. Let us now suppose x; # x, and y, # y,; then by (ii) an element
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ae Aexists such that (y; — y,)na(x; — x,) # 0, 1. (y; — y2)n(ax, — ax,) # @ which
implies (see [3]) (y1 — ax,)N(y, — ax,) # 9. Let be(y; — ax;)n(y, — ax,); then
yi€ax; @band y; € ax, @ b, thus Py, Py er = {(x, y): y € ax @ b}. From above, the
first axiom for hyperaffine planes follows.

Let r = {(x,y): x =k} € Ry and P, = (x;, y,)¢r; the line s = {(x, y): x = X1} con-
tains Py and r || s. Forr = {(x, y): ye ax @ b} € R, and P, ¢r, then the line s = {(x, ).
yeax@®d} such that dey, —ax; contains P, since de y1 — ax, implies
y1 € ax; @ d; moreover, r | s by Proposition 4.1. We observe that the line s is not
unique; in fact, if s’ = {(x, y): y € ax @ c} is parallel to r and P, e s/, then c € y, — ax,
therefore, by property (iii), ax; @ d = ax, @ c and, by property (iv), au D d = au @ c,
ie. s = &, almost always. Thus, we have proved the second axiom.

In order to prove the third axiom, let P, = (0, 0), P, = (0, ¢) and P; = (c, O),c # 0,
trivially any line in R; cannot contain all the three points. If r = {(x, y):
yeax® b} eR, is a line containing P;, i = 1,2, 3, then 0 € a0 @ b,cea0 @b and
0 € ac @ b; the first relation implies b = 0 and this, together with the second relation,
implies ¢ = 0. Since this is impossible we have proved that three non-collinear points
exist.

Proposition 4.3. If A is a planar hyperfield then, for every pair of points P and
Q collinear with O = (0, 0) in the hyperaffine plane (42, R), an homothety ¢ centered in
O exists such that ¢(P) = Q.

Proof. First of all we need to know what kind of line can contain the three distinct
points P = (x;, y1), @ = (X2, ¥2) and O = (x3, y3) = (0, 0); if x; = x, = 0 then y, # 0
and y, # 0 and r = {(x, y): x = 0} in R, contains the three points. We observe that no
lines = {(x, y): ye ax @ b} in R, can contain P, Q and O since O € s implies b = 0, i.e.
s ={(x, y):y = ax} and then P = Q = O. Similarly, if y, = y, = 0,then x; # 0,x, # 0
and the unique line containing the three points is s = {(x, y): y = 0} € R,. Finally, if
x; # 0and y; # 0 we can prove that x, # 0;in fact, x, = 0 would imply that no line in
R can obviously contain P, Q and 0. The same is also true for any line s = {(x, y):
y€ax@® b} e R, since O € s implies b =0 and Q € s implies y, = 0, i.e. Q = O; sim-
ilarly, if x, # 0 and y; # 0, y, must be different from zero. Under these hypothesis
a line containing the three points is s = {(x, y): y = ax}, where a = y,x{ ! = y,x; |;
IMOTEOVEr, § is unique.

In the three considered cases we have to define the required homothety; if
X1, X2, Y1, ¥ are all different from zero, we can consider the map ¢: 42 — A? such
that ¢((x, y)) = (x", y”) where x" = xc and y” = yc with ¢ = yJ 'y, = x] !x,. This
map is a bijection, ¢(0) = O and ¢(P) = Q; let us study the induced map p* If Rer,
r={(x,y: x=k}eR, and R =(k, y), then ¢(R) = (kc, yc); from this we obtain
@*(r) = {(x, ;- x = kc} € R;. Now we recall that a line s passing through O = (0, 0) is
of the form s = {(x, y): y = ax}; then a point S belongs to s if and only if § = (x, ax),
thus ¢(S) = (xc, axc) ie. *(s) = s. Finally,let T = (x, y), T €t = {(x, y: ycax ® b},
t € Ry; then o(T) = (x", y") where y” = yc € (ax @ b)c = axc @ bc = ax” @ bc. Thus,
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e*(t) =t witht' = {(x, y): yeax @ bc} € R, and t' | t by Proposition 4.1. All that has
been proved implies that ¢* maps each line r exactly in one line r'; moreover, either
r=rorr|r.

In order to prove that (¢, @*, ¢ ~'*) is an affine map we must study the maps ¢~
and ¢~ '*; easily we obtain ¢ ~((x, y)) = (xc " !, yc 1), thus it is obvious that ¢ " and
@~ '* work exactly as ¢ and ¢*.

Let us consider the six conditions for an affine map; (1), (1'), (2) and (2') are trivial,
while (3) becomes ¢ ~'*(¢*(r)) = r and ¢*(¢ " '*(r')) = 7. In order to prove (4), if
r,s€ Ry, r| s, obviously ¢*(r) || @*(s); if r,se Ry, rls, r={(x,y): yeax®b} and
s={(x,y): yeax®d}, thus @*(r)={(x,y) yeax@bc} and o¢*(s)={(x,y)
yeax @dc}, i.e. o*(r) || ¢*(s) by Proposition 4.1. Similarly, we can prove (4').

Thus, we have proved that (¢, @*, ¢ ~'*) is an homothety centered in O mapping
P in Q; we observe that it is also a classical homothety.

We must now consider the cases x; =x, =0 and y; =y, =0. If P =(0, y,),
Q =(0,y,), 0=1(0,0), we define ¢:4? — 4% such that ¢((x, y)) = (x", y") where
x" = xc and y” = yc with ¢ = y7 'y, if P = (x1,0), Q = (x,,0), 0 = (0, 0), we define
@:A* - A?such that o((x, y)) = (x", y") where x” = xc and y” = yc with ¢ = x| 'x,.
Under these conditions we can repeat the previous arguments and complete the
proof. [
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