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Abstract

We show that the self-improving nature of Poincaré estimates persists for domains in rather general mea-
sure spaces. We consider both weak type and strong type inequalities, extending techniques of B. Franchi,
C. Pérez and R. Wheeden. As an application in spaces of homogeneous type, we derive global Poincaré
estimates for a class of domains with rough boundaries that we call φ-John domains, and we show that
such domains have the requisite properties. This class includes John (or Boman) domains as well as s-John
domains. Further applications appear in a companion paper.
© 2008 Elsevier Inc. All rights reserved.

Keywords: Global Poincaré estimates; Power type weights; Quasimetric spaces; s-John domains

1. Introduction

The self-improving nature of Poincaré inequalities over balls is an interesting and power-
ful property observed initially by Saloff-Coste [22] in the Euclidean case. It has been extensively
studied recently in more general settings: see for example Hajłasz and Koskela [15], and Franchi,
Pérez and Wheeden [12,13]. There have also been studies regarding s-John domains (see Defini-
tion 1.5), s � 1, including the validity of global Poincaré estimates over these domains, such as
Hajłasz and Koskela [14], and Kilpeläinen and Malý [17]. The main goals of this and our closely

* Corresponding author.
E-mail addresses: matcsk@nus.edu.sg (S.-K. Chua), wheeden@math.rutgers.edu (R.L. Wheeden).
0022-1236/$ – see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jfa.2008.05.012



2978 S.-K. Chua, R.L. Wheeden / Journal of Functional Analysis 255 (2008) 2977–3007
related companion paper [8] are to extend the self-improving techniques in [13] and to derive
global Poincaré estimates on s-John domains in spaces of homogeneous type. While the abstract
and more general theory is discussed in this paper, further specific applications of these results
appear in [8].

The notion of an s-John domain was introduced by Smith and Stegenga [25], while the
terminology John domain was used earlier first by Martio and Sarvas [20]. In spaces of homoge-
neous type with the segment (geodesic) property, John domains are the same as Boman domains
(see [4]); in general, they are the same as s-John domains in case s = 1. When s > 1, the notion
of an s-John domain is a generalization of that of a John domain, a weakening of requirements
relative to the case s = 1 in order to accommodate domains with rougher boundaries. It is easy
to see that bounded Lipschitz domains (including all bounded domains with smooth boundaries)
and bounded domains which satisfy the cone condition are John domains. There have been many
studies concerning John domains: see for example [1,3,6] and references listed in those papers.
Some examples of s-John domains in case s > 1 are given in [14].

An example of a (global) Poincaré estimate for s-John domains is given in the following result
stated in [17, Theorem 2.3].

Theorem 1.1. Suppose that Ω ⊂ R
n is an s-John domain. Let a, b,p, q be real numbers which

satisfy a � 0, b � 1 − n,1 � p < q < ∞, 1
q

� 1
p

− 1
n

and

1

q
� s(n + b − 1) − p + 1

(n + a)p
. (1.1)

Then there is a constant C = C(n,a, b,p, q,Ω) > 0 such that

‖f − fΩ,ρa dx‖L
q

ρa dx
(Ω) � C‖∇f ‖L

p

ρb dx
(Ω) for all f ∈ C1(Ω), (1.2)

where ρ(x) = dist(x,Ωc) and fΩ,ρa dx = ∫
Ω

f (x)ρ(x)a dx/
∫
Ω

ρ(x)a dx.

The assumption that f ∈ C1(Ω) in Theorem 1.1 does not automatically imply that the norm
on the right-hand side of (1.2) or the average fΩ,ρa dx on the left-hand side is finite. However, as
we shall see in Theorem 1.13, (1.2) holds under the weaker hypothesis f ∈ Liploc(Ω) provided
the average on the left-hand side is replaced by the average |B ′|−1

∫
B ′ f (x)dx over a “central”

ball B ′ ⊂ Ω , which is always finite for such f . If f ∈ Liploc(Ω) and the right-hand side of (1.2)
is finite, it follows that f ∈ L

q
ρa dx(Ω), and then fΩ,ρa dx is finite and it is possible to replace the

average over the central ball by this average in (1.2).
The inequality (1.2) was also proved by Hajłasz and Koskela [14] except that when p > 1,

they required strict inequality in (1.1). The necessity of the condition 1/q � 1/p − 1/n is easy
to see as usual by considering Lipschitz functions that vanish outside balls in Ω . Condition (1.1)
is also sharp as can be seen by considering mushroom-like domains; see [14] for details. On the
other hand, for special s-John domains such as s-cusp domains, condition (1.1) can be relaxed;
see [8] for some results of this type.

We will use an approach which is different from those in [14] and [17] to prove Theorem 1.1.
Our approach is a modification of one used in [13]. Actually, the Poincaré inequality (1.2) is just
one consequence of our main results. In this and our companion paper [8], we will extend the
techniques in [13] and use the outcome to derive global Poincaré inequalities on s-John domains
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Ω (including 1-John domains) in spaces of homogeneous type and for measures which are dou-
bling or just δ-doubling on Ω (see Definition 1.6). The notions of δ-doubling and doubling on
Ω are equivalent on 1-John domains (see Proposition 2.2(3)). We note that power type weights
of the form dist(x,Ω0)

a , with a � 0 and Ω0 ⊂ ∂Ω , are examples of δ-doubling measures. We
are also able to prove Theorem 1.1 without the assumption b � 1 − n. The chief geometric con-
tribution of the paper is the construction of suitable chains of balls in s-John domains, as well
as in still more general domains which we call φ-John domains, in homogeneous spaces. This
allows us to clarify some details that we were unable to follow in the Euclidean case given in
[17, p. 378, line 4].1

Our first theorem is a very general one that applies to any measure space with certain proper-
ties and extends [13, Theorem 3], where the underlining space is restricted to being a homoge-
neous space that satisfies chain/segment conditions. The result yields weak type estimates for an
individual function f . Here we assume the existence of a local estimate of Poincaré type for f

and derive improved estimates for the same f . By “improved,” we mean that the order of (weak)
integrability of f is changed, generally with a different measure, and a global estimate on all
of Ω is obtained. In this sense, the initial Poincaré estimate is “self-improving.” Some strong
type results follow as corollaries, still for a particular f . As in [12] and [13], sharper strong type
estimates can be obtained by allowing f to vary in the initial hypothesis. A general result of this
sort is studied below in Theorem 1.10.

Theorem 1.2. Let σ and μ be measures on a σ -algebra Σ of subsets of X. Let Ω be a measur-
able subset of X and f be a fixed measurable function which satisfy the following assumptions
for some constants 0 < p0, q < ∞,0 < θ < 1,Cσ > 0,0 < θ1 < θ2 < 1, 0 < A1,A2 < ∞ and
℘ � 1:

(1) For each x ∈ Ω , there is a sequence of measurable sets {Qx
i }∞i=1, depending on x, and a

fixed set B ′ ⊂ X such that Qx
1 = B ′,

0 < σ
(
Qx

i ∪ Qx
i+1

)
� Cσ σ

(
Qx

i ∩ Qx
i+1

)
< ∞, i = 1,2, . . . , (1.3)

and

(
1

σ(Qx
i )

∫
Qx

i

|f − fQx
i
|p0 dσ

) 1
p0 � a

(
Qx

i

)
, (1.4)

where {fQx
i
} is a sequence of constants that converges to f (x) and {a(Qx

i )} is a sequence of
nonnegative numbers.

(2) For each x ∈ Ω , there is a sequence {Bx
j }∞j=1 of measurable sets and a sequence {μ∗(Bx

j )}
of positive numbers such that

μ(Ω) � ℘μ∗(Bx
1

)
and A1θ

k
1 �

μ∗(Bx
j+k)

μ∗(Bx
j )

� A2θ
k
2 , j, k ∈ N. (1.5)

1 After we discovered a suitable argument to address this difficulty, the authors of [17] sent us a corrected argument [18]
similar to ours.
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(3) Let F = {Bx
j }x∈Ω,j∈N. Assume for any Bx

j ∈ F, there is C(Bx
j ) ⊂ {Qx

l }l∈N such that for each
x ∈ Ω ,

⋃
j∈N

C(Bx
j ) = {Qx

l }l∈N, C(Bx
i )∩ C(Bx

j ) = ∅ when i �= j . Further, for any countable
subcollection I of pairwise disjoint sets {Bα} in F, let

A(Bα) =
∑

Q∈C(Bα)

a(Q)

and assume that

∑
Bα∈I

(
A(Bα)qμ∗(Bα)

)θ �
(
C

q

0 μ(Ω)
)θ

. (1.6)

(4) Suppose the collection F is a cover of Vitali type of subsets of Ω with respect to (μ,μ∗), i.e.,
given any measurable set E ⊂ Ω and a collection BE = {Bx

i(x)
: x ∈ E}, there is a countable

pairwise disjoint collection B′
E ⊂ BE such that

μ(E) � Vμ

∑
Bα∈B′

E

μ∗(Bα), Vμ � 1.

Then

sup
t>0

tμ
{
x ∈ Ω:

∣∣f (x) − fB ′
∣∣ > t

} 1
q � CC0

[
℘Vμμ(Ω)

] 1
q , (1.7)

where C depends on Cσ ,p0, q, θ, θ1, θ2,A1 and A2.

Remark 1.3. 1. By using standard interpolation techniques, the weak Lq estimate (1.7) implies
the following strong type inequality for any q0 with 0 < q0 < q:

‖f − fB ′ ‖
L

q0
μ (Ω)

� C(q, q0)CC0(℘Vμ)
1
q μ(Ω)

1
q0 (1.8)

for the same constants C and C0 as in (1.7). Moreover, if q0 � 1 in (1.8), it is possible to replace
fB ′ by fD,μ = ∫

D f dμ/μ(D) for any D ⊂ Ω with μ(D) > 0, obtaining the estimate

‖f − fD,μ‖
L

q0
μ (Ω)

� C(q, q0)CC0

(
μ(Ω)

μ(D)

) 1
q0

(℘Vμ)
1
q μ(Ω)

1
q0 .

Note that fD,μ is well defined as f ∈ L
q0
μ (Ω), q0 � 1, by (1.8). In fact,

‖f − fD,μ‖
L

q0
μ (Ω)

� ‖f − fB ′ ‖
L

q0
μ (Ω)

+ μ(Ω)
1
q0 |fB ′ − fD,μ|,

and using q0 � 1 and (1.8) gives
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μ(Ω)
1
q0 |fB ′ − fD,μ| �

(
μ(Ω)

μ(D)

) 1
q0 ‖f − fB ′ ‖

L
q0
μ (D)

�
(

μ(Ω)

μ(D)

) 1
q0 ‖f − fB ′ ‖

L
q0
μ (Ω)

.

2. In (1.7), when q > 1, fB ′ can also be replaced by fD,μ for any D ⊂ Ω with μ(D) > 0
and with a different constant on the right-hand side of (1.7). To see this, note that when |f (x) −
fD,μ| > t , then either |f (x) − fB ′ | > t/2 or |fD,μ − fB ′ | > t/2. However,

|fD,μ − fB ′ | � 1

μ(D)
‖f − fB ′ ‖L1

μ(Ω) � C(q)CC0
μ(Ω)

μ(D)
(℘Vμ)

1
q

by (1.8) with q0 = 1 (valid since (1.7) for any q > 1 implies (1.8) for q0 = 1 by the previous part
of this remark). Thus

{
x ∈ Ω:

∣∣f (x) − fD,μ

∣∣ > t
}

⊂
{
x ∈ Ω:

∣∣f (x) − fB ′
∣∣ >

t

2

}
∪

{
x ∈ Ω: t < 2C(q)CC0(℘Vμ)

1
q
μ(Ω)

μ(D)

}
.

The last set on the right is empty if t � 2C(q)CC0(℘Vμ)
1
q μ(Ω)/μ(D), and for such t we im-

mediately obtain from (1.7) that

μ
{
x ∈ Ω:

∣∣f (x) − fD,μ

∣∣ > t
}

� (CC0)
q℘Vμμ(Ω)

(
2

t

)q

.

On the other hand, if t < 2C(q)CC0(℘Vμ)
1
q (μ(Ω)/μ(D)) then

μ
{
x ∈ Ω:

∣∣f (x) − fD,μ

∣∣ > t
}

� μ(Ω) � (2C(q)CC0)
q

tq
℘Vμ

(
μ(Ω)

μ(D)

)q

μ(Ω).

We will discuss applications of Theorem 1.2 to quasimetric spaces, including results for
s-John domains and, more generally, for φ-John domains in these spaces. We now list defini-
tions and terminology we will need.

Definition 1.4. A pair 〈H,d〉 is a quasimetric space if d is a quasimetric on the set H , that is, if
there exists a constant κ such that for all x, y, z ∈ H ,

(1) d(y, x) = d(x, y) > 0 if x �= y, d(x, x) = 0 and
(2) d(x, y) � κ[d(x, z) + d(y, z)].

For a quasimetric space 〈H,d〉, any x ∈ H and r > 0, we write

B(x, r) = {
y ∈ H : d(x, y) < r

}
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and call B(x, r) the ball with center x and radius r . If B = B(x, r) is a ball and c is a positive
constant, we use cB to denote B(x, cr). If B is a ball, we use r(B) and xB to denote the radius
and center of B .

Definition 1.5. Let 〈H,d〉 be a quasimetric space. Fix Ω ⊂ H , and for x ∈ H , set

d(x) = dist
(
x,Ωc) = inf

y∈Ωc
d(x, y).

Let φ be a strictly increasing function on [0,∞) such that φ(0) = 0 and φ(t) < t for all t > 0.
We say that Ω is a φ-John domain with central point (or ‘center’) x′ ∈ Ω if for all x ∈ Ω with
x �= x′, there is a curve γ : [0, l] → Ω such that γ (0) = x, γ (l) = x′,

d
(
γ (b), γ (a)

)
� b − a for all [a, b] ⊂ [0, l], and (1.9)

d
(
γ (t)

)
> φ(t) for all t ∈ [0, l]. (1.10)

If Ω is a φ-John domain for the function φ = φs defined by φs(t) = cst
s for t � 1 and φs(t) =

cst for t > 1, with s � 1, we say Ω is an s-John domain. We may assume that 0 < cs < 1. This
definition is essentially the same as those in [25] and [14], where the authors instead assume that
φs(t) = c0t

s for some c0 > 0 and all t � 0. For any M > 1, we will write JM(t) = t/M . As
M varies, the class of JM -John domains is the same as the class of 1-John domains. If Ω is a
JM -John domain for some M , then we will refer to M as the 1-John constant of Ω .

Note that (1.10) implies that d(x) > 0 for all x ∈ Ω . Another useful inequality is

d
(
γ (t)

)
> φ

(
d
(
γ (t), γ (0)

))
for all t; (1.11)

in fact d(γ (t), γ (0)) � t by (1.9), and then φ(d(γ (t), γ (0))) � φ(t) < d(γ (t)) by (1.10).

Definition 1.6. Let 〈H,d〉 be a quasimetric space. Given Ω ⊂ H and δ > 0, we say that a ball
B(x, r) is a δ-ball if x ∈ Ω and 0 < r � δd(x). Balls of the form B(x, r) with x ∈ Ω and
r = δd(x) will be called δ-Whitney balls.

Some useful properties of δ-balls are listed in Observation 2.1 in the next section. See
also [24], where such balls play a role in proving regularity of solutions of subelliptic equations.

For technical reasons (see, e.g., the proof of Observation 2.1), whenever we consider δ-balls,
we will always assume that 0 < δ < 1/(2κ2) where κ is the quasimetric constant in Defini-
tion 1.4. We note now that the weaker restriction 0 < δ < 1/κ guarantees that every δ-ball is
contained in Ω . In fact, let x ∈ Ω and B(x, r) be a δ-ball with κδ < 1. If y ∈ B(x, r), then

d(x) � κ
[
d(x, y) + d(y)

]
< κ

[
r + d(y)

]
� κ

[
δd(x) + d(y)

]
.

Hence, d(y) > [(1/κ) − δ]d(x). In particular, d(y) > 0 and therefore y ∈ Ω .
We next define what we mean by δ-doubling and doubling.

Definition 1.7. Let 〈H,d〉 be a quasimetric space. A nonnegative finite functional σ defined on
balls in H , i.e., σ : {B: B is a ball in H } → [0,∞), will be called a ball set function (or a set
function on balls). In practice, given Ω ⊂ H , we will only consider balls B with xB ∈ Ω and
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r(B) � diam(Ω), where diam(Ω) is defined using the quasimetric d . Given Ω ⊂ H , 0 < δ <

1/(2κ2), and a ball set function σ , we say that σ is δ-doubling on Ω if there is a positive constant
Dσ such that for all δ-balls B in Ω ,

σ
(
2kB

)
� (Dσ )kσ (B) for all k ∈ N.

If this inequality holds for all balls with center in Ω and r(B) � diam(Ω), we say that σ is
doubling on Ω . If σ is also a measure on Ω , we say that σ is a δ-doubling measure or doubling
measure on Ω , respectively. Furthermore, in case σ is a ball set function or measure and there is
a constant C such that σ(2B) � Cσ(B) for all balls B ⊂ H , we say simply that σ is doubling
instead of doubling on H .

Some properties of δ-doubling ball set functions are given in Proposition 2.2.
We say that a collection of balls (or cubes in the usual Euclidean case) has bounded intercepts

if there exists a constant N such that each ball in the collection intersects at most N other balls in
the collection. Such a collection also has bounded overlaps in the pointwise sense since no point
belongs to more than N + 1 balls in the collection.

For a φ-John domain Ω in 〈H,d〉, we will derive in Proposition 2.6 useful properties of chains
of δ-balls associated with φ-John curves that connect points of Ω to a central point x′. In order to
state our result about φ-John domains, we need to describe some of these properties now. Given
δ < 1/(2κ2) and 1 � τ < 1/(2δκ2), we first associate with each x ∈ Ω the sequence of balls
{B(x,2Nx+1−j τδd(x))}∞j=1 where Nx is chosen such that

2Nx−1τδd(x) < diam(Ω) � 2Nx τδd(x).

Next, by Proposition 2.6(c), there is a sequence of δ-balls {Qx
i }∞i=1 with centers along the curve γ

from x to x′ guaranteed by the φ-John condition such that Qx
1 = B(x′, δd(x′)) and {Qx

i } has the
intersection property

Qx
i ∩ Qx

i+1 contains a δ-ball Q′
i with Qx

i ∪ Qx
i+1 ⊂ NQ′

i

for some positive constant N independent of x and i. Moreover, for large i, Qx
i is centered at x;

in fact, there exists Kx ∈ N such that Qx
i = B(x,2Kx−iδd(x)) for i � Kx . We associate with

each ball B = B(x, r) = B(x,2Nx+1−j τδd(x)), j � 1, the special subcollection of {Qx
i } defined

by

C(B) = Cφ(B) = {
Qx

i : τQx
i ⊂ B(x, r) and τQx

i �⊂ B(x, r/2)
}

when 1 � j � Nx;
C(B) = τ−1B, otherwise, i.e., when r � τδd(x). (1.12)

In case Ω satisfies the nonempty annuli property (see Remark 1.9(2)), then the second case above
can be included with the first case by dropping the restriction j � Nx , i.e., τ−1B is the only Qx

i

such that τQx
i ⊂ B(x, r) and τQx

i �⊂ B(x, r/2) when r � τδd(x). In general, Proposition 2.6 will
imply that each C(B) has the bounded intercept property, i.e., the balls in C(B) have bounded
intercepts with bound independent of B . Each ball Qx

i in C(B) satisfies τQx
i ⊂ B by definition

and, as we shall see, also has the important property

r
(
Qx

)
� δφ

(
r(B)/(4κ)

)
if Qx ∈ C(B).
i i
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The intersection property and the bounded intercept property above are somewhat opposite
in nature; the first shows substantial overlap of consecutive balls while the latter limits the over-
lap of balls in a chain. Both properties are important for our self-improving method of deriving
Poincaré estimates. The intersection property is useful for making connections from distant balls
to the central ball, while the bounded intercept property helps in finding conditions on weights
so that weighted Poincaré estimates hold. The bounded intercept property will allow us to par-
tition the balls {Qx

i } in each C(B) into a finite number of subfamilies so that the balls in each
subfamily are disjoint, and the number of such subfamiles can be taken to be at most the bounded
intercept constant (and so independent of the chain); see the proof of Lemma 2.5 for details. The
subfamilies of disjoint balls in a chain {Qx

i }i∈N have an extra property which is useful for veri-
fying weight conditions, namely, for any ε > 0, the number of disjoint balls in {Qx

i } with radius
between ε and 2ε is at most (2/ε)φ−1(2ε/δ).

We now state a result for φ-John domains.

Theorem 1.8.

(a) Let φ be a strictly increasing function on [0,∞) such that φ(0) = 0 and φ(t) < t for all
t > 0. Let Ω be a φ-John domain with central point x′ in a quasimetric space 〈H,d〉, and
let 0 < δ < 1/(2κ2), 1 � τ < 1/(2δκ2), 0 < p0 < ∞, 0 < θ < 1 and 0 < q < ∞. Let σ

and μ be measures on H and σ be δ-doubling on Ω . Suppose f is a fixed function on Ω

and a(B) is a ball set function such that

(
1

σ(B)

∫
B

|f − fB |p0 dσ

) 1
p0 � a(B) (1.13)

for each δ-ball B in Ω and some constant fB , and suppose fB(x,r) → f (x) as r → 0 for
μ-almost all x ∈ Ω . Let μ∗ be a ball set function such that μ(B) � μ∗(B) for all balls B

and there are constants A1,A2,D1,D2 > 0 for which

A1

(
r(B)

r(B̃)

)D1

� μ∗(B)

μ∗(B̃)
� A2

(
r(B)

r(B̃)

)D2

(1.14)

for all concentric balls B ⊂ B̃ centered in Ω with r(B̃) < 2 diam(Ω). Moreover, assume
that

∑
Bj ∈I

A(Bj )
θqμ∗(Bj )

θ =
∑
Bj ∈I

[ ∑
Q∈Cφ(Bj )

a(Q)

]θq

μ∗(Bj )
θ � C

θq

0 μ(Ω)θ (1.15)

for all pairwise disjoint collections I = {Bj } of balls Bj = B(xj ,2Nxj
+1−ij τ δd(xj )) with

xj ∈ Ω and r(Bj ) < 2 diam(Ω). Then

sup
t>0

tμ
{
x ∈ Ω:

∣∣f (x) − fB ′
∣∣ > t

} 1
q � CC0

(
μ(Ω)

μ(B ′)

) 1
q

μ(Ω)
1
q , (1.16)

where B ′ = B(x′, δd(x′)). Here C depends on κ, τ,Dσ ,p0, θ, q and the constants in (1.14)
but is independent of f .
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(b) Suppose Ω is a 1-John domain, 1 � τ < 1/(2δκ2), (1.13) holds with σ = μ for some p0 =
q � 1, and

∑
τBj ∈I

a(Bj )
qμ(Bj ) �

(
C′

0

)q
μ(Ω) (1.17)

for all collections I of disjoint τδ-balls in Ω . Then the strong type inequality

‖f − fB ′ ‖L
q
μ(Ω) � CC′

0μ(Ω)
1
q (1.18)

holds with C depending on Dμ,τ, κ, δ, q and the 1-John constant, but not on f . The exis-
tence of μ∗ is not needed for this part of the theorem and (1.14) is not required.

Remark 1.9. 1. In Theorem 1.8, the choice of C(B) does not have to be Cφ(B); any way of
partitioning the chains of balls {Qx

i }i∈N such that (1.15) holds is sufficient.
2. If B(x, r) \ B(x, r ′) �= ∅ for all 0 < r ′ < r , x ∈ H , we say the quasimetric satisfies the

nonempty annuli property in H . Similarly, we say that a set Ω ⊂ H has the nonempty annuli
property if (Ω ∩ B(x, r)) \ B(x, r ′) �= ∅ for all 0 < r ′ < r and x ∈ Ω for which Ω is not a subset
of B(x, r ′). A doubling measure on Ω satisfies a reverse condition of the same type provided Ω

has the nonempty annuli property; see Proposition 2.3. Thus, at least in case μ∗ is a doubling
measure, the first inequality in (1.14) implies the second one.

We now turn to the question of obtaining sharper strong type estimates than in (1.8), beginning
with a strong type analogue of Theorem 1.2.

Given ω > 0 and a nonnegative function g, the truncation τωg is defined by

τωg(x) = min
{
g(x),2ω

} − min
{
g(x),ω

} =
{

ω if g(x) � 2ω,

g(x) − ω if ω � g(x) < 2ω,

0 if g(x) < ω.

Let f be a fixed measurable function on Ω and B ′ be a fixed measurable set in Ω . Set
fB ′,σ = ∫

B ′ f dσ/σ(B ′). For each function τω|f −fB ′,σ |,ω > 0, and each x ∈ Ω , we assume the
existence of sequences {Bx

i }, {Qx
i } and {a(Qx

i )} with properties as in Theorem 1.2, but as there,
these sequences as well as F and the collections C(B) may depend on τω|f − fB ′,σ |. For easy
reference, we will denote f̃ = |f − fB ′,σ | and write b(Qx

i , τωf̃ ) instead of a(Qx
i ) and F(τωf̃ )

instead of F, but we do not adopt new notation to indicate that {Bx
i } and {Qx

i } may vary with ω.
In case Q is a ball, a typical example of b(Q,g) is

b(Q,g) = bY (Q,g) = r(Q)β
(

1

w(Q)

∫
Q

|Yf |p dw

) 1
p

, 1 � p < ∞,

where Y is a vector field (see (1.23) below).
Given f and setting f̃ = |f − fB ′,σ |, the analogue of (1.4) that we now assume is
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1

σ(Qx
i )

1/p0

∥∥τωf̃ − (τωf̃ )Qx
i ,σ

∥∥
L

p0
σ (Qx

i )
� b

(
Qx

i , τωf̃
)
, (τωf̃ )Qx

i ,σ = 1

σ(Qx
i )

∫
Qx

i

τωf̃ dσ,

(1.19)

for all ω > 0.
We also assume an analogue of (1.6): for some constants q > 0 and 0 < θ < 1,

∑
Bα∈I

(
A(Bα, τωf̃ )qμ∗(Bα)

)θ =
∑
Bα∈I

(( ∑
Q∈C(Bα)

b(Q, τωf̃ )

)q

μ∗(Bα)

)θ

�
(
h(Ω, τωf̃ )qμ(Ω)

)θ (1.20)

for every disjoint subcollection I of F(τωf̃ ) and all ω > 0. Here h(Ω, ·) is a constant which is
assumed to satisfy

h∗(Ω,f )q := sup
ω>0

∞∑
k=1

h(Ω, τ2kωf̃ )q < ∞. (1.21)

The following theorem is a simple abstract extension of both [13, Corollary 3] and [12, The-
orem 3.1].

Theorem 1.10. Let σ and μ be measures on a σ -algebra of subsets of X, Ω be a measurable
set, and f be a fixed measurable function. Suppose for each τω|f − fB ′,σ |, ω > 0, there are sets
{Qx

i } and {Bx
i } (possibly depending on ω and f in addition to x, but with Qx

1 = B ′ for all x)
satisfying the conditions of Theorem 1.2, but now assuming (1.19) instead of (1.4), and (1.20)
for all ω > 0 instead of (1.6). If (1.21) holds, then the strong type Poincaré inequality

1

μ(Ω)
‖f − fB ′,σ ‖q

L
q
μ(Ω)

� C℘Vμh∗(Ω,f )q +
(

8

σ(B ′)
‖f − fB ′,σ ‖L1

σ (B ′)

)q

(1.22)

holds with C as in Theorem 1.2, i.e., C depends only on p0, q, θ,A1,A2, θ1, θ2 and Cσ .

Remark 1.11. 1. In [12] and [13], the function f in the hypothesis of Theorem 1.10 is not fixed
but allowed to vary over a collection F of functions in L1

loc(Ω) that is large enough to include
truncations. The class F is assumed to satisfy

• f ∈ F �⇒ f + c ∈ F for c ∈ R,
• f ∈ F �⇒ |f | ∈ F ,
• f ∈ F �⇒ τω(|f |) ∈ F for all ω > 0.

In applications, the main examples of F are the Lipschitz class or Sobolev classes, although
our results are not restricted to these spaces. As already mentioned, typical examples of b are
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functionals associated with the right-hand sides of Poincaré inequalities, namely, assuming Q is
a ball,

b(Q,f ) = bY (Q,f ) = r(Q)β
(

1

w(Q)

∫
Q

|Yf |p dw

) 1
p

, 1 � p < ∞, (1.23)

where Y is a differential operator with Y1 = 0, i.e., with no zero order term. In particular, in
Euclidean space with the usual Euclidean metric, Y could be ∇m or some other combination of
partial derivatives, and then in case all the derivatives are of first order and the measure w is
absolutely continuous with respect to Lebesgue measure, F can be chosen to be the Lipschitz
class since such functions are differentiable almost everywhere by the Rademacher–Stepanov
theorem. Conditions (1.20) and (1.21) are similar to stability properties of the functional bY

under truncation that were introduced in [19,21] and exploited in many papers such as [11,12]
and [13].

For a general functional b, if the estimate

1

σ(B)1/p0
‖f − fB,σ ‖

L
p0
σ (B)

� b(B,f ) (1.24)

holds for a function f , then the estimate remains true if f is replaced on the left-hand side by
f + c for any constant c. Thus, we can assume that b is translation invariant, i.e., b(B,f + c) =
b(B,f ), even if b does not arise from a differentiation operator.

2. If p0 � 1 in Theorem 1.10, then by applying Hölder’s inequality and (1.24), we obtain

1

σ(B ′)
‖f − fB ′,σ ‖L1

σ (B ′) � b(B ′, f ),

and then the conclusion of Theorem 1.10 yields

1

μ(Ω)1/q
‖f − fB ′,σ ‖L

q
μ(Ω) � C

{
(℘Vμ)1/qh∗(Ω,f ) + b(B ′, f )

}
.

One consequence of Theorem 1.10 is the following result which contains Theorem 1.1 as a
special case. Theorem 1.1 is included in the case Ω0 = Ωc. We do not require the condition
b � 1 − n and we consider more general types of distance weights than those in Theorem 1.1.
Moreover, we include the case p = q = 1. However, since the details of its proof are quite tech-
nical, we will only discuss its proof in [8].

In order to state the result, we need more terminology. Given an s-John domain with central
point x′ and a number M > 1, we distinguish two types of points x depending on whether or not
x can be connected to x′ by a curve satisfying the JM -John condition:

Definition 1.12. Let M > 1 and Ω be an s-John domain with central point x′. Let ΩM
g

be the set of points x in Ω such that there is γx : [0, lx] → Ω with γx(0) = x, γx(lx) =
x′, d(γx(t1), γx(t2)) � |t1 − t2| for t1, t2 ∈ [0, lx], and

d
(
γx(t)

)
> JM(t) for all t ∈ [0, lx].
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We will say points in ΩM
g are M-good points of Ω and points in Ω \ ΩM

g = ΩM
� are M-bad

points of Ω . Note that if ΩM
g = Ω , then Ω is a 1-John domain.

For further discussion concerning M-good and bad points, see [8].

Theorem 1.13. (See [8, Theorem 1.12].) Suppose that s � 1 and Ω ⊂ R
n is an s-John domain

with respect to ordinary Euclidean distance dE . Let 0 < δ < 1/2 and B ′ = B(x′, δdE(x′)) be the
δ-Whitney ball centered at the central point x′ of Ω . Suppose ε > 0, M > 1 and Ω0 satisfies

∂Ω ∩
( ⋃

x∈ΩM
�

B(x, ε)

)
⊂ Ω0 ⊂ Ωc, (1.25)

and set ρ(x) = dE(x,Ω0) and ρ(Ω) = supx∈Ω ρ(x). Let a � 0, b ∈ R, 1 � p,q < ∞ satisfy
1/q � 1/p − 1/n and

s(n + b − 1) − p + 1

(n + a)p
� min

{
1

q
,

1

p

}
with strict inequality if (p, q) satisfies p > 1 and q � p. (1.26)

Then there is a constant C depending on n,p,q, a, b,diam(Ω),ρ(Ω),M,ε, δ, cs and s such
that ∥∥f − C(Ω,f )

∥∥
L

q

ρa dx
(Ω)

� C‖∇f ‖L
p

ρb dx
(Ω) (1.27)

for all f ∈ Liploc(Ω), i.e., for all locally Lipschitz continuous functions f on Ω , where C(Ω,f )

can be chosen to be either

1

|B ′|
∫
B ′

f dx or fD,ρa dx = 1

|D|ρa dx

∫
D

fρa dx

for any D ⊂ Ω with |D|ρa dx > 0. In case C(Ω,f ) = fD,ρa dx , the constant C also depends on
the ratio |Ω|ρa dx/|D|ρa dx .

Remark 1.14. 1. Note that fD,ρa dx is well defined whenever

f ∈ Liploc(Ω) and ‖∇f ‖L
p

ρb dx
(Ω) < ∞.

This follows as usual by applying (1.27) with C(Ω,f ) chosen to be |B ′|−1
∫
B ′ f dx.

2. When p > 1, (1.26) with strict inequality implies that there exists q0 > p such that

1

q0
� s(n + b − 1) − p + 1

(n + a)p
.

Note that we can have p = q = 1 in (1.27) provided n + a � s(n + b − 1). The case p = q = 1
is also considered in [14] except that b � 1 − n is assumed there.

3. Condition (1.25) involving ΩM
� clearly holds when Ω0 = ∂Ω .

4. As mentioned earlier, the q range in Theorem 1.13 can be enlarged for special s-John
domains. Some results of this type are given in [8].
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2. Preliminaries

In general, we will not attempt to give very precise values for constants which arise in the
proofs, although we will keep track of important parameters on which constants depend. We will
consistently use the notation

λ = κ + 2κ2

in our computations. The constant λ arises naturally in Observation 2.1 and Proposition 2.2. For
simplicity, we often use λ in estimates in which better constants could be chosen.

We now list several useful geometric facts which require only that d be a quasimetric.

Observation 2.1.

(1) If z ∈ B(x, r), then

B(z, r) ⊂ 2κB(x, r) ⊂ λB(z, r).

(2) Let B1 and B2 be balls with B1 ∩ B2 �= ∅. Then
(a) B2 ⊂ λmax{ r(B2)

r(B1)
,1}B1.

(b) If in addition both B1 and B2 are δ-balls with δ < 1/(2κ2), then

λ−1d(xB2) � d(xB1) � λd(xB2).

Thus if B1 and B2 are intersecting δ-Whitney balls, then

λ−1 � r(B2)

r(B1)
� λ and λ−2B1 ⊂ B2 ⊂ λ2B1.

(c) If δ < 1/(2κ2) and z is in a δ-ball B(x, r), then

1

2κ
� d(x)

d(z)
� 2κ.

Proof. Let z ∈ B(x, r). Then for any y ∈ B(z, r),

d(y, x) � κ
[
d(y, z) + d(z, x)

]
< 2κr,

and so B(z, r) ⊂ 2κB(x, r). On the other hand, if y ∈ 2κB(x, r) then

d(y, z) � κ
[
d(y, x) + d(x, z)

]
< κ(2κr + r) = λr.

This proves (1).
Next, for (2), let z ∈ B1 ∩ B2. If u ∈ B2,
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d(u, xB1) � κ
(
d(z, xB1) + d(u, z)

)
� κ

(
d(z, xB1) + κ

[
d(u, xB2) + d(z, xB2)

])
< λmax

{
r(B1), r(B2)

} = λmax

{
r(B2)

r(B1)
,1

}
r(B1)

and 2(a) is now clear. If in addition B1 and B2 are both δ-balls and z ∈ B1 ∩ B2, then

d(xB1) � κ
(
d(xB2) + d(xB1, xB2)

)
� κ

(
d(xB2) + κ

[
d(xB1, z) + d(xB2, z)

])
< κ

(
d(xB2) + κ

[
r(B1) + r(B2)

])
.

Since r(B1) + r(B2) � δ(d(xB1) + d(xB2)), a simple computation based on our assumption that
δκ2 < 1/2 and the definition of λ then gives

d(xB1) <
κ + κ2δ

1 − κ2δ
d(xB2) < λd(xB2).

By interchanging the roles of B1 and B2, we also have d(xB2) < λd(xB1), which proves
the first part of 2(b). The remaining part of 2(b) follows by combining the fact that λ−1 �
r(B1)/r(B2) � λ with B2 ⊂ λmax{r(B2)/r(B1),1}B1.

Finally, part (c) can be proved by using the quasi-triangle property and the fact that δ <

1/(2κ2) < 1. �
We now list three facts about δ-doubling set functions on balls.

Proposition 2.2.

(1) If 0 < δ1, δ2 < 1/κ and σ is δ1-doubling on Ω , then σ is also δ2-doubling on Ω .
(2) Let σ be a measure on Ω . If σ is δ-doubling on Ω and σ |Ω is defined by σ |Ω(B) = σ(B∩Ω)

for balls B ⊂ H , then σ |Ω is also δ-doubling since σ |Ω and σ are the same on δ-balls.
(3) If Ω is a 1-John domain, then the notions of δ-doubling on Ω and doubling on Ω are

equivalent.

Parts (1) and (2) are just easy observations, while part (3) holds since any ball with center in a
1-John domain Ω and with radius less than diam(Ω) must contain a δ-ball of comparable radius;
a detailed proof can be found in [8, Proposition 2.2].

We next state a property of δ-doubling measures which extends a fact from [26, p. 269] for
doubling measures. The proofs are similar.

Proposition 2.3. Let Ω be a domain in a quasimetric space and suppose that Ω satisfies the
nonempty annuli property. If μ is a δ-doubling measure on Ω , 0 < δ < 1/(2κ2), then there exist
positive constants A1,A2,D1,D2 depending only on δ and the doubling constant of μ such that

A1

(
r(B)

˜
)D1

� μ(B)

˜ � A2

(
r(B)

˜
)D2

(2.1)

r(B) μ(B) r(B)
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for all concentric balls B, B̃ having center in Ω with B ⊂ B̃ such that B is a δ-ball and r(B̃) �
diam(Ω). Moreover, if μ is doubling on Ω , then (2.1) holds for all concentric balls B, B̃ having
center in Ω with B ⊂ B̃ and r(B̃) � diam(Ω).

The next proposition gives a simple extension of facts from [23, p. 843] concerning the exis-
tence of a collection of balls which furnish a crude notion of dyadic cubes in a quasimetric space
〈H,d〉.

Proposition 2.4. Let λ = κ + 2κ2 where κ is the quasimetric constant. For each k ∈ Z, there is a
collection Ck = {Bk

i = B(xk
i , λk)}i of balls in H such that:

(1) H = ⋃
i B

k
i for each k, and every ball in H of radius λk−1 is inside at least one Bk

i .

(2) The balls B̂k
i = B(xk

i , λk−1) are disjoint in i for each k, i.e., for every k, B̂k
j ∩ B̂k

i = ∅ if
i �= j .

(3) If Ω ⊂ H,0 < δ < 1/(2κ2) and there is a δ-doubling measure on Ω , then for each k, the
subcollection of {Bk

i }i consisting of δ-balls (in Ω) has bounded intercepts with bound de-
pending only on κ and the doubling constant.

Proof. For parts (1) and (2), see [23, pp. 843, 844]. For a doubling measure on H , part (3) is
proved in [23, p. 844] by using a standard volume argument, and a similar argument works for a
δ-doubling measure. �

Next we will prove a lemma about the bounded intercept property.

Lemma 2.5. Let 〈H,d〉 be a quasimetric space, 0 < δ < 1/(2κ2) and M,N � 1. Suppose Ω ⊂ H

and there is a δ-doubling measure μ on Ω with doubling constant Dμ. If F = {Bi} is a family
of δ-balls in Ω with bounded intercepts such that M−1 � r(Bi)/r(Bj ) � M for all Bi,Bj ∈ F
which satisfy NBi ∩ NBj �= ∅, then the family N F = {NBi}Bi∈F also has bounded intercepts
with bound C(M,N,κ,Dμ) times the bound for F .

Proof. We first show the following general fact about the bounded intercept property: if {Si} is a
collection of sets with intercept constant K , then {Si} can be partitioned into at most K disjoint
subfamilies such that the sets in each subfamily are disjoint. In fact, suppose that there were more
than K disjoint families of disjoint sets Si such that each family is maximal, i.e., any Si outside
a given family must intersect at least one set in that family. Consider any Si not in one of the first
K such families. Then Si must intersect at least one set in each of the first K families (as well as
intersecting itself), which contradicts the fact that the intercept constant is K .

We can now prove the lemma. Fix a ball B0 ∈ F . First note that if Bi ∈ F and NBi inter-
sects NB0, then M−1 � r(Bi)/r(B0) � M , and so Bi ⊂ C1B0 = C(M,N,κ)B0. By a standard
volume argument, there can be at most C2 = C(M,N,κ,Dμ) disjoint balls Bi in C1B0 such
that M−1 � r(Bi)/r(B0) � M . With K as above, since F can be partitioned into K subfam-
ilies of disjoint balls Bi , it follows that there are at most C2K balls Bi from F which satisfy
NBi ∩ NB0 �= ∅. Thus, the family {NBi}Bi∈F has bounded intercepts with intercept constant
C2K , completing the proof. �

We next use Proposition 2.4 to find a decomposition of Whitney type of a φ-John domain in
a quasimetric space, and to construct the chains of Whitney balls mentioned in the introduction.
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In the case of 1-John domains, the properties in parts (a), (b) and (c) below include the features
that define Boman domains, so the next proposition can be thought of as an analogue of these
properties for general φ-John domains. Parts (d) and (e) below are not needed in this paper but
are included since they play an important role in the proofs of results in [8]. Adaptations of
Whitney-type lemmas to various geometric situations already exist in the literature: see, e.g., [9,
Theorem 1.3, p. 70] for general spaces of homogeneous type, and see [10, Theorem 5.4] for balls
in metric spaces with the geodesic (or segment) property. The version below is especially adapted
to φ-John domains.

Proposition 2.6. Let 〈H,d〉 be a quasimetric space and 0 < δ < 1/(2κ2). Suppose Ω ⊂ H , there
is a δ-doubling measure μ on Ω with doubling constant Dμ, and d(x) = d(x,Ωc) > 0 for all
x ∈ Ω . Then there exists a covering W = {Bi} of Ω by δ-balls Bi such that:

(a) r(Bi) � δd(xBi
) � λ2r(Bi), where xBi

is the center of Bi .
(b) For every τ � 1 which satisfies τδ < 1/(2κ2), there is a constant K depending only on

τ, κ and Dμ so that the balls {τBi : Bi ∈ W } have bounded intercepts with bound K ; in
particular, the balls {τBi : Bi ∈ W } also have pointwise bounded overlaps with overlap
constant K .

(c) Let x′ ∈ Ω and φ be a strictly increasing function on [0,∞) which satisfies φ(0) = 0 and
φ(t) < t for all t . Then for each x ∈ Ω for which there is a curve γ : [0, l] → Ω satisfying
γ (0) = x, γ (l) = x′ and the φ-John properties (1.9) and (1.10), there exists a finite chain of
δ-balls {Bi}Li=0 ⊂ W , depending on x and with L = Lx , such that x ∈ B0, x′ ∈ BL, BL is
independent of x and satisfies λ−2B(x′, δd(x′)) ⊂ BL ⊂ B(x′, δd(x′)), Bi ∩ Bi+1 contains
a δ-ball B ′

i with Bi ∪ Bi+1 ⊂ λ4B ′
i for all i, and

B0 ⊂ λ2φ−1(2κλ2r(Bi)/δ)

r(Bi)
Bi for all i. (2.2)

Furthermore, there is a finite chain of δ-Whitney balls {Qi}Li=0 depending on x with
bounded intercepts and centers on γ such that Q0 = B(x, δd(x)), QL = B(x′, δd(x′)),
1
λ2 Qi ⊂ Bi ⊂ Qi , and Qi ∩ Qi+1 contains a δ-ball Q′

i with Qi ∪ Qi+1 ⊂ λ6 Q′
i .

(d) Let x and {Qi} be as in (c). If Qi �⊂ B(x, r), then r(Qi ) � δφ(r/(2κ)).
(e) Let x, γ and {Qi} be as in (c). For all ε > 0, the number of disjoint Qi having radius between

ε and 2ε is at most 2φ−1(2ε/δ)/ε. In particular, if φ = JM , the number of disjoint Qi with
radius between δε/(4κ2M) and 4κε is at most a constant depending only on δ, κ and M .

Proof. For each k ∈ Z, let Ck be a collection of balls of radius λk as in Proposition 2.4, and for
fixed δ satisfying 0 < δ < 1/(2κ2), let {Bk

i = B(xk
i , λk)}i be the subcollection of Ck with

2κλk � δd
(
xk
i

)
< 2κλk+2, (2.3)

or equivalently, with

2κr
(
Bk

)
� δd

(
xk

)
< 2κλ2r

(
Bk

)
.
i i i
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Let

W̃ = {
Bk

i

}
i,k

be the collection of all Bk
i as both i and k vary.

First note that if Bk
i ∈ W̃ , then 2κBk

i ⊂ Ω since 2κBk
i is a δ-ball. Next, let us show that W̃

covers Ω . Fix any x ∈ Ω . Using the fact that d(x) > 0, choose k ∈ Z such that λk+1 � δd(x) <

λk+2. By Proposition 2.4, we may select a ball B̃ ∈ Ck (so that r(B̃) = λk) with B(x,λk−1) ⊂ B̃ .
Let us show that B̃ ∈ W̃ . We have

d(x
B̃
) � κ

[
d(x) + d(x, x

B̃
)
]
< κ

[
λk+2

δ
+ λk

]
,

and hence

δd(x
B̃
) < κ

[
λk+2 + δλk

]
� 2κλk+2.

Moreover,

κd(x
B̃
) � d(x) − κd(x, x

B̃
) > d(x) − κλk,

and thus

δd(x
B̃
) >

1

κ
λk+1 − δλk > 2κλk.

Combining estimates shows that B̃ ∈ W̃ ∩ Ck as desired. In particular, it follows that W̃ covers Ω .
Since x ∈ B̃ , we have by Observation 2.1(1) that

B
(
x,λk

) ⊂ 2κB̃ ⊂ B
(
x,λk+1). (2.4)

Recalling that λk+1 � δd(x) < λk+2 and B(x,λk−1) ⊂ B̃ , and setting δ′ = δ/λ3, we obtain

B
(
x, δ′d(x)

) ⊂ B̃ and B
(
x,λδ′d(x)

) ⊂ 2κB̃ ⊂ B
(
x, δd(x)

)
. (2.5)

Next, if z ∈ B(x, δd(x)), then

d(z, x
B̃
) � κ

(
d(z, x) + d(x, x

B̃
)
)
< κ

(
δd(x) + λk

)
< 2κλk+2.

In summary, given x ∈ Ω there exists B̃ ∈ W̃ such that

B
(
x, δ′d(x)

) ⊂ B̃ and B
(
x,λδ′d(x)

) ⊂ 2κB̃ ⊂ B
(
x, δd(x)

) ⊂ 2κλ2B̃, δ′ = δ

λ3
. (2.6)

We now define

W = {Bj = 2κB̃j : B̃j ∈ W̃ }.
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By (2.3) we have for any Bj ∈ W that

r(Bj ) � δd(xBj
) < λ2r(Bj ),

which implies Bj is a δ-ball and also proves (a).
Next, we will show (b). Let 1 � τ < 1/(2κ2δ). If τBi ∩ τBj �= ∅ and Bi,Bj ∈ W , then since

τBi, τBj are τδ-balls with τδ < 1/(2κ2), part (2b) of Observation 2.1 (applied with δ there
replaced by τδ) gives

λ−1 � d(xBi
)

d(xBj
)

� λ. (2.7)

But by (2.3),

δd(xBi
)/λ2 � r(Bi) � δd(xBi

),

and similarly for Bj , and combining this with (2.7) we obtain

λ−3 � r(Bi)

r(Bj )
� λ3. (2.8)

Now, to complete the proof of (b), fix Bi0 in W and partition those τBj with τBi0 ∩ τBj �= ∅
into classes such that the balls in each class have equal radii. Since r(Bj ) has the form 2κλk(j)

for some k(j), i.e., r(Bj ) is a fixed multiple of a power of a fixed number, (2.8) implies that the
number of classes is at most 7. It is thus enough to show that for each such class G = {τBj },
the collection G ∪ {τBi0} (i.e., the collection G with τBi0 adjoined) has bounded intercepts with
bound C(κ, τ,Dμ). A typical class G has the form τ2κF̃k for some k, where

F̃k = {B̃j ∈ W̃ ∩ Ck: Bj = 2κB̃j satisfies τBj ∩ τBi0 �= ∅}.

Let Fk be F̃k with Bi0 adjoined: Fk = F̃k ∪ {Bi0}. By Proposition 2.4(3), the balls in Ck

have bounded intercepts uniformly in k, and so the same is true for the balls in Fk . Applying
Lemma 2.5 to Fk (recall by (2.8) that r(Bi0) ∼ r(B̃j ) for all B̃j ∈ F̃k , with constants uniform in
k, j, i0) and choosing N = τ2κ there, we see that the balls in N Fk also have bounded intercepts
with bound C(κ, τ,Dμ), and we are done since every ball in G ∪ {τBi0} is contained in a ball
in N Fk .

We will now prove (c). Fix a point x ∈ Ω , and let γ (t), t ∈ [0, l], be a curve connecting x

and x′ as in (c), i.e., satisfying conditions guaranteed by the φ-John properties. With δ′ = δ/λ3,
we begin by constructing a special sequence of δ′-Whitney balls centered along γ . For t ∈ [0, l],
let

Rγ (t) = B
(
γ (t), δ′d

(
γ (t)

))
.

Use (2.5) to pick B̃0 ∈ W̃ containing Rγ (0), and let

t1 = sup
{
t ∈ [0, l]: γ [0, t] ⊂ B̃0

}
.
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Note that t1 > 0 since γ (t) ∈ Rγ (0) for all t < δ′d(γ (0)) due to the fact that d(γ (0), γ (t)) � t

by (1.9). A similar argument shows that Rγ (t1) intersects B̃0. Use (2.5) again to choose a ball
B̃1 ∈ W̃ containing Rγ (t1). Then clearly B̃0 intersects B̃1. If t1 = l, we stop the construction
process. If t1 < l, we define

t2 = sup
{
t ∈ [t1, l]: γ [t1, t] ⊂ B̃1

}
and choose B̃2 ∈ W̃ containing Rγ (t2). Again, t1 < t2 � l and B̃1 ∩ B̃2 �= ∅. In general, if 0 =
t0 < t1 < · · · < tk and B̃0, B̃1, . . . , B̃k with B̃i ∩ B̃i+1 �= ∅ have been constructed and if tk < l, we
continue by defining

tk+1 = sup
{
t ∈ [tk, l]: γ [tk, t] ⊂ B̃k

}
and using (2.5) to pick B̃k+1 ∈ W̃ containing Rγ (tk+1). As usual, by (1.9), we have tk < tk+1 � l

and B̃k ∩ B̃k+1 �= ∅. We stop the construction if tk+1 = l.
Let us show that the process must end after a finite number of steps, i.e., that there is a positive

integer L = Lx such that tL = l. To see this, it is enough to show that

ti+1 − ti � δ′φ(t1) if i � 1 and ti+1 < l

since the quantity δ′φ(t1) is a fixed positive number. Fix i � 1 such that ti < l. For all t ∈
[ti ,min{l, ti + δ′φ(t1)}], (1.9) implies

d
(
γ (t), γ (ti)

)
� t − ti � δ′φ(t1) < δ′d

(
γ (ti)

) = r(Rγ (ti ))

since the monotonicity of φ and (1.4) give φ(t1) � φ(ti) < d(γ (ti)). It follows that γ (t) ∈
Rγ (ti ) ⊂ B̃i for all such t , and consequently that ti+1 � min{l, ti + δ′φ(t1)}. In particular, if
ti+1 < l then ti+1 − ti � δ′φ(t1) as desired.

For each B̃i constructed above, let Bi = 2κB̃i . When i = L, we have tL = l by construction,
and consequently

Rγ (tL) = B
(
γ (l), δ′d

(
γ (l)

)) = B

(
x′, δ

λ3
d(x′)

)

is fixed independent of x. Thus B̃L is also independent of x, and so the same is true for BL

(= 2κB̃L). By (2.5),

λ−2B
(
x′, δd(x′)

) ⊂ BL ⊂ B
(
x′, δd(x′)

)
.

For any i, since B̃i ∩ B̃i+1 �= ∅, it follows from (2.8) that

λ−3 � r(Bi)

r(Bi+1)
� λ3. (2.9)

Let us show that Bi ∩ Bi+1 contains a ball of radius min{r(B̃i), r(B̃i+1)} := λk . To this end,
recall that for any z ∈ B̃i ∩ B̃i+1, Observation 2.1(1) implies that

B
(
z, r(B̃j )

) ⊂ 2κB̃j ⊂ B
(
z,λr(B̃j )

)
for j = i, i + 1.
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It is now clear by (2.9) that

B
(
z,λk

) ⊂ Bi ∩ Bi+1 and Bi ∪ Bi+1 ⊂ B
(
z,λk+4).

Note that B(z,λk) is a δ-ball since by Observation 2.1(2c) and (2.3),

δd(z) � δd(xBi
)/(2κ) � r(Bi) � λk.

Hence, except for (2.2), the first part of (c) is proved.
Let us now prove (2.2). Fix i and first suppose that B0 ∩ Bi �= ∅. By (2.8), we have r(B0) �

λ3r(Bi), and then B0 ⊂ λ4Bi by Observation 2.1(2a) again. Since t < φ−1(t) for all t , it follows
that

B0 ⊂ λ2 φ−1(λ2r(Bi))

r(Bi)
Bi.

Next, suppose that B0 ∩ Bi = ∅. Due to the construction of Bi , there is a point ξ ∈ B̃i ∩
γ [0, l]. Since ξ /∈ B0 and x ∈ B̃0, B̃0 = B0/(2κ), the quasi-triangle inequality gives d(ξ, x) �
r(B0)/(2κ). Similarly, since x /∈ Bi and ξ ∈ B̃i , we have d(ξ, x) � r(Bi)/(2κ). Hence,

d(ξ, x) � 1

2κ
max

{
r(B0), r(Bi)

}
.

We can use this to show that

B0 ⊂ λ2d(ξ, x)

r(Bi)
Bi.

In fact, if z ∈ B0 then

d(z, xBi
) � κ

[
d(z, x) + d(x, xBi

)
]

� κ
[
κ
{
d(z, xB0) + d(x, xB0)

} + κ
{
d(xBi

, ξ) + d(ξ, x)
}]

< κ
[
2κr(B0) + κr(B̃i) + κd(ξ, x)

]
,

and thus by the previous estimate for the size of d(ξ, x),

d(z, xBi
) <

(
4κ3 + 2κ2)d(ξ, x) < λ2d(ξ, x)

as desired. To complete the proof of (2.2), we now estimate d(ξ, x) in terms of φ−1(r(Bi)). Since
ξ ∈ γ [0, l] and x = γ (0), (1.11) implies that

φ
(
d(ξ, x)

)
< d(ξ).

But since ξ ∈ B̃i and B̃i is a δ-ball, Observation 2.1(2c) and (2.3) give

d(ξ) � 2κd(xBi
) � 2κ

λ2

r(Bi).

δ
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Combining estimates, we obtain φ(d(ξ, x)) < (2κλ2/δ)r(Bi), so that

B0 ⊂ λ2d(ξ, x)

r(Bi)
Bi ⊂ λ2φ−1(2κλ2r(Bi)/δ)

r(Bi)
Bi,

which proves (2.2) in all cases.
To prove the last statement in (c), we return to the δ′-Whitney balls {Rγ (ti )}Li=0 centered on

the φ-John curve γ from x to x′, and define balls Qi by

Qi = λ3 Rγ (ti ).

Then Qi has center on γ and is a δ-Whitney ball since r(Qi ) = λ3δ′d(γ (ti)) = δd(γ (ti)). In
particular, since t0 = 0 and tL = l by construction, and so γ (t0) = x and γ (tL) = x′, it follows
that

Q0 = B
(
x, δd(x)

)
and QL = B

(
x′, δd(x′)

)
.

For the ball Bi that is associated with Rγ (ti ) in the construction, (2.6) gives

Qi/λ
2 ⊂ Bi ⊂ Qi ⊂ λ2Bi. (2.10)

Also recall that there is a δ-ball B(z,λk) ⊂ Bi ∩ Bi+1 with

λk = min
{
r(Bi), r(Bi+1

}
/(2κ) � 1

2κλ3
max

{
r(Bi), r(Bi+1)

}
,

using the formula r(Bi) = 2κr(B̃i) and (2.9). However, since z ∈ Bi ⊂ 1
2κ

(λ2Bi), Observa-
tion 2.1(1) gives

λ2Bi ⊂ λB

(
z,

λ2

2κ
r(Bi)

)
⊂ λ6B

(
z,λk

)
.

Hence, Qi ⊂ λ6B(z,λk), and the same is true for Qi+1.
Finally, to complete the proof of (c), recall that W has bounded intercepts and hence so does

{λ−2 Qi}. If Qi intersects Qj then λ−1 � r(Qi )/r(Qj ) � λ by Observation 2.1(2b) since Qi

and Qj are δ-Whitney balls, and therefore the family {Qi} has bounded intercepts with bound
C(κ,Dμ) by Lemma 2.5.

To verify part (d), note that the hypothesis Qi �⊂ B(x, r) implies there exists z ∈ Qi such that
d(z, x) � r . Let xi = γ (ti) be the center of Qi and ri = r(Qi ). Then by the triangle inequality
and the fact that d(xi, x) = d(γ (ti), γ (0)) � ti ,

d(z, x) � κ
(
d(z, xi) + d(xi, x)

)
� κ(ri + ti ).

It is now clear that ti � r−κri
κ

. If ri < r/(2κ), then ti � r/(2κ) and

ri = δd
(
γ (ti)

)
> δφ(ti) � δφ

(
r/(2κ)

)
.



2998 S.-K. Chua, R.L. Wheeden / Journal of Functional Analysis 255 (2008) 2977–3007
On the other hand, if ri � r/(2κ), the desired estimate ri � δφ(r/(2κ)) follows easily since
t > φ(t) for all t and δ < 1. This completes the proof of (d).

To prove part (e), we will again use the estimate r(Qi ) = δd(γ (ti)) > δφ(ti), which follows
from the φ-John condition. Thus if r(Qi ) � 2ε, then

2ε � δφ(ti) and hence ti � φ−1(2ε/δ).

We now fix ε and estimate the number I of disjoint balls Qi with ε � r(Qi ) � 2ε. Denote
these F1, . . . , FI with centers γ (s1), . . . , γ (sI ) respectively, in the order with si < si+1. Sup-
pose for the moment that I � 2. Since Fi and Fi+1 are disjoint and have radii at least ε, then
d(γ (si+1), γ (si)) � ε, and consequently by (1.9) we have si+1 − si � ε. Therefore,

sI �
I−1∑
i=1

(si+1 − si) � (I − 1)ε.

Using this together with our earlier estimate sI � φ−1(2ε/δ) (valid since r(FI ) � 2ε) gives

I − 1 � 1

ε
φ−1

(
2ε

δ

)
if I � 2.

Thus, for any I � 1,

I � 1 + 1

ε
φ−1

(
2ε

δ

)
� 2

ε
φ−1

(
2ε

δ

)

since φ−1(t) � t for all t . This completes the proof of Proposition 2.6. �
Now we consider the Hardy–Littlewood maximal function with respect to a doubling measure

w on a domain Ω .

Definition 2.7. Fix a domain Ω in a homogeneous space 〈H,d〉. Given a doubling measure w

on Ω and a function f on Ω , let

MΩ
w f (x) = sup

1

w(B)

∫
B∩Ω

|f |dw, x ∈ Ω,

where the supremum is taken over all balls B with center x.

A proof based on the Vitali covering lemma and similar to the proof of weak type (1,1) for
the usual Hardy–Littlewood maximal function shows that there is a constant C1 depending only
on κ and the doubling constant of w such that

sup tw
{
x ∈ Ω: MΩ

w f (x) > t
}

� C1‖f ‖L1
w(Ω).
t>0
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On the other hand, it is obvious that ‖MΩ
w f ‖L∞

w (Ω) � ‖f ‖L∞
w (Ω), and a standard interpolation

argument then gives

∥∥MΩ
w f

∥∥
L

p
w(Ω)

� C2‖f ‖L
p
w(Ω), 1 < p < ∞,

where C2 depends only on p, κ and the doubling constant of w.
Next, we state a lemma similar to [5, Lemma 2.5], which extends [16, Lemma 4] and [2,

Lemma 4.2].

Lemma 2.8. Let Ω be a domain in a quasimetric space, and let w be a doubling measure on Ω .
If {Qα}α∈I is an arbitrary family of balls with center in Ω and {aα}α∈I is a family of nonnegative
numbers, then for 1 � p < ∞ and N � 1,

∥∥∥∥∑
α

aαχNQα

∥∥∥∥
L

p
w(Ω)

� C(Dw,p,N)

∥∥∥∥∑
α

aαχQα

∥∥∥∥
L

p
w(Ω)

.

Sketch of the proof. This can be proved by almost exactly the same approach as in [5], ex-
cept that in case 1 < p < ∞, we now use MΩ

w instead of the usual weighted Hardy–Littlewood
maximal function, bearing in mind that if N � 1 and B is any ball with center in Ω , then

1

w(NB)

∫
NB∩Ω

|f |dw � C(κ)MΩ
w f (x), x ∈ B ∩ Ω.

The case p = 1 follows easily from the fact that w is doubling on Ω , by using w(NQα) �
C(N,Dw)w(Qα) since the Qα are balls with center in Ω . �

Next, by using Lemma 2.8 (see also [16]) and checking through the proof of [5, Theorem 1.5],
we obtain the following result.

Theorem 2.9. Let Ω be a domain in a quasimetric space with quasimetric constant κ (the
nonempty annuli property is not required), and let δ satisfy 0 < δ < 1/(2κ2). Suppose Ω is
covered by a countable collection W of δ-balls such that for some N � 1,

(i)
∑

B∈W χB � NχΩ .
(ii) There is a central ball B0 ∈ W that can be connected with every ball B ∈ W by a finite chain

of balls B0,B1, . . . ,Bk(B) = B from W such that B ⊂ NBj for all j and each Bj ∩ Bj+1
contains a ball B ′

j with Bj ∪ Bj+1 ⊂ NB ′
j .

(Domains satisfying (i) and (ii) are often called Boman chain domains.)
Let f be a function on Ω and fB be an associated constant for every B ∈ W . If w is a

δ-doubling measure on Ω and 1 � q < ∞, then

‖f − fB0‖q

L
q
w(Ω)

� C
∑
B∈W

‖f − fB‖q

L
q
w(B)

(2.11)

where C depends only on κ, q,N and the doubling constant of w.
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Remark. It is easy to see from parts (a)–(c) of Proposition 2.6 with φ = JM that 1-John domains
satisfy the Boman chain condition. The converse is also true for certain metric spaces; see [4,7].

3. Proofs of the main theorems

First, we will prove a useful lemma concerning sums and chains of balls.

Lemma 3.1. Let 〈X,Σ,σ 〉 be a measure space and 0 < p0 < ∞. Suppose {Qi}i∈N is an admis-
sible chain of measurable sets, i.e., (1.3) holds. Then for any sequence {hi}i∈N of constants and
any measurable function f on X,

∞∑
i=1

|hi − hi+1| �
∞∑
i=1

max{2 1
p0 ,2}C1/p0

σ

σ (Qi)1/p0
‖f − hi‖L

p0
σ (Qi)

. (3.1)

Proof. When p0 < 1, we will use the facts that if x, y are nonnegative real numbers then (x +
y)p0 � xp0 + yp0 and (x + y)1/p0 � 2(1/p0)−1(x1/p0 + y1/p0). We have

∑
|hi − hi+1| =

∑ 1

σ(Qi ∩ Qi+1)1/p0
‖hi − hi+1‖L

p0
σ (Qi∩Qi+1)

� max
{
2

1
p0

−1
,1

}∑(
1

σ(Qi ∩ Qi+1)1/p0
‖hi − f ‖

L
p0
σ (Qi∩Qi+1)

+ 1

σ(Qi ∩ Qi+1)1/p0
‖hi+1 − f ‖

L
p0
σ (Qi∩Qi+1)

)

� max
{
2

1
p0

−1
,1

}
C1/p0

σ

∑(
1

σ(Qi)1/p0
‖hi − f ‖

L
p0
σ (Qi)

+ 1

σ(Qi+1)1/p0
‖hi+1 − f ‖

L
p0
σ (Qi+1)

)
(
since σ(Qi), σ (Qi+1) � Cσ σ(Qi ∩ Qi+1)

)

�
∑ max{2 1

p0 ,2}C1/p0
σ

σ (Qi)1/p0
‖hi − f ‖

L
p0
σ (Qi)

. �
Proof of Theorem 1.2. By hypothesis, for each x ∈ Ω , there exist sequences of measurable sets
{Qx

i }i∈N, {Bx
i }i∈N that satisfy assumptions (1)–(4) in the theorem. Since the collection {Qx

i }i∈N

satisfies the hypotheses in Lemma 3.1, Qx
1 = B ′ and we have assumed that fQx

i
→ f (x) as

i → ∞, it follows that

∣∣f (x) − fB ′
∣∣ �

∑
i∈N

|fQx
i
− fQx

i+1
| � C(p0,Cσ )

∑
i∈N

a
(
Qx

i

)
(3.2)

by Lemma 3.1 and (1.4).
Modifying an idea from [13], letting p = qθ , and recalling that by definition A(Bx

j ) =∑
Qx∈C(Bx) a(Qx

i ), we have for any J ∈ N that

i j
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∑
i∈N

a
(
Qx

i

) =
∑
j∈N

∑
Qx

i ∈C(Bx
j )

a
(
Qx

i

) =
∑
j∈N

A
(
Bx

j

)

=
∑
j�J

A
(
Bx

j

) +
∑
j>J

A
(
Bx

j

)

=
∑
j�J

(
A

(
Bx

j

)
μ∗(Bx

j

) 1
q
)
μ∗(Bj )

− 1
q +

∑
j>J

(
A

(
Bx

j

)
μ∗(Bx

j

) 1
q
− 1

p
)
μ∗(Bx

j

) 1
p

− 1
q .

For simplicity, we will now write Qi instead of Qx
i and Bj instead of Bx

j . Let

S(x) = sup
j∈N

A(Bj )μ
∗(Bj )

1
q
− 1

p .

Then by (3.2), the estimates above, and the one-term version of (1.6), we have

∣∣f (x) − fB ′
∣∣ � C(p0,Cσ )

[
C0μ(Ω)

1
q

∑
j�J

μ∗(Bj )
− 1

q + S(x)
∑
j>J

μ∗(Bj )
1
p

− 1
q

]

� C
[
C0μ(Ω)

1
q μ∗(BJ )

− 1
q + S(x)μ∗(BJ )

1
p

− 1
q
]
, (3.3)

where we used (1.5) to obtain the last estimate and C depends on p,q,p0,Cσ and the constants
A1,A2, θ1, θ2 in (1.5).

Fix t > 0 and let x ∈ E = {x ∈ Ω: |f (x) − fB ′ | > t}. Suppose first that S(x)μ∗(Bj )
1/p �

C0μ(Ω)1/q for all j . Then also

S(x)μ∗(Bj )
1
p

− 1
q � C0μ(Ω)

1
q μ∗(Bj )

− 1
q for all j,

and consequently by (3.3) with J = 1,

t <
∣∣f (x) − fB ′

∣∣ � 2CC0μ(Ω)
1
q μ∗(B1)

− 1
q .

It follows that μ∗(B1)/μ(Ω) � (2CC0/t)q , and hence by (1.5) that

1/℘ � μ∗(B1)

μ(Ω)
�

(
2CC0

t

)q

.

Then

μ
{
Ω: |f − fB ′ | > t

}
� μ(Ω) � μ(Ω)℘

(
2CC0

t

)q

,

which proves Theorem 1.2 in this case.
Next consider the case when S(x)μ∗(Bj )

1/p > C0μ(Ω)1/q for some j ∈ N. We will first
show that if S(x) is finite, then there exists J ∈ N such that

μ∗(BJ )
1
p ∼ C0μ(Ω)1/q

, (3.4)

S(x)
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with constants of equivalence depending only on the constants A1,A2, θ1, θ2 in (1.5). In fact,
since μ∗(Bj ) tends to 0 as j → ∞ by (1.5), there exists J ∈ N for which S(x)μ∗(BJ+1)

1/p �
C0μ(Ω)1/q and S(x)μ∗(BJ )1/p > C0μ(Ω)1/q , and then (3.4) follows easily from (1.5).

Using (3.3) and (3.4), we obtain

t <
∣∣f (x) − fB ′

∣∣ � C
(
C0μ(Ω)

1
q
)1− p

q S(x)
p
q ,

where C depends on p,q,p0,Cσ ,A1,A2, θ1 and θ2. By definition of S(x), there exists j such
that

t � C
(
C0μ(Ω)

1
q
)1− p

q
(
A(Bj )μ

∗(Bj )
1
q
− 1

p
) p

q .

In deriving this estimate we assumed that S(x) < ∞, but the estimate obviously also holds for
some Bj if S(x) = ∞. Hence, setting B = Bj for j as above, we obtain a set B in F such that

tμ∗(B)
1
q � C

(
C0μ(Ω)

1
q
)1− p

q
(
A(B)μ∗(B)

1
q
) p

q . (3.5)

As x varies over E = {x ∈ Ω: |f (x) − fB ′ | > t}, let us denote the collection of such B by BE .
Then using the assumption that F is a cover of Vitali type with respect to (μ,μ∗), we can find a
countable disjoint subcollection B′

E of BE such that μ(E) � Vμ

∑
Bi∈B′

E
μ∗(Bi). Hence

μ
{
x ∈ Ω:

∣∣f (x) − fB ′
∣∣ > t

} = μ(E)

� Vμ

∑
Bi∈B′

E

μ∗(Bi)

� CVμ

(
C0μ(Ω)

1
q
)q−p

∑
Bi∈B′

E

A(Bi)
pμ∗(Bi)

p
q t−q by (3.5)

� CVμ

(
C0μ(Ω)

1
q
)q−p(

C0μ(Ω)
1
q
)p

t−q by (1.6)

= CVμC
q

0 μ(Ω)t−q,

where C depends on p,q,p0,Cσ ,A1,A2, θ1 and θ2. This completes the proof of Theo-
rem 1.2. �
Proof of Theorem 1.8. First, we will show that conditions (1)–(4) in Theorem 1.2 hold
with B ′ = B(x′, δd(x′)). Given x ∈ Ω , let {Qi}Li=0 be as in Proposition 2.6. Define {Qx

i }∞i=1
by Qx

1 = QL = B ′,Qx
2 = QL−1, . . . ,Q

x
L+1 = Q0 = B(x, δd(x)), and Qx

L+j = 21−jQx
L+1 =

B(x,21−j δd(x)) if j � 1. Then (1.3) follows from Proposition 2.6(c) since the balls Q′
i in Propo-

sition 2.6 are δ-balls and σ is δ-doubling by hypothesis. Also, by (1.13), condition (1.4) holds
with the same functional a(·) as in (1.13), so condition (1) of Theorem 1.2 is valid for {Qx

i } with
this choice of a(·).

We define {Bx
j }∞j=1 by Bx

1 = B(x,2Nx τδd(x)) and Bx
j = 2j−1Bx

1 = B(x,2Nx+1−j τδd(x)) if
j � 1.

Clearly μ∗ satisfies the ratio estimate in (1.5) for {Bx
j } with θ1 = (1/2)D1 and θ2 = (1/2)D2 .

Moreover, since B ′ = Qx ⊂ ⋃
Qx ⊂ Bx , we have μ(B ′) � μ(Bx) � μ∗(Bx) and
1 i i 1 1 1
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μ(Ω) = μ(Ω)

μ(Bx
1 )

μ
(
Bx

1

)
� μ(Ω)

μ(B ′)
μ∗(Bx

1

)
.

Hence the first estimate in (1.5) holds for the pair (μ,μ∗) with ℘ = μ(Ω)/μ(B ′), and we have
verified condition (2) of Theorem 1.2.

Next, condition (3) of Theorem 1.2 with C(B) as in (1.12) has already been assumed in (1.15).
Hence (1.7) of Theorem 1.2 implies that (1.16) holds provided {B(x,2j τδd(x)): x ∈ Ω,

j � Nx} is a Vitali-type cover with respect to (μ,μ∗). Since we have not assumed the exis-
tence of a doubling measure on all of H , we now provide some details about this covering. Let
E be a measurable subset of Ω and let F = {B(x,2jx τδd(x)): x ∈ E}. To simplify notation,
we momentarily denote the balls in F by {Bα}. First set R = sup{r(Bα): Bα ∈ F }. Then R �
2 diam(Ω) < ∞. Now let Gj = {Bα ∈ F : R/2j < r(Bα) � R/2j−1} for j = 1,2, . . . , and choose
a maximal collection F1 of pairwise disjoint balls of G1. Since d is a quasimetric, it follows that
there is a constant C(κ) for which

⋃
Bα∈G1

Bα ⊂ ⋃
Bα∈F1

C(κ)Bα . Let E1 = ⋃
Bα∈F1

Bα . Next,
choose a maximal collection F2 of pairwise disjoint balls of {Bα ∈ G2: Bα ∩ E1 = ∅}, and note
that ⋃

Bα∈G2

Bα ⊂
⋃

Bα∈F2∪F1

C(κ)Bα.

Let E2 = ⋃
Bα∈F2∪F1

Bα and choose a maximal collection F3 of pairwise disjoint balls of
{Bα ∈ G3: Bα ∩ E2 = ∅}. Continuing the process, we obtain a collection I ′ = ⋃

j∈N
Fj of pair-

wise disjoint balls such that

E ⊂
⋃

Bα∈F
Bα ⊂

⋃
Bα∈I ′

C(κ)Bα.

The collection is countable since σ(Ω) < ∞ and σ(Bα) > 0 for all Bα ∈ F . Then

μ(E) �
∑

Bα∈I ′
μ

(
C(κ)Bα

)
�

∑
Bα∈I ′

μ∗(C(κ)Bα

)
� C

∑
Bα∈I ′

μ∗(Bα)

since μ∗ satisfies (1.14).
We will now prove part (b). Let Ω be a 1-John domain and fix τ, δ with τ � 1 and 0 < τδ <

1/(2κ2). As noted in the remark following Theorem 2.9, Proposition 2.6 provides a collection
W = {B} of δ-balls for which the Boman chain conditions in the hypothesis of Theorem 2.9
hold. Moreover, by part (b) of Proposition 2.6, not only does W satisfy the bounded overlap
condition (i) in Theorem 2.9, but also the enlarged balls {τB}B∈W have bounded intercepts.
Consequently, W can be decomposed into K subfamilies {Wi}Ki=1 such that the balls {τB}B∈Wi

in each subfamily are disjoint; here K depends only on the bounded intercept constant (see the
proof of Lemma 2.5). Using the assumptions in Theorem 1.8 that (1.13) and (1.17) hold (with
σ = μ in (1.13)), we conclude from Theorem 2.9 that

‖f − fB ′ ‖q

L
q
μ(Ω)

� C
∑
B∈W

μ(B)a(B)q � C
(
C′

0

)q
μ(Ω)

with C depending on q, κ, τ, δ,Dμ and the 1-John constant. This proves Theorem 1.8(b). �
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Proof of Theorem 1.10. Fix f and let f̃ = |f − fB ′,σ |. For ω > 0, recall that

τωf̃ (x) = min
{
f̃ (x),2ω

} − min
{
f̃ (x),ω

} =

⎧⎪⎨
⎪⎩

λ if f̃ (x) � 2ω,

f̃ (x) − ω if ω � f̃ (x) < 2ω,

0 if f̃ (x) < ω.

By hypothesis (see (1.20)), there are q, θ with q > 0 and 0 < θ < 1 such that

∑
Bα∈I

( ∑
Q∈C(Bα)

b(Q, τωf̃ )

)qθ

μ∗(Bα)θ =
∑

A(B, τωf̃ )qθμ∗(B)θ � h(Ω, τωf̃ )qθμ(Ω)θ .

Moreover, (1.21) and (1.19) hold by hypothesis.
Applying Theorem 1.2 to the function τωf̃ , we have

μ
{
x ∈ Ω:

∣∣τωf̃ (x) − (τωf̃ )B ′,σ
∣∣ > t

}
� Ch(Ω,τωf̃ )q℘Vμμ(Ω)/tq . (3.6)

Following the argument in [12, pp. 131, 132], let ωk = 2kω and define

Ωk = {
x ∈ Ω: ωk < f̃ (x) � ωk+1

}
,

for k = 0,1,2, . . . . Let ε > 0. Observe that for x ∈ Ωk+1,

ωk = τωk
f̃ (x) �

∣∣τωk
f̃ (x) − (τωk

f̃ )B ′,σ
∣∣ + (τωk

f̃ )B ′,σ

�
∣∣τωk

f̃ (x) − (τωk
f̃ )B ′,σ

∣∣ + f̃B ′,σ

<
∣∣τωk

f̃ (x) − (τωk
f̃ )B ′,σ

∣∣ + ω/2

if we choose ω = 2f̃B ′,σ + ε. Note that this choice is positive even if 2f̃B ′,σ = 0. Hence, ωk−1 <

|τωk
f̃ (x) − (τωk

f̃ )B ′,σ | for all x ∈ Ωk+1. We can now use (3.6) for each τωk
f̃ :

‖f − fB ′,σ ‖q

L
q
μ(Ω)

= ‖f̃ ‖q

L
q
μ(Ω)

= ‖f̃ ‖q

L
q
μ({Ω: f̃ �4ω}) +

∞∑
k=1

‖f̃ ‖q

L
q
μ(Ωk+1)

� (4ω)qμ(Ω) +
∞∑

k=1

ω
q

k+2μ(Ωk+1)

� (4ω)qμ(Ω) +
∞∑

k=1

ω
q

k+2μ
{
x ∈ Ω: ωk−1 <

∣∣τωk
f̃ (x) − (τωk

f̃ )B ′,σ
∣∣}

� (4ω)qμ(Ω) +
∞∑

k=1

Ch(Ω,τωk
g)q℘Vμμ(Ω) (by (3.6))

� (4ω)qμ(Ω) + Ch∗(Ω,f )q℘Vμμ(Ω)
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by (1.21). Moreover, note that

ω − ε = 2f̃B ′,σ = 2

σ(B ′)

∫
B ′

f̃ dσ = 2

σ(B ′)

∫
B ′

|f − fB ′,σ |dσ.

By letting ε → 0, it follows that (1.22) holds, which completes the proof. �
We would like to take this opportunity to point out a small gap in [12, p. 132]. The value

λ = 2|f |Ω,μ on line 10 of that page can be estimated just as above.

4. Applications

We now mention without proofs a few more applications of our results.

Theorem 4.1. Suppose Ω is a 1-John domain in R
n with the Euclidean metric and 0 < p0 < ∞.

Let 0 < δ < 1/2, 1 � τ < 1/(2δ), 1 � p < q < ∞, and σ,μ, w be weights with σ and μ

δ-doubling on Ω . Suppose for each f ∈ Lip(Ω) and each δ-ball B , there exists fB so that

σ(B)
− 1

p0 ‖f − fB‖
L

p0
σ (B)

� C
r(B)

w(B)1/p
‖∇f ‖L

p
w(τB),

where fB(x,r) → f (x) as r → 0 for μ-a.e. x ∈ Ω . Then for all f ∈ Liploc(Ω),

μ(Ω)−1/q‖f − fΩ,μ‖L
q
μ(Ω) � C‖∇f ‖L

p
w(Ω) (4.1)

if r(B)μ(B)1/q � Cw(B)1/p for all δ-balls B. (4.2)

The constant in (4.1) depends on the one in (4.2) and on Dμ,Dσ ,p,q and p0.

Theorem 4.2. Let 1 � p < q < ∞. Let μ,w be nonnegative locally integrable functions on
R

n and μ(x)dx,w(x)dx be the corresponding absolutely continuous measures. Suppose μ is
doubling with respect to the usual Euclidean metric and

(
l(Q)

l(Q̃)

)1−n(
μ(Q)

μ(Q̃)

) 1
q
(

(w−1/(p−1))(Q)

(w−1/(p−1))(Q̃)

) 1
p′

� C for all cubes Q,Q̃ in R
n with Q ⊂ Q̃,

(4.3)

where l(Q) denotes the edgelength of Q and (w−1/(p−1))(Q)1/p′
denotes esssupQ w−1 if p = 1

and (
∫
Q

w−1/(p−1) dx)1/p′
if p > 1. Then for all cubes Q and all locally Lipschitz f ,

1

μ(Q)1/q
‖f − fQ‖L

q
μ(Q) � Cl(Q)1−n

(
w−1/(p−1)

)
(Q)1/p′ ‖∇u‖L

p
w(Q). (4.4)

Remark. In [23, Theorem 1B], (4.4) is shown to hold under the additional assumption that
w−1/(p−1) satisfies reverse doubling. Theorem 4.2 also sharpens [6, Theorem 4.5].
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Theorem 4.3. Let 0 < δ < 1/2 and 1 � τ < 1/(2δ). Suppose Ω is a φ-John domain in R
n with

respect to the usual Euclidean metric and 0 < p0, ε < ∞. Let σ,μ be Borel measures with σ

δ-doubling and μ doubling on Ω . Let f be a function on Ω and v be a nonnegative measure so
that for each δ-ball B in Ω , there exists fB with

σ(B)−1/p0‖f − fB‖
L

p0
σ (B)

� v(B)ε,

where fB(x,r) → f (x) as r → 0 for μ-a.e. x ∈ Ω . Then if either ε � 1 or φ = JM ,

1

μ(Ω)1/p
‖f − fB ′ ‖L

p
μ(Ω) � Cv(Ω)ε, 0 < p < ∞. (4.5)
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