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Abstract

The Event Index project consists in the development and deployment of a complete catalogue of events for experi-
ments with large amounts of data, such as the ATLAS experiment at the LHC accelerator at CERN. Data to be stored
in the EventIndex are produced by all production jobs that run at CERN or the GRID; for every permanent output
file, a snippet of information, containing the file unique identifier and the relevant attributes for each event, is sent to
the central catalogue. The estimated insertion rate during the LHC Run 2 is about 80 Hz of file records containing
~15 kHz of event records. This contribution describes the system design, the initial performance tests of the full data
collection and cataloguing chain, and the project evolution towards the full deployment and operation by the end of
2014.
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1. Introduction and objectives

Experiments like ATLAS [1][2] produce large
amounts of data that need cataloguing for a later ac-
cess by the physicists. During 2011 and 2012 ATLAS
produced 2 billion real events and 4 billion simulated
events per year. In addition, events were reprocessed
and stored in several file formats, increasing numbers
to 138 billion (109) real event instances, and 93 billion
simulated events in year 2012 alone. Therefore in order
to recall selected events from data storage systems, it is
necessary to have a system that contains the reference to
the file including every event at every stage of process-
ing. ATLAS already has an event database (TAGDB)
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implemented in Oracle, as that was the only proven
technology that could hold the impressive amount of ex-
pected data when this project started, long before the
beginning of LHC operations [3][4][5][6]. The main
purposes of this database were the selection of events
on the basis of physical variables, the identification of
files containing a list of events already selected by other
means, and consistency checks on the completeness of
event processing. In the TAGDB, each event is recorded
several times, once for each reconstruction cycle, and
contains three main data blocks: information identify-
ing the event (event and run number and trigger de-
cisions), information allowing the localization of the
event data in files that contain it, and physical variables
of the event, such as the number of reconstructed par-
ticles, their identification and properties, which might
be useful to select events for specific analyses. The
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Figure 1: EventIndex prototype.

TAGDB, with all related services and user interfaces,
works for the retrieval of the event information for lim-
ited numbers of events and for the technical checks de-
scribed above; the event selection use case by physics
variables turned out not to be generally useful because
sometimes those quantities changed after the initial re-
construction and there was no mechanism in the system
to update them. Furthermore, the TAGDB is slow, in-
trinsically complex and at times unreliable. In addition,
the enormous amount of data (1 kB per record, which
turns into several tens of TB in Oracle for all data col-
lected by ATLAS so far) makes the implementation in
Oracle particularly labour-intensive and expensive [7].
Oracle storage capacity was deployed to store the ˜8 bil-
lion real and simulated events recorded during the LHC
Run 1; future data taking rates will be higher, exceed-
ing the limits of Oracle scalability required by the ex-
isting workflow [8][9][10]. The TAGDB is potentially
very useful but has to improve. In order to overcome
the previous limitations, we tried to follow a modern
approach like using structured storage, and in particular
NoSQL technologies [11]. These technologies are more
appropriate to scale for increased data rates like we will
see at LHC in Run 2 starting in 2015. Moreover, they
are designed for usage with commodity hardware, and
also with fixed cost per unit, and great scalability. They
are cheaper, easier to use and faster for sparse searches
over large amount of data, so we are using them for the
future event cataloguing system, within the EventIndex
project.

2. EventIndex project

With the EventIndex project we want to overcome
the previous limitations and to use NoSQL technologies
to provide a complete catalogue of all ATLAS events,

real and simulated data, and for all the stages. Each
reconstruction campaign produces new versions of ev-
ery event, in different formats. For ATLAS, they are
ESD (Event Summary Data, a full reconstruction out-
put), AOD (Analysis Object Data, a summary of recon-
struction to be used for physics analyses) and several
versions of ROOT n-tuples [12][13]. For each recon-
struction campaign and for each format, one can gener-
ate a key-value pair (where the value is always the nav-
igational information, i.e. the identifier of the file that
contains the event in question and the internal structured
pointer) and add it to the original record. The result is
that an event will always correspond to one and only
one logical record in the database containing the entire
processing history of the event.

Basically the use cases that we want to solve are the
following:

1. Event picking: give me the reference (pointer) to
"this" event in "that" format for a given processing
cycle.

2. Event skimming: Give me the list of events passing
this selection and their references.

3. Production consistency checks: technical checks
that processing cycles are complete (event counts
match).

4. Panda event service [14]: give me the references
(pointers) for the events on the file identified by
this GUID [15], to be distributed individually to
processes running on (for example) HPC or cloud
clusters.

3. First prototype

Figure 1 shows the different parts of the first proto-
type. The Data Collection task deals with the collection
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of the worldwide production of the EventIndex infor-
mation, to be stored by the Hadoop [22] core services.
It follows a Producer/Consumer architecture, with the
producers running at Tier-0 (CERN) and Grid sites, and
the consumers at CERN to store centrally the informa-
tion. Because of the large amount of data being continu-
ously processed, care must be taken in the development
and optimization of these applications. The whole trans-
mission chain of this information must be optimized in
order to sustain rates of the order of 10 to 100 kHz. The
system must also include cross-checks to assure cata-
logue completeness (no missing processing stages for
any subset of events). These aspects of performance
and scalability are extremely important to have a prod-
uct that will be useful to the scientific community. The
Hadoop core task provides the infrastructure to load and
host the EventIndex data, and provides the interfaces
for the Query Services to implement the required use
cases. The Query Services provide the tools for final
users to access the EventIndex data, a catalogue that can
be searched with different criteria.

4. Data collection producer

The Producer is the piece of software that is in charge
of producing the EventIndex information and send it
with a messaging system to the central brokers. The
EventIndex information is produced with python scripts
running in the Athena framework [16], inside pilot jobs
that are sent worldwide to Tier-0 and Grid sites. For
every permanent output file that has to be indexed, a
snippet of information containing the file unique iden-
tifier and the relevant attributes is produced. The data
producer process is split in two parts: the first part reads
the data file to create an intermediate EventIndex file;
the second one reads the information from the EventIn-
dex file, builds the messages and sends them to the bro-
ker. The EventIndex file is used as an intermediate stor-
age to decouple the processing of the input file from
sending the messages. In the current prototype, the first
step consists of a Python script that reads the event file
and extracts the relevant information to be transmitted
(event identification, trigger masks, references to the
files containing the event). These scripts include tools
for analyzing POOL, RAW and TAG formats [9]. The
EventIndex file is a SQLite3 [17] file of Python seri-
alized objects, containing key-value pairs in one table
“shelf”. The second step is a Python script that reads the
EventIndex file, builds a sequence of messages (about
10 kB each) and sends them to the broker. For this first
prototype, we tested the production of the EventIndex
information in the grid, submitting several production

jobs with an automated tool like prun [18]. The orig-
inal measurements from production jobs in May 2013,
during the LHC shutdown, estimated a number of 256k
grid jobs per day, summing up the production of 300
million events every day. The current EventIndex infor-
mation stored is about 1 kB/event, which means around
300 GB per day to be stored. A rate of the producers is
therefore measured as 20 Hz of file records containing
around 3.4 kHz of event records, to be increased in the
following years up to 80 Hz of files and 30 kHz of event
records.

5. Data collection messaging

Producers send the produced event information with
a messaging system based on the text-based STOMP
protocol [19], using JSON [20] encoding in every mes-
sage in a compact form. Messages are received by
one or more ActiveMQ [21] brokers. During these first
tests of the prototype we were using just one broker at
CERN, capable of handling all the messages, but we
have planned to have another broker at the Wigner Insti-
tute site (in Budapest) to achieve high availability. The
message size is set small, from 1 to 10 kB per message,
to keep the broker queues agile and because messag-
ing systems are usually designed for dealing with thou-
sands or millions of small messages. Usually we have to
divide the payload corresponding to an output file into
several messages, and in this case, we use atomic trans-
actions on the producer to logically group them. This
allows processing all of them, so if there is any error
or connection break, no partial processing occurs. In
this latter scenario, a resubmission of all the messages
is performed. The same broker can receive messages
from several producers at the same time, so in the queue
they may be mixed, but this will be later solved by the
consumers as we will see. During our benchmarks and
tests, the performance was enough to deal with the pro-
posed rates, reaching 350 messages per second and a
throughput of 10 MB/s per producer. When sending real
events we reached 200k events/s and 60 MB/s (this test
scenario used 1 broker, 6 producers and 4 consumers,
with 50k events per job).

6. Data collection consumer

Consumers are in charge of retrieving the messages
from the brokers, process them, and insert the EventIn-
dex information into the Hadoop [22] testbed that is also
used by the core service. These processes are run in
one machine in the same network domain as the Hadoop
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Figure 2: Hadoop core system.

testbed, so access is easier and also performance is bet-
ter. Depending of the necessities the number of con-
sumers can be increased, and run in several machines,
but for our current tests one machine is enough to pro-
cess all the messages. We have seen that messages can
be originated by different producers and mixed in the
queue, which means they will also be mixed when re-
ceived by the consumers, and also potentially different
consumers could receive messages from one producer.
In order to solve this problem and process messages co-
herently, we use a messaging facility which is group tag-
ging. This ensures that all messages from one particular
producer will go to one particular consumer, while the
latter is alive. For every message received, the consumer
decodes the JSON [20] format and orders the events in
memory. When all the events from an original output
file are received, or when a threshold is reached, the
events are written into Hadoop HDFS [23] in Mapfile
format [24].

7. Hadoop core architecture

The Hadoop core services for the EventIndex are de-
veloped on top of the Hadoop infrastructure provided
by the CERN-IT Hadoop service. Data are continuouly
received and written in Mapfiles that may be later up-
graded into some of their sub-formats in case further
optimisation is needed. The event attributes are stored
in several groups according to their nature and access
pattern (constants, variables, references, physics). The
data can be indexed in various ways (for example, using
inverted indices for the trigger information). Some in-
dex files will be created at upload, others will be added
later. Index files will just have a key plus references to
data files. The searches can be then performed in two
steps:

1. get reference from the index file;
2. using that reference, get the data.

Searches can be performed using keys, with immediate
results (as keys are in memory), or with full searches
on file-based data. Access to the data is achieved by a
single and simple interface for:

• upload: copy file into HDFS and create basic struc-
ture;

• get and search;

• adding new (vertical) data (in general by a MapRe-
duce job);

• create new indices.

These interfaces are implemented in Hadoop by Java
classes with remote access and used through a Python
client.

Figure 2 shows the internal organization of the core
system. The Generator module creates new filesets and
registers them into the Catalog. The Creator creates
new filesets. The Extender adds more information (new
columns). The Appender adds new data. The Indexer
creates new indices. The Convertor converts filesets to
different formats, including the MapFiles. The Accessor
allows the remote access, through an HTTP server on a
dedicated machine; a publicly visible WebService can
be accessed through the command line or the graphical
interface. The Reader performs the search using one of
the available tools (Searcher, Scanner or MapReducer),
depending on the query.

Figure 3 shows the file organization and relationships
in the Hadoop file system (HDFS). The data are stored
in collections of "filesets", where each collection repre-
sents an event collection (grouping all events that have
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Figure 3: Hadoop file organization.

been processed by the same software version). The Tag-
Files can be files or directories of files. A collection of
TagFiles makes a TagSet, each of which has a master
record, pointers to before/after filesets (vertical parti-
tions), slave TagFiles (horizontal partitions) and index
TagFiles. The catalogue checks the presence and con-
sistency of all components. Each TagFile is represented
by one entry in an HBase [25] table.

8. Query services

The query services are the interface to the core
Hadoop system, and solve the proposed use cases for
final users. The physicists can use two tools:

1. A command line interface, that provides access
to all the functionalities from a console of a con-
trolled environment. Currently the user has to be
listed and have explicit access to the Hadoop clus-
ter in order to run correctly all the functions.

2. A Web Service interface, in order to fulfil the
Panda Event Service use case. It is a web server
accessible from a graphical browser, or from com-
mand line tools like wget [26].

An important use case is the query (or count) of the
events that satisfied a given trigger condition, or a com-
bination of trigger conditions. In ATLAS, every “fired”
trigger condition is marked by a bit set to “1” in the rel-
evant trigger word (Level-1, Level-2 and Event Filter).
The correspondence between bits in the trigger words
and the actual triggers depends on the run and luminos-
ity block, as the list of active triggers and their possible
prescale factors are adjusted according to the variations

Figure 4: Trigger decoding.

of the LHC luminosity, in order to maximize the col-
lection of useful data for physics analyses. Queries to
the EventIndex involving trigger chains need to be first
decoded by knowing the trigger menu via the run num-
ber, then finding in the COMA database [27] the corre-
sponding trigger name for each bit in the trigger words.
The COMA database is stored in Oracle and accessed
using ODBC drivers, so the trigger decoding is done
beforehand consulting this database, and also cached to
improve the future searches with MapReduce jobs in the
Hadoop cluster. This process is depicted in Figure 4.

The performance of the data query interfaces is cru-
cial for the usability of the EventIndex. For the initial
tests, we imported a full year worth of ATLAS data
(2011, first processing version) from the TAGDB into
Hadoop and catalogued them. This corresponds to just
over 1 TB of data in the CSV (comma-separated values)
format, before the internal replication. Simple data scan
operations on this dataset using the available Hadoop
cluster of 20 nodes take about 15 minutes; we consider
this as the worst case, as normally no query would need
to read in all data from disk for a full year of data tak-
ing. Queries that give the run number and event number
(the event picking use case) are very fast; even using
the so-far unoptimised “accessor” method these queries
return their results in 3.7 seconds (just “fast”). For com-
parison, the same queries using a full Map-Reduce job
return in 90 seconds. A typical query from the Panda
Event Service for all events from a file, given the GUID
[15] of the file, takes from 3 to 10 seconds. Again, these
should be considered as worst cases as they are the re-
sults of the first prototype implementation.

9. Outlook

The full chain of the EventIndex project was tested
with the first prototype, in different areas. The pro-
duction of EventIndex information worldwide at differ-
ent sites was tested using common grid job submission
tools, and using the messaging system to convey the in-

D. Barberis et al. / Nuclear and Particle Physics Proceedings 273–275 (2016) 913–918 917



formation to the central broker at CERN. The perfor-
mance showed that it can cope with the required rates
for the next few years (LHC Run 2). The Hadoop code
was tested with previously loaded 1 TB of 2011 data,
and receiving continuously the new data collected by the
consumers. The query services provided to satisfy the
new use cases show good performance, and still suitable
to improve.

Next steps consist in the automation of all the proce-
dures, then loading all Run 1 data, and finally tuning all
the system, also providing a complete monitoring sys-
tem for the final operators. According to the original
plan and the current experience, the system will be fully
working at the start of 2015, ready for the new LHC
data.
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