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We provide the unique affine crystal structure for type E(1)
6

Kirillov–Reshetikhin crystals corresponding to the multiples of fun-
damental weights sΛ1, sΛ2, and sΛ6 for all s � 1 (in Bourbaki’s
labeling of the Dynkin nodes, where 2 is the adjoint node). Our
methods introduce a generalized tableaux model for classical high-
est weight crystals of type E and use the order three automor-
phism of the affine E(1)

6 Dynkin diagram. In addition, we provide

a conjecture for the affine crystal structure of type E(1)
7 Kirillov–

Reshetikhin crystals corresponding to the adjoint node.
© 2010 Elsevier Inc. All rights reserved.

1. Introduction

A uniform description of perfect crystals of level 1 corresponding to the highest root θ was given
in [BFKL06]. A generalization to higher level s for certain nonexceptional types was studied in [Kod08].
These crystals B of level s have the following decomposition when removing the zero arrows [Cha01]:

B ∼=
s⊕

k=0

B(kθ), (1.1)

where B(λ) denotes the highest weight crystal with highest weight λ.
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In this paper, we provide the unique affine crystal structure for the Kirillov–Reshetikhin crystals
Br,s of type E(1)

6 for the Dynkin nodes r = 1,2, and 6 in the Bourbaki labeling, where node 2 cor-
responds to the adjoint node (see Fig. 1). In addition, we provide a conjecture for the affine crystal
structure for type E(1)

7 Kirillov–Reshetikhin crystals of level s corresponding to the adjoint node.
Our construction of the affine crystals uses the classical decomposition (1.1) together with a

promotion operator which yields the affine crystal operators. Combinatorial models of all Kirillov–
Reshetikhin crystals of nonexceptional types were constructed using promotion and similarity meth-
ods in [Sch08,OS08,FOS09]. Perfectness was proved in [FOS10]. Affine crystals of type E(1)

6 and E(1)
7

of level 1 corresponding to minuscule coweights (r = 1,6) were studied by Magyar [Mag06] using
the Littelmann path model. Hernandez and Nakajima [HN06] gave a construction of the Kirillov–
Reshetikhin crystals Br,1 for all r for type E(1)

6 and most nodes r in type E(1)
7 .

For nonexceptional types, the classical crystals appearing in the decomposition (1.1) can be de-
scribed using Kashiwara–Nakashima tableaux [KN94]. We provide a similar construction for general
types (see Theorem 2.6). This involves the explicit construction of the highest weight crystals B(Λi)

corresponding to fundamental weights Λi using the Lenart–Postnikov [LP08] model and the notion of
pairwise weakly increasing columns (see Definition 2.1).

The promotion operator for the Kirillov–Reshetikhin crystal Br,s of type E(1)
6 for r = 1,6 is given

in Theorem 3.13 and for r = 2 in Theorem 3.22. Our construction and proofs exploit the notion of
composition graphs (Definition 3.10) and the fact that the promotion operator we choose has order
three. As shown in Theorem 3.9, a promotion operator of order three yields a regular crystal. In
Conjecture 3.26 we also provide a promotion operator of order two for the crystals B1,s of type E(1)

7 .
However, for order two promotion operators the analogue of Theorem 3.9 is missing.

This paper is structured as follows. In Section 2, the fundamental crystals B(Λ1) and B(Λ6) are
constructed explicitly for type E6 and it is shown that all other highest weight crystals B(λ) of type E6
can be constructed from these. Similarly, B(Λ7) yields all highest weight crystals B(λ) for type E7. In
Section 2.4, a generalized tableaux model is given for B(λ) for general types. In particular, we intro-
duce the notion of weak increase. The results are used to construct the affine crystals in Section 3.
In Section 4, we give some details about the Sage implementation of the E6, E7, and E(1)

6 crystals
constructed in this paper. Some outlook and open problems are discussed in Section 5. Appendices A
and B contain details about the proofs for the construction of the affine crystals, in particular the
usage of oriented matroid theory.

2. A tableau model for finite-dimensional highest weight crystals

In this section, we describe a model for the classical highest weight crystals in type E . In Sec-
tion 2.1, we introduce our notation and give the axiomatic definition of a crystal. The tensor product
rule for crystals is reviewed in Section 2.2. In Section 2.3, we give an explicit construction of the high-
est weight crystals associated to the fundamental weights in types E6 and E7. In Section 2.4, we give
a generalized tableaux model to realize all of the highest weight crystals in these types. The general-
ized tableaux are type-independent, and can be viewed as an extension of the Kashiwara–Nakashima
tableaux [KN94] to type E . For a general introduction to crystals we refer to [HK02].

2.1. Axiomatic definition of crystals

Denote by g a symmetrizable Kac–Moody algebra, P the weight lattice, I the index set for the
vertices of the Dynkin diagram of g, {αi ∈ P | i ∈ I} the simple roots, and {α∨

i ∈ P∗ | i ∈ I} the simple
coroots. Let Uq(g) be the quantized universal enveloping algebra of g. A Uq(g)-crystal [Kas95] is a
nonempty set B equipped with maps wt : B → P and ei, f i : B → B ∪ {0} for all i ∈ I , satisfying

f i(b) = b′ ⇔ ei
(
b′) = b if b,b′ ∈ B,

wt
(

f i(b)
) = wt(b) − αi if f i(b) ∈ B,〈

α∨
i ,wt(b)

〉 = ϕi(b) − εi(b).
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Here, we have

εi(b) = max
{
n � 0

∣∣ en
i (b) 
= 0

}
,

ϕi(b) = max
{
n � 0

∣∣ f n
i (b) 
= 0

}

for b ∈ B , and we denote 〈α∨
i ,wt(b)〉 by wti(b). A Uq(g)-crystal B can be viewed as a directed edge-

colored graph called the crystal graph whose vertices are the elements of B , with a directed edge
from b to b′ labeled i ∈ I , if and only if f i(b) = b′ . Given i ∈ I and b ∈ B , the i-string through b consists
of the nodes { f m

i (b): 0 � m � ϕi(b)} ∪ {em
i (b): 0 < m � εi(b)}.

Let {Λi | i ∈ I} be the fundamental weights of g. For every b ∈ B define ϕ(b) = ∑
i∈I ϕi(b)Λi

and ε(b) = ∑
i∈I εi(b)Λi . An element b ∈ B is called highest weight if ei(b) = 0 for all i ∈ I . We say

that B is a highest weight crystal of highest weight λ if it has a unique highest weight element of
weight λ. For a dominant weight λ, we let B(λ) denote the unique highest-weight crystal with highest
weight λ.

An isomorphism of crystals is a bijection Ψ : B ∪ {0} → B ′ ∪ {0} such that Ψ (0) = 0, ε(Ψ (b)) = ε(b),
ϕ(Ψ (b)) = ϕ(b), f iΨ (b) = Ψ ( f i(b)), and Ψ (ei(c)) = eiΨ (c) for all b, c ∈ B , Ψ (b),Ψ (c) ∈ B ′ where
f i(b) = c.

When λ̃ is a weight in an affine type, we call

〈̃λ, c〉 =
∑
i∈I

a∨
i

〈̃
λ,α∨

i

〉
(2.1)

the level of λ̃, where c is the canonical central element and λ̃ = ∑
i∈I λiΛi is the affine weight. In our

work, we will often compute the 0-weight λ0Λ0 at level 0 for a node b in a classical crystal from the
classical weight λ = ∑

i∈I\{0} λiΛi = wt(b) by setting 〈λ0Λ0 + λ, c〉 = 0 and solving for λ0.
When g is a finite-dimensional Lie algebra, every integrable Uq(g)-module decomposes as a

direct sum of highest weight modules. On the level of crystals, this implies that every crystal
graph B corresponding to an integrable module is a union of connected components, and each
connected component is the crystal graph of a highest weight module. We denote this by B =⊕

B(λ) for some set of dominant weights λ, and we call these B(λ) the components of the crys-
tal.

Suppose that g is a symmetrizable Kac–Moody algebra and let U ′
q(g) be the corresponding quan-

tum algebra without derivation. The goal of this work is to study crystals Br,s that correspond to
certain finite-dimensional U ′

q(g)-modules known as Kirillov–Reshetikhin modules. Here, r is a node
of the Dynkin diagram and s is a nonnegative integer. The existence of the crystals Br,s that we
study follows from results in [KKM+92], while the classical decomposition of these crystals is given
in [Cha01].

2.2. Tensor products of crystals

Let B1, B2, . . . , BL be Uq(g)-crystals. The Cartesian product B1 × B2 × · · · × BL has the structure of
a Uq(g)-crystal using the so-called signature rule. The resulting crystal is denoted by B = B1 ⊗ B2 ⊗
· · ·⊗ BL and its elements (b1, . . . ,bL) are written as b1 ⊗· · ·⊗bL where b j ∈ B j . The reader is warned
that our convention is opposite to that of Kashiwara [Kas95]. Fix i ∈ I and b = b1 ⊗ · · · ⊗ bL ∈ B . The
i-signature of b is the word consisting of the symbols + and − given by

−· · ·−︸ ︷︷ ︸
ϕ (b ) times

+· · ·+︸ ︷︷ ︸
ε (b ) times

· · · − · · ·−︸ ︷︷ ︸
ϕ (b ) times

+· · ·+︸ ︷︷ ︸
ε (b ) times

.

i 1 i 1 i L i L
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•0

•2

•1 •3 •4 •5 •6

•2

•0 •1 •3 •4 •5 •6 •7

Fig. 1. Affine E(1)
6 and E(1)

7 Dynkin diagrams.

The reduced i-signature of b is the subword of the i-signature of b, given by the repeated removal of
adjacent symbols +− (in that order); it has the form

−· · ·−︸ ︷︷ ︸
ϕi times

+· · ·+︸ ︷︷ ︸
εi times

.

If ϕi = 0 then f i(b) = 0; otherwise

f i(b1 ⊗ · · · ⊗ bL) = b1 ⊗ · · · ⊗ b j−1 ⊗ f i(b j) ⊗ · · · ⊗ bL

where the rightmost symbol − in the reduced i-signature of b comes from b j . Similarly, if εi = 0 then
ei(b) = 0; otherwise

ei(b1 ⊗ · · · ⊗ bL) = b1 ⊗ · · · ⊗ b j−1 ⊗ ei(b j) ⊗ · · · ⊗ bL

where the leftmost symbol + in the reduced i-signature of b comes from b j . It is not hard to verify
that this defines the structure of a Uq(g)-crystal with ϕi(b) = ϕi and εi(b) = εi in the above notation,
and weight function

wt(b1 ⊗ · · · ⊗ bL) =
L∑

j=1

wt(b j).

2.3. Fundamental crystals for type E6 and E7

Let I = {1,2,3,4,5,6} denote the classical index set for E6. We number the nodes of the affine
Dynkin diagram as in Fig. 1.

Classical highest-weight crystals B(λ) for E6 can be realized by the Lenart–Postnikov alcove path
model described in [LP08]. We implemented this model in Sage and have recorded the crystal B(Λ1)

in Fig. 2. This crystal has 27 nodes.
To describe our labeling of the nodes, observe that all of the i-strings in B(Λ1) have length 1 for

each i ∈ I . Therefore, the crystal admits a transitive action of the Weyl group. Also, it is straightforward
to verify that all of the nodes in B(Λ1) are determined by weight. For our work in Section 3, we also
compute the 0-weight at level 0 of a node b in any classical crystal from the classical weight as
described in Remark 3.4.

Thus, we label the nodes of B(Λ1) by weight, which is equivalent to recording which i-arrows
come in and out of b. The i-arrows into b are recorded with an overline to indicate that they con-
tribute negative weight, while the i-arrows out of b contribute positive weight.

By the symmetry of the Dynkin diagram, we have that B(Λ6) also has 27 nodes and is dual to
B(Λ1) in the sense that its crystal graph is obtained from B(Λ1) by reversing all of the arrows.
Reversing the arrows requires us to label the nodes of B(Λ6) by the weight that is the negative of the
weight of the corresponding node in B(Λ1). Moreover, observe that B(Λ1) contains no pair of nodes
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0̄1
1

0̄1̄3
3

0̄3̄4
4

0̄4̄25
5

2

0̄5̄26
6

2

0̄6̄2

2

2̄5
5

2̄5̄46
6

4

2̄6̄4

4

4̄36
6

3

4̄6̄35
5

3

5̄3

3

3̄16
6

1

3̄6̄15
5

1

3̄5̄14
4

1

4̄12
2

1

2̄10

1

1̄6
6

1̄6̄5
5

1̄5̄4
4

1̄4̄23
2

3

1̄2̄30

3

3̄2
2

2̄3̄40

4

4̄50

5

5̄60

6

6̄0

Fig. 2. Crystal graph for B(Λ1) of type E6.

Table 1
Fundamental realizations for E6.

Generator in Dimension

B(Λ2) 21̄0̄ ⊗ 0̄1 B(Λ6) ⊗ B(Λ1) 78
B(Λ3) 0̄1̄3 ⊗ 0̄1 B(Λ1)⊗2 351
B(Λ4) 0̄3̄4 ⊗ 0̄1̄3 ⊗ 0̄1 B(Λ1)⊗3 2925
B(Λ5) 56̄0̄ ⊗ 60̄ B(Λ6)⊗2 351

with weights μ, −μ, respectively. Hence, we can unambiguously label any node of B(Λ1) ∪ B(Λ6) by
weight.

It is straightforward to show using characters that every classical highest-weight representation
B(Λi) for i ∈ I can be realized as a component of some tensor product of B(Λ1) and B(Λ6) factors. On
the level of crystals, the tensor products B(Λ1)

⊗k , B(Λ6)
⊗k and B(Λ6) ⊗ B(Λ1) are defined for all k

by the tensor product rule of Section 2.2. Therefore, we can realize the other classical fundamental
crystals B(Λi) as shown in Table 1. There are additional realizations for these crystals obtained by
dualizing.

There is a similar construction for the fundamental crystals of type E7. The highest weight crys-
tal B(Λ7) has 56 nodes and these nodes all have distinct weights (see Fig. 3). Also, ϕi(b) � 1 and
εi(b) � 1 for all i ∈ {1,2, . . . ,7} and b ∈ B(Λ7). Using character calculations, we can show that every
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Fig. 3. B(Λ7) of type E7.
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Table 2
Fundamental realizations for E7.

Generator in Dimension

B(Λ1) 0̄7̄1 ⊗ 0̄7 B(Λ7)⊗2 133
B(Λ2) 1̄2 ⊗ 0̄7̄1 ⊗ 0̄7 B(Λ7)⊗3 912
B(Λ3) 0̄2̄3 ⊗ 1̄2 ⊗ 0̄7̄1 ⊗ 0̄7 B(Λ7)⊗4 8645
B(Λ4) 0̄5̄4 ⊗ 0̄6̄5 ⊗ 0̄7̄6 ⊗ 0̄7 B(Λ7)⊗4 365750
B(Λ5) 0̄6̄5 ⊗ 0̄7̄6 ⊗ 0̄7 B(Λ7)⊗3 27664
B(Λ6) 0̄7̄6 ⊗ 0̄7 B(Λ7)⊗2 1539
B(Λ7) 0̄7 B(Λ7) 56

classical highest-weight representation B(Λi) appears in some tensor product of B(Λ7) factors. In
Table 2, we display realizations for all of the classical fundamental crystals B(Λi) in type E7.

Green [Gre07,Gre08] has another construction of the 27-dimensional crystals B(Λ1) and B(Λ6)

of type E6, and the 56-dimensional crystal B(Λ7) of type E7 in terms of full heaps, and also gives
the connection of the fundamental E6 crystals with the 27 lines on a cubic surface. A Littlewood–
Richardson rule for type E6 was given in [Hos07] using polyhedral realizations of crystal bases.

2.4. Generalized tableaux

In this section, we describe how to realize the crystal B(Λi1 + Λi2 + · · · + Λik ) inside the tensor
product B(Λi1 )⊗ B(Λi2 )⊗· · ·⊗ B(Λik ), where the Λi are all fundamental, or more generally dominant
weights. Our arguments use only abstract crystal properties, so the results in this section apply to any
finite type.

If b is the unique highest weight node in B(λ) and c is the unique highest weight node in B(μ),
then B(λ + μ) is generated by b ⊗ c ∈ B(λ) ⊗ B(μ). Iterating this procedure provides a recursive
description of any highest-weight crystal embedded in a tensor product of crystals. Our goal is to give
a nonrecursive description of the nodes of B(Λi1 + Λi2 + · · · + Λik ) for any collection of fundamental
weights Λi .

For an ordered set of dominant weights (μ1,μ2, . . . ,μk) and for each permutation w in the sym-
metric group Sk , define

B w(μ1, . . . ,μk) = B(μw(1)) ⊗ B(μw(2)) ⊗ · · · ⊗ B(μw(k))

so Be(μ1, . . . ,μk) is B(μ1) ⊗ · · · ⊗ B(μk) where e ∈ Sk is the identity.

Definition 2.1. Let (μ1,μ2, . . . ,μk) be dominant weights. Then, we say that

b1 ⊗ b2 ⊗ · · · ⊗ bk ∈ B(μ1) ⊗ B(μ2) ⊗ · · · ⊗ B(μk)

is pairwise weakly increasing if

b j ⊗ b j+1 ∈ B(μ j + μ j+1) ⊂ B(μ j) ⊗ B(μ j+1)

for each 1 � j < k.

Next, we fix an isomorphism of crystals

Φ
(μ1,...,μk)
w : B w(μ1, . . . ,μk) → Be(μ1, . . . ,μk)

for each w ∈ Sk . Observe that each choice of Φ
(μ1,...,μk)
w corresponds to a choice for the image of each

of the highest-weight nodes in B w(μ1, . . . ,μk).
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Let b∗
j denote the unique highest weight node of the jth factor B(μ j). Since we are fixing the

dominant weights (μ1, . . . ,μk), we will sometimes drop the notation (μ1, . . . ,μk) from B w and Φw
in the proofs below.

Definition 2.2. Let w be a permutation and choose j to be the maximal integer such that w that fixes
{1,2, . . . , j}. We say that Φ

(μ1,...,μk)
w is a lazy isomorphism if the image of every highest weight node

of the form

b1 ⊗ b2 ⊗ · · · ⊗ b j ⊗ b∗
j+1 ⊗ · · · ⊗ b∗

k

under Φ
(μ1,...,μk)
w is equal to

b1 ⊗ b2 ⊗ · · · ⊗ b j ⊗ b∗
w−1( j+1)

⊗ · · · ⊗ b∗
w−1(k)

.

We want to choose our isomorphisms Φ
(μ1,...,μk)
w to be lazy, but we will see in the course of the

proofs that our results do not otherwise depend upon the choice of Φ
(μ1,...,μk)
w .

Definition 2.3. Let T be any subset of Sk , and {Φ(μ1,...,μk)
w }w∈T be a collection of lazy isomorphisms.

We define I(μ1,...,μk)(T ) to be

⋂
w∈T

Φ
(μ1,...,μk)
w

({
pairwise weakly increasing nodes of B w(μ1, . . . ,μk)

}) ⊂ Be(μ1, . . . ,μk).

Proposition 2.4. Let T be any subset of Sk. Then, whenever b ∈ I(μ1,...,μk)(T ) we have ei(b), f i(b) ∈
I(μ1,...,μk)(T ).

Proof. We first claim that the crystal operators ei and f i preserve the pairwise weakly increasing
condition in any tensor product of highest weight crystals. Let

b = b1 ⊗ b2 ⊗ · · · ⊗ bk

be a pairwise weakly increasing node in B = B(μ1) ⊗ · · · ⊗ B(μk).
We need to show that ei(b) is pairwise weakly increasing. Suppose that ei acts on the jth tensor

factor in b, that is, ei(b) = b1 ⊗ · · · ⊗ ei(b j) ⊗ · · · ⊗ bk . Hence it suffices to show that b j−1 ⊗ ei(b j) ∈
B(μ j−1 +μ j) and ei(b j)⊗b j+1 ∈ B(μ j +μ j+1). Since ei acts on b j in b, in the tensor product rule the
leftmost unbracketed + is associated to b j . This means that any + from b j−1 must be bracketed with
a − from b j . But then ei(b j−1 ⊗ b j) = b j−1 ⊗ ei(b j) ∈ B(μ j−1 + μ j). Similarly, since ei acts on b j , not
all + in b j are bracketed with − in b j+1 ⊗ · · · ⊗ bk . But therefore, also not all + in b j are bracketed
with − in b j+1 and hence ei(b j ⊗ b j+1) = ei(b j) ⊗ b j+1 ∈ B(μ j + μ j+1). The arguments for f i are
analogous.

Next, suppose that b ∈ I(μ1,...,μk)(T ) ⊂ Be . Then, for all w ∈ Sk we have Φ−1
w (b) is pairwise weakly

increasing in B w . By the argument above, we then have that ei(Φ
−1
w (b)) is pairwise weakly increasing

in B w . Since Φw is an isomorphism, it commutes with ei , so Φ−1
w (ei(b)) is pairwise weakly increasing

in B w for all w ∈ Sk . Hence, ei(b) ∈ I(μ1,...,μk)(T ). The arguments for f i are analogous. �
Corollary 2.5. For any subset T of Sk, we have that I(μ1,...,μk)(T ) is a direct sum of highest weight crystals⊕

λ B(λ) for some collection of weights λ.

Proof. Proposition 2.4 implies that whenever b ∈ I(μ1,...,μk)(T ), the entire connected component of
the crystal graph containing b is in I(μ1,...,μk)(T ). �
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Theorem 2.6. Fix a sequence (μ1, . . . ,μk) of dominant weights. Then,

I(μ1,...,μk)(Sk) ∼= B(μ1 + μ2 + · · · + μk).

Proof. Let b∗
j be the unique highest weight node of B j with highest weight μ j for each j = 1, . . . ,k.

Then b∗ = b∗
1 ⊗ b∗

2 ⊗ · · · ⊗ b∗
k generates B(μ1 + · · · + μk) and this node lies in I(μ1,...,μk)(Sk).

Suppose there exists another highest weight node in I(μ1,...,μk)(Sk). Then, at least one of the fac-
tors b j must have εi(b j) > 0 for some i. Choose j to be the rightmost factor having εi(b j) > 0 for
some i ∈ I . Then fix some choice of i such that εi(b j) > 0. Our highest weight node has the form

b = b1 ⊗ · · · ⊗ b j ⊗ b∗
j+1 ⊗ · · · ⊗ b∗

k .

In particular, j < k since any rightmost factor of a highest weight tensor product must be highest
weight.

Since b is highest weight, we have that all + entries for factor b j are canceled by − entries lying
to the right in the i-signature for the tensor product rule. Suppose that b∗

j′ is the leftmost factor for
which a − cancels a + from b j in the i-signature. Let w be the permutation that interchanges factors
j +1 and j′ . Then, by our choice of Φw we have that Φ−1

w (b) is obtained from b just by interchanging
the factors b∗

j+1 and b∗
j′ .

Hence, we have that Φ−1
w (b) in B w has an adjacent +/− pair on factors j, j + 1. Since this pair

is part of a pairwise weakly increasing element, there must exist a sequence of ei′ operations that
brings b j ⊗ b∗

j′ to b∗
j ⊗ b∗

j′ . However, ei′ can only operate on the first tensor factor in this pair because
b∗

j′ is already highest weight. Moreover, we have that εi of the first factor and ϕi of the second factor
are both positive. This remains true regardless of how we apply ei′ operations where i 
= i′ by [Ste03,
Axiom (P4)], [Ste07,DKK09]. We can potentially apply the ei operation max{εi(b j) − ϕi(b∗

j′ ),0} times,
but since ϕi(b∗

j′ ) > 0, we have that εi of the first factor will always remain positive. Hence, we can
never reach b∗

j ⊗ b∗
j′ , a contradiction.

Thus, b∗ is the unique highest weight node of I(μ1,...,μk)(Sk). �
Remark 2.7. The condition that there is a unique highest weight element that we used in the proof
of Theorem 2.6 is equivalent to the hypothesis of [KN94, Proposition 2.2.1] from which the desired
conclusion also follows.

Remark 2.8. Because we only require a constant amount of data to check the pairwise weakly in-
creasing condition for each pair of tensor factors, Theorem 2.6 and its refinements will allow us to
formulate arguments that apply to all highest-weight crystals simultaneously, regardless of the num-
ber of tensor factors.

When we are considering a specific highest-weight crystal, it may be computationally easier to
generate B(μ1 +· · ·+μk) by simply applying f i operations to the highest-weight node in all possible
ways.

We will say that any node of I(μ1,...,μk)(Sk) is weakly increasing. It turns out that we can often
take T to be much smaller than Sk by starting with T = {e} and adding permutations to T until
I(μ1,...,μk)(T ) contains a unique highest weight node. In particular, the next result shows that we can
take T = {e} when we are considering a linear combination of two distinct fundamental weights.

Lemma 2.9. Let Λi1 and Λi2 be distinct fundamental weights, and k1,k2 ∈ Z�0 with k = k1 + k2 . Then, the
nodes of

B(k1Λi1 + k2Λi2) ⊂ B(Λi1)
⊗k1 ⊗ B(Λi2)

⊗k2

are precisely the pairwise weakly increasing tensor products b1 ⊗ b2 ⊗ · · · ⊗ bk of B(Λi1 )
⊗k1 ⊗ B(Λi2 )

⊗k2 .
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Proof. We order the fundamental weights as (Λi1 , . . . ,Λi1 ,Λi2 , . . . ,Λi2 ) and apply the same argu-
ment as in the proof of Theorem 2.6 to see that any highest weight node in I(Λi1 ,...,Λi1 ,Λi2 ,...,Λi2 )({e})
must be of the form

b1 ⊗ · · · ⊗ bk1−1 ⊗ b∗
k1

⊗ b∗
k1+1 ⊗ · · · ⊗ b∗

k .

In this case, it is never necessary to apply Φw to reorder the factors because all of the factors to the
right of factor k1 must be the same.

Next, we let j = k1 − 1. We have that b j+1 = b∗
j+1 and we work by downward induction to argue

that b j must be b∗
j . This follows because due to the pairwise weak increasing condition there exists

a sequence of ei that takes b j ⊗ b∗
j+1 to b∗

j ⊗ b∗
j+1. The highest weight node of the fundamental

crystal B(Λi1 ) has a unique i1-arrow. If b j 
= b∗
j then we could never traverse this edge because in the

i1-signature any + would be canceled by a − from b∗
j+1. Hence, b j = b∗

j , and the induction continues.

Thus, there is a unique highest-weight node in I(Λi1 ,...,Λi1 ,Λi2 ,...,Λi2 )({e}). �
All of the crystals in our work have classical decompositions that have been given by Chari [Cha01].

These crystals satisfy the requirement of Lemma 2.9 that at most two fundamental weights appear. On
the other hand, Example 2.10 shows that no ordering of the factors in B(Λ2)⊗ B(Λ1)⊗ B(Λ6) in type
E6 admits an analogous weakly increasing condition that is defined using only pairwise comparisons.

Example 2.10. Observe that each of the following nodes in type E6 is a counterexample to the con-
dition required in [KN94, Proposition 2.2.1]. Each of the given nodes is highest weight, and pairwise
weakly increasing, but none of the nodes correspond to the highest weight node of B(Λ1 +Λ6 +Λ2).

(31̄6̄ ⊗ 1) ⊗ u1 ⊗ u6 ∈ B(Λ2) ⊗ B(Λ1) ⊗ B(Λ6),

(53̄ ⊗ 1̄3) ⊗ u6 ⊗ u1 ∈ B(Λ2) ⊗ B(Λ6) ⊗ B(Λ1),

2̄5 ⊗ u6 ⊗ u2 ∈ B(Λ1) ⊗ B(Λ6) ⊗ B(Λ2),

6̄2 ⊗ u2 ⊗ u6 ∈ B(Λ1) ⊗ B(Λ2) ⊗ B(Λ6),

2̄3 ⊗ u1 ⊗ u2 ∈ B(Λ6) ⊗ B(Λ1) ⊗ B(Λ2),

21̄ ⊗ u2 ⊗ u1 ∈ B(Λ6) ⊗ B(Λ2) ⊗ B(Λ1).

Here, ui is the highest weight node of B(Λi). Hence, it is not possible to obtain a pairwise weakly
increasing condition that characterizes the nodes of B(Λ1 + Λ6 + Λ2).

Remark 2.11. In standard monomial theory [LS86], the condition that a tensor product of basis ele-
ments lies in B(λ +μ) can also be formulated as a comparison of the lift of these elements in Bruhat
order [Lit96]. For several tensor factors, one needs to compare simultaneous lifts.

We now restrict to type E6. Lemma 2.9 implies that we have a nonrecursive description of all
B(kΛi) determined by the finite information in B(2Λi). In the case of particular fundamental repre-
sentations, we can be more specific about how to test for the weakly increasing condition.

Proposition 2.12. We have that b1 ⊗ b2 ∈ B(2Λ1) ⊂ B(Λ1)
⊗2 if and only if b2 can be reached from b1 by a

sequence of f i operations in B(Λ1).

Proof. This is a finite computation on B(2Λ1). �
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The crystal graph for B(Λ1) of Fig. 2 can be viewed as a poset. Then Proposition 2.12 implies in
particular that incomparable pairs in B(Λ1) are not weakly increasing.

There are 78 nodes in B(Λ2). We construct B(Λ2) as the highest weight crystal graph generated
by 21̄0̄ ⊗ 0̄1 inside B(Λ6)⊗ B(Λ1). Note that we only need to use the nodes in the “top half” of Fig. 2
and their duals. There are 2430 nodes in B(2Λ2).

Proposition 2.13. We have that

(b1 ⊗ c1) ⊗ (b2 ⊗ c2) ∈ B(2Λ2) ⊂ (
B(Λ6) ⊗ B(Λ1)

)⊗2

if and only if

(1) b2 can be reached from b1 by fi operations in B(Λ6), and c2 can be reached from c1 by fi operations in
B(Λ1), and

(2) whenever c1 is dual to b2 , we have that there is a path of f i operations from (b1 ⊗ c1) to (b2 ⊗ c2) of
length at least 1 (so in particular, the elements are not equal) in B(Λ2).

Proof. This is a finite computation on B(2Λ2). �
3. Affine structure

In this section, we study the affine crystals of type E(1)
6 . We introduce the method of promotion

to obtain a combinatorial affine crystal structure in Section 3.1 and the notion of composition graphs
in Section 3.2. It is shown in Theorem 3.9 that order three twisted isomorphisms yield regular affine
crystals. This is used to construct Br,s of type E(1)

6 for the minuscule nodes r = 1,6 in Section 3.3 and

the adjoint node r = 2 in Section 3.4. In Section 3.5 we present conjectures for B1,s of type E(1)
7 .

3.1. Combinatorial affine crystals and twisted isomorphisms

The following concept is fundamental to this work.

Definition 3.1. Let C̃ be an affine Dynkin diagram and C the associated finite Dynkin diagram (ob-
tained by removing node 0) with index set I . Let ṗ be an automorphism of C̃ , and B be a classical
crystal of type C . We say that ṗ induces a twisted isomorphism of crystals if there exists a bijection of
crystals p : B ∪ {0} → B ′ ∪ {0} satisfying

p(b) = 0 if and only if b = 0, and (3.1)

p ◦ f i(b) = f ṗ(i) ◦ p(b) and p ◦ ei(b) = eṗ(i) ◦ p(b) (3.2)

for all i ∈ I \ {ṗ−1(0)} and all b ∈ B .
We frequently abuse notation and denote B ′ by p(B) even though the isomorphism p : B → p(B)

may not be unique.
If we are given two classical crystals B and B ′ , and there exists a Dynkin diagram automor-

phism ṗ that induces a twisted isomorphism between B and B ′ , then we say that B and B ′ are
twisted-isomorphic.

Definition 3.2. Let B be a directed graph with edges labeled by I . Then B is called regular if for any
2-subset J ⊂ I , we have that the restriction of B to its J -arrows is a classical rank two crystal.

Definition 3.3. Let B be a classical crystal with index set I . Suppose B̃ is a labeled directed graph
on the same nodes as B and with the same I-arrows, but with an additional set of 0-arrows. If B̃ is
regular, then we say that B̃ is a combinatorial affine structure for B .
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Remark 3.4. Although we do not assume that B̃ is a crystal graph for a U ′
q(g)-module, Kashi-

wara [Kas02,Kas05] has shown that the crystals of such modules must be regular and have weights
at level 0. Therefore, we will compute the 0-weight λ0Λ0 of the nodes b in a classical crystal from
the classical weight λ = ∑

i∈I λiΛi = wt(b) using the formula given in Eq. (2.1) (recall that I in this
section is the index set of the Dynkin diagram without 0).

Remark 3.5. Here are some consequences of Definitions 3.1 and 3.3.

(1) Any crystal p(B) induced by ṗ is just a classical crystal that is isomorphic to B up to relabeling.
In particular, any graph automorphism ṗ induces at least one twisted isomorphism p: If we
view B as an edge-labeled directed graph, the image of p is given on the same nodes as B by
relabeling all of the arrows according to ṗ. On the other hand, it is important to emphasize
that there is no canonical labeling for the nodes of p(B). Also, some crystal graphs may have
additional symmetry which lead to multiple twisted isomorphisms of crystals associated with a
single graph automorphism ṗ.

(2) For b ∈ B , we have ϕ(p(b)) = ∑
i∈I ϕṗ−1(i)(b)Λi and ε(p(b)) = ∑

i∈I εṗ−1(i)(b)Λi . In addition, we
can compute the 0-weight of any node in B by Remark 3.4. Therefore, ṗ permutes all of the affine
weights, in the sense that

wti(b) = wtṗ(i)
(

p(b)
)

for all b ∈ B and i ∈ I ∪ {0} .

(3) Since the node ṗ(0) becomes the affine node in p(B), it is sometimes possible to define a com-
binatorial affine structure for B “by promotion.” Namely, we define f0 on B to be p−1 ◦ f ṗ(0) ◦ p.
Note that in order for this to succeed, we must take the additional step of identifying the image
p(B) with a canonically labeled classical crystal so that we can infer the f ṗ(0) edges.

Example 3.6. The E6 Dynkin diagram automorphism of order two that interchanges nodes 1 and 6
induces the dual map between B(Λ1) and B(Λ6).

Example 3.7. Let ṗ be the unique E(1)
6 Dynkin diagram automorphism of order three sending node 0

to 1. There is no twisted isomorphism of B(Λ2) to itself that is induced by ṗ. To see this, consider the
six nodes of weight 0 inside B(Λ2). Observe that there is precisely one node of weight 0 lying in the
center of an i-string for each i ∈ {1,2, . . . ,6}. The twisted isomorphism p must send the node lying in
the middle of a 6-string to one which lies only in the middle of a 0-string and is not connected to any
other classical edges by Eq. (3.2). But no such node exists in B(Λ2). This is in agreement with (1.1)
that an affine structure for the adjoint node exists on B(Λ2) ⊕ B(0).

Example 3.8. Consider the crystal B of type A1 shown below.

•a

1

B = •b

1

•c

•d

•a′

0

p(B) = •b′

0

•c′

•d′

The only nontrivial graph automorphism ṗ of the affine Dynkin diagram of type A(1)
1 interchanges 0

and 1, which induces p(B) as shown. However, constructing an affine structure on B by promotion
requires choosing another map from p(B) back to B .

By considering the level-0 weight, we must identify a′ with d as well as d′ with a. Since there is
no restriction on ϕ0(b) nor ε0(b) for b ∈ {b, c} from the given data, the other two nodes are undeter-
mined. Hence, there are two identifications which give rise to distinct 0-arrows for B .
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•a

1

•b

1

0

•c

•d

0

•a

1

•b

1

•c

0

•d
0

This example shows how twisted isomorphisms of order two can give rise to multiple affine struc-
tures.

The Dynkin diagram of E(1)
6 has an automorphism of order three that we can use to construct

combinatorial affine structures by promotion.

Theorem 3.9. Let B be a classical E6 crystal. Suppose there exists a bijection p : B → B that is a twisted
isomorphism satisfying p ◦ f1 = f6 ◦ p, and suppose that p has order three. Then, there exists a combinatorial
affine structure on B. This structure is given by defining f0 to be p2 ◦ f1 ◦ p.

Proof. If we apply p on the left and right of pf1 = f6 p, we obtain ppf1 p = pf6 pp. Since p has order
three, this is

p−1 f1 p = pf6 p−1. (3.3)

Because p is a bijection on B , we may define 0-arrows on B by the map p−1 f1 p. By the hypotheses,
p must be induced by the unique Dynkin diagram automorphism ṗ of order three that sends node 0
to 1.

To verify that this affine structure satisfies Definition 3.3, we need to check that restricting B to
{0, i}-arrows is a crystal for all i ∈ I . Each of these restrictions corresponds to a rank 2 classical crystal,
and Stembridge has given local rules in [Ste03] that characterize such classical crystals in simply laced
types. Moreover, these rules depend only on calculations involving ϕi(b) and εi(b) at each node b ∈ B .
Therefore, to check the restrictions for i = 1,2,3,4,5, it suffices by Eq. (3.2) to apply p and note that
Stembridge’s rules are satisfied for the restriction of B to {1, ṗ(i)}-arrows, since B is a classical crystal.
Here, ṗ(i) = 6,3,5,4,2, respectively. To check the restriction for i = 6, we use Eq. (3.3) obtaining

ppf6 = ppf6 p−1 p = pp−1 f1 pp = f1 pp

and

ppf0 = pppf6 p−1 = f6 pp.

These imply that we can apply p2 = p−1 and note that Stembridge’s rules are satisfied for the restric-
tion of B to {6,1}-arrows, since B is a classical crystal.

Hence, we obtain a combinatorial affine structure for B . �
From now on, we use the notation p to denote a twisted isomorphism induced by ṗ sending

0 �→ 1 �→ 6 �→ 0, 2 �→ 3 �→ 5 �→ 2, 4 �→ 4.

Also, we let ṗ act on the affine weight lattice as in Remark 3.5(2).
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3.2. Composition graphs

Let I = {1,2, . . . ,6} be the index set for the Dynkin diagram of E6, and Ĩ = I ∪ {0} be the index set
of E(1)

6 . Suppose J ⊂ I . Consider a classical crystal B of the form
⊕

B(kΛ) where Λ is a fundamental
weight and we sum over some collection of nonnegative integers k. Let H J (B) denote the (I \ J )-
highest weight nodes of B . We will study affine crystals with B as underlying classical crystal. For a
given such affine crystal, let H J ;0(B) be the (̃I \ J )-highest weight nodes. Using the level 0 hypothesis
of Remark 3.4, we can prove properties of H J ;0(B) for any given affine crystal with B as underlying
classical crystal.

Definition 3.10. Fix J ⊂ I and form directed graphs G J and G J ;0 as follows.
We construct the vertices of G J and G J ;0 iteratively, beginning with all of the (I \ J )-highest

weight nodes of B(Λ). Then, we add all of the vertices b ∈ B(Λ) such that

{
i ∈ I: εi(b) > 0

}
⊂ J ∪ {

i ∈ I: there exists b′ ∈ G J with b ⊗ b′ pairwise weakly increasing and ϕi
(
b′) > 0

}

to G J . Moreover, if b also satisfies the property that there exists b′ ∈ G J ;0 with b ⊗b′ pairwise weakly
increasing and wt0(b′) > 0 whenever wt0(b) < 0, then we add b to G J ;0. We repeat this construction
until no new vertices are added. This process eventually terminates since B(Λ) is finite.

The edges of G J and G J ;0 are determined by the pairwise weakly increasing condition described
in Definition 2.1. Note that some nodes may have loops. We call G J and G J ;0 the complete composition
graph for J and J ;0, respectively.

Lemma 3.11. Every element of H J (B) and H J ;0(B) is a pairwise weakly increasing tensor product of vertices
that form a directed path in G J , respectively G J ;0 , where the element in B(0) ⊂ H J (B) is identified with the
empty tensor product.

Proof. We perform induction on the number of tensor factors k to show that the algorithm in Defini-
tion 3.10 produces all of the elements of H J (B) and H J ;0(B) from component B(kΛ). The base case
of k = 1 is satisfied because we initially add all of the (I \ J )-highest weight nodes of B(Λ) to the
complete composition graph, and H J ;0(B) ⊂ H J (B).

For the induction step, observe that we branch on the left by the tensor product rule. That is,
when b ⊗ b′ is highest weight, we must have that b′ is highest weight. If there exists b ∈ G J with
εi(b) > 0 where

i /∈ J ∪ {
i ∈ I: ϕi

(
b′) > 0 for some b′ ∈ G J such that b ⊗ b′ is pairwise weakly increasing

}

then no tensor product of nodes that includes b can ever cancel the + from εi(b) > 0 in the tensor
product rule. Therefore, no tensor product of nodes that includes b can be (I \ J )-highest weight.

Similarly for the case of J ;0, if there exists b ∈ G J ;0 with wt0(b) < 0 and there is no b′ ∈ G J ;0
with b ⊗ b′ pairwise weakly increasing and wt0(b′) > 0, then we can conclude that wt0 of any tensor
product of nodes that starts with b is negative. Since every rightmost factor of a highest weight tensor
product must be highest weight, this would imply that no tensor product of nodes that includes b
can be (̃I \ J )-highest weight.

Hence, every (I \ J )-highest weight node is given by a pairwise weakly increasing tensor product
of vertices from G J , and every (̃I \ J )-highest weight node is given by a pairwise weakly increasing
tensor product of vertices from G J ;0. �

We say that the vertices of G J are transitively closed if b⊗c is pairwise weakly increasing whenever
b ⊗ b′ and b′ ⊗ c are pairwise weakly increasing for all b,b′, c ∈ G J . Although it is not obvious from
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0̄1 0̄1̄3 1̄6

Fig. 4. Composition graph for I \ {1}-highest weight nodes in B(Λ1).

Definition 2.1 whether the pairwise weakly increasing condition is generally transitive, it is always a
finite computation to verify that the vertices of G J are transitively closed when J is fixed. Moreover, it
is straightforward to verify that all of the vertex sets that explicitly appear in this work are transitively
closed.

Therefore, we will typically draw only those edges of the complete composition graph G J that
cannot be inferred by transitivity, and we refer to this as the (reduced) composition graph. We will also
abuse notation and refer to this reduced composition graph as G J . We say that a chain is any collec-
tion of vertices that form a subgraph of a directed path in a reduced composition graph. Lemma 3.11
shows that we may identify nodes of H J (B) from component B(kΛ) of B with chains in the reduced
composition graph G J having exactly k vertices. Analogues of all the definitions and statements given
in the previous two paragraphs hold for G J ;0 and H J ;0(B) as well.

We will see several examples of composition graphs in the following sections.

3.3. Affine structures associated to Λ1 and Λ6

Let r ∈ {1,6}. By [KKM+92, Proposition 3.4.4], a crystal basis for the Kirillov–Reshetikhin module
associated to sΛr exists. We denote this crystal by Br,s . It follows from [Cha01] that Br,s ∼= B(sΛr) as
classical crystals. In this section, we construct a combinatorial model for Br,s in the sense of Defini-
tion 3.3 using the order three Dynkin diagram automorphism of E(1)

6 .
Let I = {1,2,3,4,5,6} be the index set of the E6 Dynkin diagram, J = {0,2,3, . . . ,6}, and

K = I \ {1} = {2,3,4,5,6}. In this section, we use the weakly increasing characterization given in
Proposition 2.12. This characterization implies that the pairwise weakly increasing condition is transi-
tive, so we draw reduced composition graphs.

Lemma 3.12. For r ∈ {1,6}, the K -highest weight nodes in B(sΛr) are distinguished by their K -weights.

Proof. The composition graph for the K -highest weight nodes for B(Λ1) is shown in Fig. 4. Therefore,
by Lemma 3.11 all of the K -highest weight nodes in B(sΛ1) are of the form

0̄1⊗a ⊗ 0̄1̄3⊗b ⊗ 1̄6⊗c

and these nodes are all distinguished by their {3,6}-weight together with s = a + b + c.
Similarly, the K -highest weight nodes for B(sΛ6) are of the form

0̄6a ⊗ 0̄1̄2b ⊗ 1̄0c

which are also distinguished by their K -weight for fixed s = a + b + c. �
Theorem 3.13. Let r ∈ {1,6} and s � 1. There exists a unique twisted isomorphism p : B(sΛr) → B(sΛr) of
order three, such that node b ∈ B(sΛr) is mapped to node p(b) with affine level-0 weight ṗ(wt(b)).

Proof. We state the proof for r = 1. The proof for r = 6 is analogous.
By constructing the composition graph shown in Fig. 5 and applying Lemma 3.11, the I \ {6}-

highest weight nodes of B(sΛ1) all have the form

0̄1⊗a ⊗ 0̄6̄2⊗b ⊗ 6̄0⊗c.
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0̄1 0̄6̄2 6̄0

Fig. 5. Composition graph for I \ {6}-highest weight nodes in B(Λ1).

0̄1 0̄1̄3 0̄5̄26 0̄6̄2

1̄6 1̄6̄5 6̄0

Fig. 6. Composition graph for Ĩ \ {6,1}-highest weight nodes in B(Λ1).

All of these nodes are uniquely determined by their affine level-0 weight

(c − b − a)Λ0 + aΛ1 + bΛ2 − (b + c)Λ6.

Any twisted isomorphism p induced by ṗ must send such a node to one which is I \ {1}-highest
weight, with affine level-0 weight

(c − b − a)Λ1 + aΛ6 + bΛ3 − (b + c)Λ0.

As we have seen in the proof of Lemma 3.12, the I \ {1}-highest weight nodes all have the form

0̄1⊗a′ ⊗ 0̄1̄3⊗b′ ⊗ 1̄6⊗c′

and are all uniquely determined by their affine level-0 weight

−(
a′ + b′)Λ0 + (

a′ − b′ − c′)Λ1 + b′Λ3 + c′Λ6.

This system has the unique solution

a′ = c, b′ = b, c′ = a,

and we can extend by Eq. (3.2) to define p on all of B(sΛ1).
If we apply p again, we send the I \ {1}-highest weight nodes to Ĩ \ {6,1}-highest weight nodes

with affine level-0 weight −(a′ + b′)Λ1 + (a′ − b′ − c′)Λ6 + b′Λ5 + c′Λ0. The composition graph G6,1;0
is shown in Fig. 6 and by Lemma 3.11 every Ĩ \ {6,1}-highest weight node can be represented as a
tensor product of nodes that form a path in this graph. The image of an I \ {1}-highest weight node h
under p must have wt2(p(h)) = 0 and wt3(p(h)) = 0 so no 0̄1̄3, 0̄5̄26 nor 0̄6̄2 nodes appear in the
tensor product. Moreover, the multiplicity of 1̄6̄5 must be equal to wt3(h) and the multiplicity of 1̄6
must be equal to ϕ1(h). Finally, we must have wt1(p(h)) = wt0(h) from which it follows that no 0̄1
nodes appear in the tensor product.

Hence, we have that p sends 0̄1⊗a′ ⊗ 0̄1̄3⊗b′ ⊗ 1̄6⊗c′
to 1̄6⊗a′ ⊗ 1̄6̄5⊗b′ ⊗ 6̄0⊗c′

. Finally, observe
that p sends these Ĩ \ {6,1}-highest weight nodes to I \ {6}-highest weight nodes with weight −(a′ +
b′)Λ6 + (a′ − b′ − c′)Λ0 + b′Λ2 + c′Λ1. Therefore, the twisted isomorphism p has order three. �
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Corollary 3.14. Let s � 1. The twisted isomorphism p of Theorem 3.13 defines a combinatorial affine crystal

structure B̃(sΛ1) on B(sΛ1). Moreover, if we restrict the arrows in B̃(sΛ1) to J , which we denote by B̃(sΛ1)| J ,
then

B̃(sΛ1)| J ∼= B(sΛ6). (3.4)

The analogue of Corollary 3.14 for B(sΛ6) also exists.

Proof of Corollary 3.14. Since p of Theorem 3.13 has order three, it defines a combinatorial affine
structure on B(sΛ1) by Theorem 3.9.

Any J -highest weight node b must also be an I \ {1}-highest weight node, and these all have the
form

0̄1⊗a′ ⊗ 0̄1̄3⊗b′ ⊗ 1̄6⊗c′

with affine level-0 weight

−(
a′ + b′)Λ0 + (

a′ − b′ − c′)Λ1 + b′Λ3 + c′Λ6.

If we further require that wt0(b) � 0, then we see that a′ and b′ must be 0. Hence, b = 1̄6⊗s with
J -weight sΛ6. �
Theorem 3.15. Let B̃, B̃ ′ be two affine type E(1)

6 crystals. Suppose there exists a {1,2,3,4,5,6}-isomorphism
Ψ0 and a {0,2,3,4,5,6}-isomorphism Ψ1 where

B̃|{1,2,3,4,5,6}
Ψ0−→ B̃ ′∣∣{1,2,3,4,5,6} ∼= B(sΛ1),

B̃|{0,2,3,4,5,6}
Ψ1−→ B̃ ′∣∣{0,2,3,4,5,6} ∼= B(sΛ6). (3.5)

Then Ψ0(b) = Ψ1(b) for all b ∈ B̃ and so there exists a {0,1,2,3,4,5,6}-isomorphism Ψ : B̃ ∼= B̃ ′ .

Proof. Set K = {2,3,4,5,6}. Note that if Ψ0(b) = Ψ1(b) for a b in a given K -component C , then
Ψ0(b′) = Ψ1(b′) for all b′ ∈ C since eiΨ0(b′) = Ψ0(eib′) and eiΨ1(b′) = Ψ1(eib′) for i ∈ K . Furthermore,
observe that Ψ0 and Ψ1 preserve weights by Remark 3.4. That is, wt(b) = wt(Ψ0(b)) = wt(Ψ1(b)) for
all b ∈ B̃ .

Since ei commutes with Ψ0 and Ψ1 for i ∈ K , it follows that K -components in B̃ must map to
K -components in B̃ ′ . Restricted to I or J , the images of the K -components in B̃ are also isomorphic
to K -components in B(sΛ1) under Ψ0 and to K -components in B(sΛ6) under Ψ1. However, the K -
highest weight elements in B(sΛ1) and B(sΛ6) are determined by their weights by Lemma 3.12.
Hence we must have Ψ0(b) = Ψ1(b) for all b ∈ B̃ . �
Corollary 3.16. For r ∈ {1,6} and s � 1, the combinatorial affine structure B̃(sΛr) of Corollary 3.14 is isomor-
phic to the Kirillov–Reshetikhin crystal Br,s .

Proof. By [Cha01], Br,s ∼= B(sΛr) for r = 1,6 as a classical crystal. By [KKM+92, Proposition 3.4.4],
Br,s for r = 1,6 exists since it is irreducible as a classical crystal.

Let us now restrict to r = 1 as the case r = 6 is analogous. To show that B1,s ∼= B(sΛ6) as a J -
crystal, it suffices to show that there exists a corresponding highest weight vector since the crystal is
irreducible. However, the element of level-0 weight s(Λ6 − Λ1) is precisely this element.
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Fig. 7. Crystal graph for B1,1 of type E(1)
6 .

Since B1,r |I ∼= B̃(sΛ1)|I ∼= B(sΛ1) and B1,r | J ∼= B̃(sΛ1)| J ∼= B(sΛ6) by the above arguments

and (3.4), by Theorem 3.15 we must have B1,s ∼= B̃(sΛ1) as affine crystals. �
The resulting affine crystal B1,1 is shown in Fig. 7.

3.4. Affine structures associated to Λ2

By [KKM+92, Proposition 3.4.5], a crystal basis B2,s for the Kirillov–Reshetikhin module associated
to sΛ2 exists. It follows from [Cha01] that B2,s ∼= ⊕s

k=0 B(kΛ2) as classical crystals. We will refer
to B(kΛ2) as the kth component of

⊕s
k=0 B(kΛ2). In this section, we will show how to construct a

combinatorial affine structure for
⊕s

k=0 B(kΛ2) using Theorem 3.9.
We use the weakly increasing characterization given in Proposition 2.13 for our work in this sec-

tion. Let H J
s denote the (I \ J )-highest weight nodes of

⊕s
k=0 B(kΛ2). The composition graphs for

J = {6} and J = {1} are shown in Figs. 8 and 9, respectively. Observe that the nodes a and c were
added to H {6}

1 in the course of the algorithm described in Definition 3.10 to obtain G6. The nodes of
weight 0 do not have loops by Proposition 2.13. A finite computation shows that the vertex sets of



2530 B. Jones, A. Schilling / Journal of Algebra 324 (2010) 2512–2542
21̄0̄⊗0̄1
u

361̄5̄⊗0̄1
a

31̄6̄⊗0̄1
b

062̄⊗0̄5̄26
c

062̄⊗0̄6̄2
d

052̄6̄⊗0̄6̄2
e

Fig. 8. Composition graph G6 for I \ {6}-highest weight nodes.

021̄⊗0̄1
u′ 53̄⊗0̄1

a′ 53̄⊗0̄1̄3
b′

013̄⊗0̄1
c′ 013̄⊗0̄1̄3

d′ 01̄⊗0̄1̄3
e′

Fig. 9. Composition graph G1 for I \ {1}-highest weight nodes.

these composition graphs are transitively closed, so Lemma 3.11 models the nodes of H {6}
s and H{1}

s
as chains in G6 and G1, respectively.

Example 3.17. We see from the composition graph that

(21̄0̄ ⊗ 0̄1) ⊗ (21̄0̄ ⊗ 0̄1) ⊗ (062̄ ⊗ 0̄5̄26) ⊗ (052̄6̄ ⊗ 0̄6̄2)

is a typical node in H {6}
4 .

Definition 3.18. Let C(m) denote the set

{
(L2, L3, L5) ∈ Z�0: L2 + L3 + L5 = m

}
of weak compositions of m into 3 parts.

Proposition 3.19. There is a bijection from the I \ {6}-highest weight nodes of B(kΛ2) to
⋃k

m=0 C(m) such
that a node corresponding to the weak composition L2 + L3 + L5 = m has I \{6}-weight L2Λ2 + L3Λ3 + L5Λ5 .

In particular, the I \ {6}-highest weight nodes of B(kΛ2) are determined by their {2,3,5}-weight, and for
any such node b, we have

k = ϕ6(b) + wt2(b) + wt3(b) + wt5(b).

Proof. By Lemma 3.11, the I \ {6}-highest weight nodes of B(kΛ2) correspond to chains of length k
in G6. Moreover, we claim that for each value of k and weak composition L2 + L3 + L5 = m with
0 � m � k, there exists a unique chain of length k in G6 having I \ {6}-weight L2Λ2 + L3Λ3 + L5Λ5.

Denote the multiplicities of the vertices by u,a,b, c,d, e corresponding to the labeling in Fig. 8. All
of these multiplicities must be nonnegative, and we also have d ∈ {0,1} by Proposition 2.13. There are
two maximal chains in G6 and we will write a system of linear equations for each of them.

The equations among the multiplicities that are induced by the upper maximal chain of the graph
are
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L2 = u, L5 = e − a,

L3 = a + b, k = u + a + b + e

and we can solve these to obtain

a = k − (L2 + L3 + L5),

e = k − (L2 + L3),

b = 2L3 + L5 + L2 − k.

Note that a, e � 0, but b may be < 0.
The equations induced by the lower maximal chain are

L2 = u, L5 = e − c − a,

L3 = a, k = u + a + c + d + e

and we can solve these to obtain

2e + d = k + L5 − L2

which has a unique solution in nonnegative integers with d ∈ {1,0}, and

c = e − (L5 + L3).

Now, a,d, e � 0. But c � 0 if and only if 2c � 0 if and only if

k + L5 − L2 − d − 2(L5 + L3) = k − L2 − L5 − 2L3 − d � 0.

This occurs when d = 0 and b � 0 or when d = 1 and b < 0. Moreover, the solutions for the two
chains in the graph agree when b = 2L3 + L5 + L2 − k = 0. Hence, we obtain a unique solution in all
cases of the parameters k, L2, L3, L5.

In addition, we have that ϕ6 and ε6 are uniquely determined by L2, L3, L5 and k. The upper path
equations give

ϕ6 = a = k − L2 − L3 − L5 and ε6 = b + 2e = k − L2 + L5.

The lower path equations give

ϕ6 = a + 2c + d = L3 + k + L5 − L2 − 2(L3 + L5) = k − L2 − L3 − L5 and

ε6 = d + 2e = k − L2 + L5.

So ϕ6 and ε6 agree in both cases.
Finally, εi and ϕi for i = 1,4 of any solution is zero. �

Remark 3.20. Proposition 3.19 can also be interpreted as a branching rule from classical E6 to D5.

Corollary 3.21. The I \ {6}-highest weight nodes of
⊕s

k=0 B(kΛ2) are uniquely determined by their {2,3,5}-
weight together with ϕ6 . The I \ {1}-highest weight nodes of

⊕s
k=0 B(kΛ2) are uniquely determined by their

{2,3,5}-weight together with ϕ1 .
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Proof. The first statement follows directly from Proposition 3.19, and the second statement has an
analogous proof.

The composition graph for the I \ {1}-highest weight nodes is shown in Fig. 9. Note that d′ ⊗ d′ is
not weakly increasing. When we set up the analogous set of equations to solve for the multiplicities
u′,a′,b′, c′,d′, e′ in terms of the parameters k, L2, L3, L5, we obtain equations derived from those in
the proof of Proposition 3.19 by fixing Λ2 and interchanging Λ3 with Λ5. �

We are now in a position to state our main result.

Theorem 3.22. There exists a unique twisted isomorphism p : ⊕s
k=0 B(kΛ2) → ⊕s

k=0 B(kΛ2) of order three.
This isomorphism sends an I \ {6}-highest weight node b from component k to the unique I \ {1}-highest
weight node b′ in component (s − k) + (wt2(b) + wt3(b) + wt5(b)) satisfying wtṗ(i)(b′) = wti(b) for each
i ∈ {2,3,5}.

The proof of this theorem is given at the end of this section. We first discuss some consequences,
examples, and preliminary results.

Corollary 3.23. The twisted isomorphism p of Theorem 3.22 defines a combinatorial affine crystal structure
which is isomorphic to the Kirillov–Reshetikhin crystal B2,s .

Proof. By Theorem 3.9, p yields a combinatorial affine structure for
⊕s

k=0 B(kΛ2) via Eq. (3.2). The
results of Chari [Cha01] show that B2,s has the same classical decomposition. By [KMOY07, Theo-
rem 6.1], we have that if a combinatorial affine structure for

⊕s
k=0 B(kΛ2) exists, then it is isomorphic

to the Kirillov–Reshetikhin crystal B2,s . �
Example 3.24. Suppose s = 3. Then, H {6}

s decomposes into (s + 1) components according to which
summand B(kΛ2) the node lies in. Each of these components further decomposes as

⋃k
m=0 C(m) by

Proposition 3.19. Hence, we have the following schematic of H {6}
s in which the twisted isomorphism p

reflects the C(m) components along rows. The twisted isomorphism p also twists the weights accord-
ing to ṗ, which is not shown explicitly. The resulting node lies in H {1}

s .

k = 0 k = 1 k = 2 k = 3 = s

C(0) C(0) C(0) C(0)

C(1) C(1) C(1)

C(2) C(2)

C(3)

To compute p(b) for

b = (21̄0̄ ⊗ 0̄1) ⊗ (062̄ ⊗ 0̄5̄26) ⊗ (052̄6̄ ⊗ 0̄6̄2)

we observe that wt2(b) = 1, wt3(b) = 0, wt5(b) = 0 so the composition associated to b is (1,0,0).
According to Theorem 3.22, p maps b to the unique chain of length 1 in G1 corresponding to the
composition (0,1,0), namely b′ = 01̄ ⊗ 0̄1̄3. In general, we define f0(b) by p−1 ◦ f1 ◦ p(b). In this
case, f0(b) = 0.
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062̄⊗0̄1
a

062̄⊗0̄1̄3
b

062̄⊗0̄5̄26
c

062̄⊗0̄6̄2
d

052̄6̄⊗0̄1
b′ 052̄6̄⊗0̄1̄3

c′ 052̄6̄⊗0̄6̄2
e

013̄⊗0̄1
c′′ 013̄⊗0̄1̄3

d′ 01̄⊗0̄1̄3
e′ 01̄⊗0̄6̄2

f

Fig. 10. Graph G6,1;0 of weakly increasing Ĩ \ {6,1}-highest weight nodes.

The composition graph for the (̃I \ {6,1})-highest weight nodes is shown in Fig. 10. This graph
was constructed using the algorithm described in Definition 3.10. It is more complicated than the
composition graphs G6 and G1 because we are taking highest weight nodes with respect to the com-
plement of two classical Dynkin diagram nodes. Also, we use the level 0 hypothesis to compute affine
weights and our composition graph includes only those nodes that can contribute to chains having
0-highest weight. A finite computation shows that the vertex set of G6,1;0 is transitively closed, so
the Ĩ \ {6,1}-highest weight nodes correspond to chains in G6,1;0 by Lemma 3.11.

In order to prove Theorem 3.22, we study how p maps chains from G1 to chains in G6,1;0.

Lemma 3.25. Let b be an I \ {1}-highest weight node of B( jΛ2) corresponding to the weak composition
(L2, L3, L5). Then, for every j � k � s, there exists a unique Ĩ \ {6,1}-highest weight node b′ in B(kΛ2) such
that wti(b′) = wtṗ−1(i)(b) = L ṗ−1(i) for i ∈ {2,3,5}. Moreover, ϕ1(b′) = k − j.

Proof. In Appendix A, we solve the equations describing how to map an I \ {1}-highest weight node
from component j to an Ĩ \ {6,1}-highest weight node of component k, using the equation for ϕ1
from Corollary 3.21 which must become ϕ6 in the image.

As shown in Appendix A, there is one system of linear equations for each of the 6 maximal chains
in G6,1;0. The set of parameters for which each case is valid is shown below.

Case 1. (k − j) + L3 � ϕ6,
Case 2. (k − j) � ϕ6 � (k − j) + L3 � ϕ6 + L5,
Case 3. ϕ6 � (k − j) � (k − j) + L3 � ϕ6 + L5,
Case 4. ϕ6 � (k − j) � ϕ6 + L5 � (k − j) + L3,
Case 5. (k − j) � ϕ6 � ϕ6 + L5 � (k − j) + L3,
Case 6. ϕ6 + L5 < (k − j).

Observe that these cover all possible values of the parameters, because if we are not in Case 1 nor
Case 6, then we have the partial order of parameters shown below.

(k − j) + L3 ϕ6 + L5

(k − j) ϕ6

This partial order has exactly four linear extensions corresponding precisely to Cases 2–5.
We must also show that if a particular set of parameters (L2, L3, L5, j,k) is satisfied by multiple

cases, then the solutions obtained from each case all agree. This can be done by hand for the sys-
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0̄7̄1⊗0̄7
u

6̄20⊗0̄7
a

6̄20⊗0̄7̄6
b

6̄70⊗0̄7
c

6̄70⊗0̄7̄6
d

7̄0⊗0̄7̄6
e

Fig. 11. Composition graph G7 for I \ {7}-highest weight nodes in B(Λ1) for E7.

tems described in Appendix A. In Appendix B we also describe an effective procedure that can be
automated to establish this fact.

Observe that in every solution, k − j must be nonnegative. Moreover, in every case, ϕ1 of the
solution is k − j. �
Proof of Theorem 3.22. Fix a weight L2Λ2 + L3Λ3 + L5Λ5 and a component j � s. There is a unique
I \ {1}-highest weight node b corresponding to these parameters by Corollary 3.21. Any twisted iso-
morphism p induced from the Dynkin diagram automorphism ṗ sends b to an Ĩ \{6,1}-highest weight
node p(b) in some component, say k, and p(p(b)) is an I \ {6}-highest weight node in some compo-
nent, say j′ .

By Lemma 3.25, we have that a solution p(b) exists and that ϕ1(p(b)) is (k − j). Hence,

j′ − (L2 + L3 + L5) = (k − j) � 0

by Corollary 3.21.
We suppose that p has order three, and work by downward induction on j, starting from the

fact that nodes of component j = s must go to component k = s, which goes to component j′ =
L2 + L3 + L5. As j decreases, if we ever have k < s, then ϕ1 with respect to Ĩ \ {6,1} is less than
(s − j). This implies that j′ < (s − j) + (L2 + L3 + L5), and so we would map p(b) onto an I \ {6}-
highest weight node that has already appeared in the image of p. Hence, we find that k = s always.
This specifies a unique solution of order three for p. �
3.5. A conjecture for E7

Recall the Dynkin diagram of type E(1)
7 shown in Fig. 1. Let ṗ denote the unique automorphism of

this diagram, so ṗ has order two and sends the affine node 0 to node 7.
The adjoint node in E7 is node 1, and [Cha01] has given the decomposition B1,s = ⊕s

k=0 B(kΛ1)

of the corresponding Kirillov–Reshetikhin crystal into classical crystals. We can form the composition
graph for J = {7} and the result is shown in Fig. 11.

This graph is essentially the same as the composition graph G1 that we obtained for B(Λ2)

in E6. In particular, the classical weights Λ1,Λ2,Λ6,Λ7 that appear in G7 for type E7 correspond to
Λ2,Λ5,Λ3,Λ1 in G1 of type E6. Our solution to the equations associated with G1 in E6 shows that
there exists a unique I \ {7}-highest weight node of B(kΛ1) in E7 having weight L1Λ1 + L2Λ2 + L6Λ6.
That is, the I \ {7}-highest weight nodes of B(kΛ1) are in bijection with weak compositions with 3
parts. Moreover, we have that k = ϕ7(b) + wt1(b) + wt2(b) + wt6(b) for such nodes b.

Define p : ⊕s
k=0 B(kΛ1) → ⊕s

k=0 B(kΛ1) on the I \ {7}-highest weight nodes by sending b ∈
B(kΛ1) to the unique I \{7}-highest weight node b′ in component (s −k)+ (wt1(b)+wt2(b)+wt6(b))

satisfying wtṗ(i)(b′) = wti(b) for each i ∈ {1,2,6}.
Since ṗ does not have order three, Theorem 3.9 does not apply to prove that this construction

gives a combinatorial affine structure. To get a sense of the ambiguity that can arise when working
with twisted isomorphisms of order two, consider Example 3.8. It remains to show that if we define
0-arrows by f0 = p ◦ f7 ◦ p, then the restriction to {0, i}-arrows is a crystal for all i ∈ I . The argument
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given in the proof of Theorem 3.9 shows that this is true for all i 
= 7. Moreover, we conjecture that
this is true for i = 7 as well.

Conjecture 3.26. Define p : ⊕s
k=0 B(kΛ1) → ⊕s

k=0 B(kΛ1) as described above, and let f0 = p ◦ f7 ◦ p. Then
f0 commutes with f7 so we obtain a combinatorial affine structure on

⊕s
k=0 B(kΛ1), which is isomorphic

to B1,s of type E(1)
7 .

We have verified this conjecture for s � 2.

4. Sage implementation

As illustrated in the following examples, we have implemented the crystals described in this paper
in Sage [WSea09] and Sage-Combinat [SCc09]. For more information see the documentation of
Sage-Combinat and Sage, in particular the crystal documentation.1

Sage Example 4.1. For type E6, the building block B(Λ1) of Fig. 2 is accessible as follows:

sage: C = CrystalOfLetters([’E’,6])
sage: C.list()
[[1], [-1, 3], [-3, 4], [-4, 2, 5], [-2, 5], [-5, 2, 6], [-2, -5, 4, 6],
[-4, 3, 6], [-3, 1, 6], [-1, 6], [-6, 2], [-2, -6, 4], [-4, -6, 3, 5],
[-3, -6, 1, 5], [-1, -6, 5], [-5, 3], [-3, -5, 1, 4], [-1, -5, 4], [-4, 1, 2],
[-1, -4, 2, 3], [-3, 2], [-2, -3, 4], [-4, 5], [-5, 6], [-6], [-2, 1], [-1, -2, 3]]

The crystal can be plotted as

sage: G = C.digraph()
sage: G.show(edge_labels=true, figsize=12, vertex_size=1)

or

sage: view(C, viewer = ’pdf’, tightpage = True)

The dual crystal B(Λ6) can be constructed as

sage: C = CrystalOfLetters([’E’,6], dual = True)

The crystal B(Λ7) of type E7 can be accessed in a similar fashion. Fig. 3 was constructed as follows:

sage: C = CrystalOfLetters([’E’,7])
sage: C.latex_file(filename.tex)

Sage Example 4.2. The classical crystals for type E6 (and similarly for E7) corresponding to arbitrary
dominant weights can be constructed as follows:

sage: C = CartanType([’E’,6])
sage: Lambda = C.root_system().weight_lattice().fundamental_weights()
sage: T = HighestWeightCrystal(C, dominant_weight=Lambda[1]+Lambda[6]+Lambda[2])
sage: T.highest_weight_vector()
[[1], [[2, -1], [1]], [6]]
sage: T.cardinality()
34749

1 http://www.sagemath.org/doc/reference/combinat/crystals.html.

http://www.sagemath.org/doc/reference/combinat/crystals.html
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Sage Example 4.3. The Kirillov–Reshetikhin crystals Br,s for r = 1,6,2 for type E6 are also imple-
mented:

sage: K = KirillovReshetikhinCrystal([’E’,6,1], 1,1)
sage: K.cardinality()
27
sage: K = KirillovReshetikhinCrystal([’E’,6,1], 6,1)

sage: K = KirillovReshetikhinCrystal([’E’,6,1], 2,1)
sage: K.classical_decomposition()
Finite-dimensional highest weight crystal of type [’E’, 6] and
dominant weight(s) [0, Lambda[2]]
sage: b = K.module_generator(); b
[[[2, -1], [1]]]
sage: b.e(0)
[]
sage: b.e(0).e(0)
[[[-1], [-2, 1]]]

5. Outlook

In the case of r = 3, by [Cha01] the classical decomposition is Br,s ∼= ⊕
j+k=s
j,k�0

B( jΛ3 + kΛ6). It is

possible to form a composition graph that includes nodes from both B(Λ3) and B(Λ6) so that weakly
increasing chains of vertices correspond to (I \ J )-highest weight nodes. However, it is straightforward
to verify that even for s = 1, the I \ {1}-highest weight nodes are not uniquely determined by the
statistics (ε1, . . . , ε6,ϕ1, . . . , ϕ6), in contrast to the cases r = 1,2,6 that we have considered in this
work. Hence one would first have to find vertices within each component which can be distinguished
using a suitable statistics, and then construct the corresponding composition graph. The case r = 5 is
essentially the same as the r = 3 case.

The ε and ϕ statistics are the most obvious quantities preserved by twisted isomorphism, and the
fact that we were able to identify highest weight nodes by their statistics allowed us to solve the
equations that proved our twisted isomorphism in fact had order three.

The classical decomposition of B4,s of type E(1)
6 was conjectured in [HKO+99] and proved by Naka-

jima [Nak03]. As it involves more than two distinct fundamental weights, our tableau model and
composition graphs would likely be substantially more complicated than those we have used for the
cases r = 1,2,6.

As already mentioned in Section 3.5, the method of composition graphs for the adjoint Kirillov–
Reshetikhin crystal B1,s of type E(1)

7 is applicable and analogous to type E(1)
6 . However, to prove that

the result is indeed an affine combinatorial crystal requires the analogue of Theorem 3.9 for twisted
isomorphisms of order two. The Dynkin diagram E(1)

8 does not have nontrivial automorphisms. Hence
a new strategy is required.

It was conjectured in [HKO+02, Conjecture 2.1] that the crystals Br,s of type E(1)
6 are perfect. The

proof for the crystals considered in this paper is still outstanding.
All Kirillov–Reshetikhin crystals can in principle be constructed from those of simply-laced type

using virtual crystals. In particular, the KR crystals for type F (1)
4 and E(2)

6 can be constructed from

those of type E(1)
6 (see [OSS03, Example 3.1]). Hence the construction of all type E KR crystals is an

important undertaking.
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Appendix A

Here, we set up and solve the linear equations describing how to map an I \ {1}-highest weight
node from component j to an Ĩ \ {6,1}-highest weight node of component k, using the equation
for ϕ1 = j − (wt2 +wt3 +wt5) which must become ϕ6 in the image. The cases correspond to the 6
maximal chains in the directed graph G6,1;0.

Case (1).

a + b + c + d + e + f = k,

ϕ6 = a + b + 2c + d = j − L2 − L3 − L5,

L2 = −a − b + f ,

L3 = b,

L5 = −c + e

with solution

f = (k − j) + L2 + L3,

a = (k − j),

2c + d = 2 j − k − 2L3 − L2 − L5 = ϕ6 − (k − j) − L3,

e = c + L5

valid if (k − j) + L3 � ϕ6.

Case (2).

a + b + c′ + e + f = k,

ϕ6 = a + b = j − L2 − L3 − L5,

L2 = −a − b − c′ + f ,

L3 = b + c′,

L5 = c′ + e

with solution

f = (k − j) + L2 + L3,

a = (k − j),

b = 2 j − k − L2 − L3 − L5 = ϕ6 − (k − j),
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c′ = −2 j + k + 2L3 + L2 + L5 = L3 + (k − j) − ϕ6,

e = 2 j − k − 2L3 − L2 = L5 − L3 + ϕ6 − (k − j)

valid if (k − j) � ϕ6 � (k − j) + L3 � ϕ6 + L5.

Case (3).

a + b′ + c′ + e + f = k,

ϕ6 = a = j − L2 − L3 − L5,

L2 = −a − b′ − c′ + f ,

L3 = c′,

L5 = b′ + c′ + e

with solution

f = (k − j) + L2 + L3,

b′ = −2 j + k + L2 + L3 + L5 = (k − j) − ϕ6,

e = 2 j − k − L2 − 2L3 = ϕ6 − (k − j) − L3 + L5

valid if ϕ6 � (k − j) � (k − j) + L3 � ϕ6 + L5.

Case (4).

a + b′ + c′ + e′ + f = k,

ϕ6 = a = j − L2 − L3 − L5,

L2 = −a − b′ − c′ + f ,

L3 = c′ + e′,

L5 = b′ + c′

with solution

f = ϕ6 + L2 + L5 = j − L3,

e′ = k − 2 j + L2 + 2L3 = (k − j) − ϕ6 + L3 − L5,

c′ = L3 − e′ = ϕ6 − (k − j) + L5,

b′ = L5 − c′ = (k − j) − ϕ6

valid if ϕ6 � (k − j) � ϕ6 + L5 � (k − j) + L3.
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Case (5).

a + b + c′ + e′ + f = k,

ϕ6 = a + b = j − L2 − L3 − L5,

L2 = −a − b − c′ + f ,

L3 = b + c′ + e′,

L5 = c′

with solution

f = L2 + L5 + ϕ6 = j − L3,

e′ = k − 2 j + L2 + 2L3 = (k − j) − ϕ6 − L5 + L3,

b = L3 − L5 − e′ = 2 j − k − L2 − L3 − L5 = ϕ6 − (k − j),

a = ϕ6 − b = (k − j)

valid if 0 � (k − j) � ϕ6 � ϕ6 + L5 � (k − j) + L3.

Case (6).

a + b′ + c′′ + d′ + e′ + f = k,

ϕ6 = a = j − L2 − L3 − L5,

L2 = −a − b′ + f ,

L3 = −c′′ + e′,

L5 = b′

with solution

f = ϕ6 + L2 + L5 = j − L3,

d′ + 2e′ = (k − j) − ϕ6 + 2L3 − L5,

c′′ = e′ − L3

valid if ϕ6 + L5 < (k − j) because

0 � e′ − L3 ⇔ 0 � 2e′ − 2L3 ⇔ 0 < 2e′ − 2L3 + d′

and c′′ � 0 implies e′ � 0.
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Appendix B

Here, we prove that, whenever a set of parameters (L2, L3, L5, j,k) is satisfied by two distinct cases
from the systems described in Appendix A, then the solutions we obtain in each case agree.

Since ϕ1 = k − j in every solution by Lemma 3.25 and ϕ6 = j − (wt2 +wt3 +wt5) encodes j, we
have that any solution b ∈ H {6,1};0

s for the parameters (L2, L3, L5, j,k) must have prescribed values
for (wt2(b),wt3(b),wt5(b),ϕ1(b),ϕ6(b)). Hence, to prove the uniqueness of the solution, it suffices to
show that the nodes of H {6,1};0

s are uniquely determined by (wt2,wt3,wt5,ϕ1,ϕ6).

Proposition B.1. Let b ∈ B(kΛ2) and b′ ∈ B(k′Λ2) be Ĩ \ {6,1}-highest weight nodes. If wti(b) = wti(b′) for
i = 2,3,5 and ϕ j(b) = ϕ j(b′) for j = 1,6, then b = b′ .

Proof. Let A = (ai, j) be the matrix where ai, j is the ith entry of (wt2,wt3,wt5,ϕ1,ϕ6) applied to the
jth entry of (a,b,b′, c, c′, c′′,d,d′, e, e′, f ) from G6,1;0. Then,

A =

⎡
⎢⎢⎢⎣

−1 −1 −1 0 −1 0 0 0 0 0 1
0 1 0 0 1 −1 0 0 0 1 0
0 0 1 −1 1 0 0 0 1 0 0
1 0 1 0 0 2 0 1 0 0 0
1 1 0 2 0 0 1 0 0 0 0

⎤
⎥⎥⎥⎦ .

If there were two solutions for a given set of parameters (wt2,wt3,wt5,ϕ1,ϕ6) then we could
subtract them to obtain a vector in the nullspace of A. Moreover, the positive coordinates of this
vector would correspond to nodes in G6,1;0 that all lie on a maximal chain, and similarly for the
negative coordinates of the vector.

The nullspace of A is spanned by the rows of the following matrix.

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a b b′ c c′ c′′ d d′ e e′ f
1 0 0 0 0 0 −1 −1 0 0 1
0 1 0 0 0 0 −1 0 0 −1 1
0 0 1 0 0 0 0 −1 −1 0 1
0 0 0 1 0 0 −2 0 1 0 0
0 0 0 0 1 0 0 0 −1 −1 1
0 0 0 0 0 1 0 −2 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Although the nullspace is nontrivial, observe that no basis vector actually corresponds to a valid
relation because in every case we have that either the positive entries or the negative entries in the
basis vector violate the constraint that the multiplicities lie on a maximal chain in G6,1;0, so as to
form a weakly increasing tensor product.

Next, we show that these chain constraints are actually violated for every vector in the nullspace
of A. To see this, consider that every minimal linear dependence among the columns {u1, . . . , u11}
of A has the form

∑11
i=1 ciui = 0. Define sgn(x) to be 0, −1, or 1, if x is 0, < 0 or > 0, respectively.

The collection of all sign vectors (sgn(c1), . . . , sgn(c11)) obtained from minimal linear dependencies
among the columns of A forms what are known as the circuits of an oriented matroid. Moreover, there
is a formula to find these circuits that is given in terms of certain minors of A.

To be precise, let {v1, . . . , v11} denote the columns of A. Then, we define χA : {1, . . . ,11}5 →
{−1,0,1} by χA(i1, . . . , i5) = sgn det(vi1 , . . . , vi5 ). Consider

C : {1, . . . ,11}6 → {−1,0,1}11

where C(i1, . . . , i6) is defined by
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(
χA

(
(i1, . . . , i6) \ 1

)
(−1) j(1)+1,χA

(
(i1, . . . , i6) \ 2

)
(−1) j(2)+1,

. . . ,χA
(
(i1, . . . , i6) \ 11

)
(−1) j(11)+1).

Here, j(m) denotes the index j such that i j = m, and we interpret χA((i1, . . . , i6) \ m) as 0 if m /∈
(i1, . . . , i6). It then follows from [BLVS+99, Section 1.5] that the circuits are precisely the set

{
C(i1, . . . , i6): (i1, . . . , i6) ∈ {1, . . . ,11}6} \ (0,0, . . . ,0).

Using this formula, we have computed that A has 81 circuits and determined that each of them
violates the chain constraints from G6,1;0. Therefore, we have that there is a unique solution for any
given set of parameters (wt2,wt3,wt5,ϕ1,ϕ6). �
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