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Abstract

Discrete Gabor multipliers are composed of rank one operators. We shall prove, in the case of rank one projection
operators, that the generating operators for such multipliers are either Riesz bases (exact frames) or not frames fc
their closed linear spans. The same dichotomy conclusion is valid for general rank one operators under mild and
natural conditions. This is relevant since discrete Gabor multipliers have an emerging role in communications,
radar, and waveform design, where redundant frame decompositions are increasingly applicable.

0 2005 Elsevier Inc. All rights reserved.

Keywords:Gabor multipliers; Gabor frames; Symplectic Fourier transforms

1. Introduction

Inspired and initiated by von Neumann in quantum mechanics [1, pp. 405 ff.], and Gabor in commu-
nications and acoustics [2], decompositions of functigrs L2(R?), such as

f= ) (/i McTh)MTeg, (1)

(x.§)eA
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have become a fundamental tool in time—frequency analysis and applications dealing with time-varying
spectra, e.g., [3-8]. In (1}, h € L?(R¢) are given square integrable functions on Euclidean sféce
A C RIxRY s a full rank lattice (such a&%') whereR? is R¢ considered as a spectral domaih,is
the translation operatorT, k(y) = k(y—x), M; is themodulation operatoM;k(y) = eZV<k(y), (-, -)
is the inner product ilL?(R?), and convergence is ib?(R¢).

The expansion (1) can be written operator theoretically in terms of the resolution of the identity
Id;2: L?(RY) — L?(R%) as

;2= " p() Py @)

reA

where the rank one operatdy ; : L2(R?) — L2(R?) is defined byf + (f, h)g, and whereo (1) P, ;, is
the composition (conjugation)

pA) Py =1(1) 0 Py jom(R)7, 3

for r(Mk(y) = M: T k(y), A = (x, &) € A, and for the adjoinU* of the unitary operatot/. The equiv-
alence of (1) and (2) follows from the elementary calculation

(M) o Pyyom(W)* f(y)=(f,mQh)T(W)g(y). (4)
Further, the right side of (4) is

/ (e & e(y — x)h(z — x) dz;

and so, from (3) and (4x(1) P, is a Hilbert-Schmidt operator with kernel(y, z) = e 2"G=)4g(y —
x)h(z — x), wherei = (x, £). We denoteP, , by P,.

In this context, the “dichotomy” theorem we shall prove, under mild necessary conditignarai,
is that{p (1) P, 1 }1ca IS @ Riesz basis for its closed linear span in the spacéR4gof Hilbert—Schmidt
operators, or it is not a frame for this spasee Theorem 3.1.

The reason for the abstraction to the settingd8{R?) for our theorem is the emerging importance of
Gabor multipliersG,,, which are formally defined by a weighted version of (2), namely

Gu=Y mup(W) Py, myeClorrea, (5)

reA

e.g., [9-11], and the revitalization of underspread operators in the mathematical community, e.g., [12].

As a concluding application of our dichotomy result and the inherent characterization of Riesz bases
of the form{p (1) Py 1},.c4, We shall describe the role of the volume of the lattiten (5) in terms of
operator identification. In fact, we shall show that with natural hypoth#se&abor multiplier class
spanned byp (1) P, »},.c4 is identifiable if the volume of is greater than one and not identifiable if the
volume ofA is less than onesee Theorem 5.2.

We begin in Section 2 with mathematical preliminaries concerning Gabor analysis, Hilbert—Schmidt
operators, and shift invariant spaces. Section 3 contains a precise statement and proof of our dichotomy
result, mentioned above, as well as some related results. Section 4 is devoted to relevant examples, anc
Section 5 to Gabor multipliers and identification.
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2. Preliminaries

Throughout this paper we shall use standard notation from harmonic analysis and in particular Gabor
analysis as found in [7]. For example, we shall use the unitary Fourier transfornfatiol.?(R¢) which
is normalized to satisfiFg(y) = (y) = [ g(y)e 27 dy, y € R?, for g € LY(R?) N L2(RY),

In addition, the notatior? < R on X is used to abbreviate the following statement: there exj#t >
0 such that for alk € X we haveAP(x) < R(x) < BP(x).

2.1. Gabor analysis

The short time Fourier transform ¢f € L2(R?) with respect to a window functiop € L(R%) \ {0}
is given by

Ve f ) =(f.m(g)= / FMgly —x)e Zedy,  h=(x,&) e RIxRI.
Rd

We haveV, f € L2(R? xR9) and|| Ve f 1l 2 ay = | f |22 g1l 12mey - Further, we casynthesizef e
L?(R%), using translates and modulates of d@ny L2(R¢) with (k, g) = 1, in the sense that the integral
[, Vo f Q)7 (1)h di converges weakly tg .

A central goal in Gabor analysis is to findh € L2(R¢) and full rank latticesA c R?xIR? which
allow adiscretizatiorof the reconstruction formul# = |, V, f (A)7 (1) di of the form

f=Y VefWm@h,  feL*(RY), (6)
reA
with convergence i ?(R?) and whereg andh are independent of .
A discussion of the validity of (6) entails Bessel sequences, Gabor frames, and Riesz bases, notion:
we now define.
Let g € L2(R?) and letA c R?xR? be a full rank lattice. Formally, consider the discrete analysis
operatorC, defined by

Co L*(RY) > 12(A),  f>{VofW},
and the discrete synthesis operdfpe= C; defined by

Ty 1P(A) = L*(RY),  {cidrea > Y _am(h)g.
reA

The set(g, A) = {m(A)g}.ca Is called aGabor systemand a Gabor system isBessel sequendeC,
is a well-defined linear operator in which case bothandT, are bounded. A Bessel sequerigeA) is
aframefor L2(RY) if C, is also stable, i.e., il || .2@a) < [|Cq fll 204 fOr f € L2(RY), and it is aRiesz
basis(bounded unconditional bagior its closed linear span in?(R?) if T, is stable in addition to
being bounded, i.e., if{ci}ll;2(4) < I Te{cs I 2ay, fOF {c3} € [2(A).

The right-hand side of (6) is well defined if the Gabor systémst) and(i, A) are Bessel sequences.
Further, if(g, A) and(h, A) are frames, then the operator

Sen:LA(RY) > LARY),  f> ) Vo fWm(Mh

reA
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is an algebraic and topological isomorphism(df A) and(k, A) are frames, and, , =1: f — f,we
say that(k, A) is adual frameof (g, A) [7].

Fundamental to the analysis of Gabor systéms1) is thevolume| A| of the full rank latticeA, which
is given by| A| = | detA|, whereA is chosen such thatZ? = A. In fact, if (g, A) is a Riesz basis for its
closed linear span in?(R?), then|A| > 1; and if (g, A) is a frame forL?(R?), and therefore complete
in L2(RY), then|A| < 1.

In the case thatt hascritical density i.e., if |[A| = 1, and(g, A) is a frame forL2(R?), then(g, A) is
automatically a Riesz basis fa?(R9), or, equivalently, aexact framdor L?(R¢), i.e.,(g, A) ceases to
be a frame if any one of its elements is removed. In ¢age< 1, any frame(g, A) for L2(R?) is non-
exact(overcompletg and one can remove any finite number of elements ftgym) and the resulting
family remains a frame foE?(R?). Further, if| A| < 1, then, for any e L?(R¢), there exists non-trivial
{ca}rea €12(A)\ {0} for which 0= )", _, c;r (M) g in L32(RY).

The uncertainty principle provides insight into any decomposition such as (6) [13—18]. For example,
in the case of Gabor systems one manifestation of the uncertainty principle is the Balian—Low theorem
[19-21], which asserts that (g, A) is a Riesz basis for.2(R?), in which case we havgl| = 1, theng
cannot be well localized in time and frequency, in the sense that

(/|yg(y)|2dy> : (f|n§(n)|2dn) =00 (7)

must occulr.

We shall sometimes use the Feichtinger alge$y@®?) in place of L2(R?). So(R?) is the Banach
algebra composed of those functiofiss L2(R¢) with the property thatv,, f € LY(R?xR9) for the
Gaussian(x) = e~ IF1?, x e R?. The norm| f [l sy = | Voo f Il 11 ga 20 9IVESSo(R?) @ Banach algebra
structure under pointwise multiplication and/or convolution. For equivalent definitiofig®f ), as well
as basic theory, see [22].

2.2. Hilbert—Schmidt operators

A Hilbert—Schmidt operatoH € HS(RY) is a compact integral operator df(R?), i.e., H is defined
by

Hf(x):/KH(x,t)f(t)dt:fKH(x,x—t)f(x—t)dt a.e.f e L*(RY),

with kernelky € L?(R??). The space of Hilbert—Schmidt operators is a Hilbert space with inner product
(H1, Ho)us = (K, ku,) r2 [23,24]. For any orthonormal basis; };<; of L2(R?) we have

IH Gs=(H, H)us=Y_ [ Heill 2z,
iel
and thereford| H||us > | H| |- where| - ||z denotes the operator norm Bf € L(L?(R?), L?(R%)).

Our use of families of Hilbert—Schmidt operators is carried out on a symbolic level. For any Hilbert—
Schmidt operatoH with kernelxy € L2(R*?), theKohn—Nirenberg symbaty of H is defined as

UH(A)=0H(x,§)=/KH(x,x—y)e_zniy'sdy a.e

R4
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[25]. The operato can then be expressed using the Kohn—Nirenberg symbol by means of the formula

Hiw = [onx.f @ ae.
Rd
Critical to our analysis is the fact that the linear oper&orky +— oy is the composition of a partial

Fourier transformation and a volume preserving axis transformation. H&nhcg unitary and, conse-
quently,

(H1, Ho)us = (K, KHp) 12(R2) = (OHys OHy) [ 2(Rd ) - (8)

Since, in addition to (8), the Kohn—Nirenberg symbologf) H = w (1) o H o w(X)* for H € HSRY)
andi € RYxRR? satisfieso, )y = Tyon, We obtain thafp (1) P, 1}ic4 is @ frame or Riesz basis for its
closed linear span in HR?) if and only if{T:.0p,,}ica is a frame or Riesz basis for its closed linear
span inL2(R? xR?). The question of asking fT.0p,,}1ca is a frame or Riesz basis for the closed shift

invariant space generated BY,op, ,}ica in LZ(Rde@d) can be answered using zero set criteria for
spectral periodizations, e.g., [17,26—28] and Theorem 2.1.

2.3. Shift-invariance of functions defined on phase space

We have reduced the analysis of sequerpgs) P, ;}1c4 Of Hilbert—Schmidt operators iHS(R¢) to
the analysis of function sequencgop, , }ica i LZ(Rded). Since the sequencés(X) P, 1}5ca are
defined on phase space, we shall state a symplectic version of Theorem 1.4.1 in [17] as Theorem 2.1
part (b). The Fourier version of Theorem 2.1, part (a), is well-known and elementary to prove; and so the
proof of Theorem 2.1, part (a), is also straightforward.

Thesymplectic Fourier transformatiquF,, of functions defined on the phase sp&¢ex RY is formally
defined as follows:

Fy LA (RIxRY) — L2(RI%RY),  fr> Ffihr / F)e Z Ay,
Rd xRd
where

WA=, 8), (v, 6)] =x"- & —&-x, AN eRIxR? 9)

is the standard symplectic form @&f xR

The dual lattice ofA with respect to the standard symplectic formRhxR¢ is the so-callecdjoint
lattice A° C RYxR? of A; and it is defined by the rule; e A° if and only if [\, 1] € Z for all A € A.
Therefore, ifA = aZxbZ then we haver® = 1Zx 27, and, in general, we havet®| = |A|~* [29,30].

To illustrate the important role of the adjoint lattice and, consequently, the symplectic Fourier transfor-
mation, in time—frequency analysis, we mention the fact thatl) is a Riesz basis for its closed linear
span inL?(R%) if and only if (h, A°) is a frame forL?(R%) [30,31].

In the following, P, denotes periodization by the latticg, i.e., PAF(A) =), , F(A — 1), A €
RIxR? /A.

Theorem 2.1. GivenF € L2(RYxR9) and a full rank latticeA c R? xIR<.
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(a) The family {7, F},c4 is a Riesz basis for its closed linear span IRRIxRY) if and only if
Ppo|FyF)?<1a.e. onRYxRY / A°.

(b) The family{T; F '}, is a frame for its closed linear span P (R? x]f%d) ifand only if P4o | F, F|? < 1
a.e. on(RYxR? /A°)\ {x: Ppe|F;F|?(x) = 0}.

Theorem 2.1 and the material of Section 2.2 illustrate that the analyﬂsdﬁm}ke,‘ in LZ(]Rdx]ﬁ{d)
and therefore ofp (1) Py p}ieca In HS(RY) requires only a thorough investigation Bt‘o|]-'scrpgﬁ|2 on
RIxRY /A,

To this end, note that for any rank one operatpy, we have

op,, (M) =0p,,(x,§) = / gh(x — y)e 2 dy = e 2T g (0)h(E)  ae.
Rd

and therefore

Fyop,, (M) = Fyop,, (x,6) = / / g (XY (£ e 2mit € E=x ) g/ e

R Rd

=/g(x/) h(x' — x)e 2 dy' = Vg (x, ) = Vig(A). (10)
Rd

The results of Sections 2.2 and 2.3 allow us to prove Theorem 3.1.

3. Results

In [9], Feichtinger proved thaf (g, A) is a Gabor frame for.2(R?) generated by e So(RY), then
{0(L) Ps}iea is @ Riesz basis for its closed linear span in@®9) if and only if [¥| < 1, where¥ (x) =
S ealVegM)2eZ % x e RIXRY / A.

Theorem 3.1, part (a), is essentially Feichtinger’s theorem; and is, itself, the motivation for Theo-
rem 3.1, parts (b) and (c). Theorem 3.1, part (b), and Theorem 3.2 are precise statements of our main
theorem which was stated without hypotheses in Section 1. We emphasize that ttishietamy the-
orem asserting thafp (1) P, »}ica is either a Riesz basis or not a frame for its closed linear span in
HS(RY).

Theorem 3.1. Letg, h € L2(R?) and letA ¢ R? xR be a full rank lattice.

(@) The family{p(A) P, 1}:ca is @ Riesz basis for its closed linear span in %) if and only if
Pao|Vigl? < 1onRIxRY / A°.

(b) If (g, A) and (h, A) are Bessel sequences ir(R?), then{p (1) P, 1},ca is either a Riesz basis or
not a frame for its closed linear span in KIS?).

(c) If g, h € So(RY) \ {0}, then there exists > 0 such that, for alkx > r > 0, {p(aA) Py 1 }1ca is @ Riesz
basis for its closed linear span in KI8%).
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In the case off = i, we can drop the Bessel sequence condition in Theorem 3.1, part (b), and we
obtain the following result.

Theorem 3.2. Letg € L2(RY) and letA ¢ R* be a full rank lattice{p () P },<4 is either a Riesz basis
or not a frame for its closed linear span in KIS?).

For the calculations in the proofs of Theorems 3.1 and 3.2, we need the following simple facts.
Lemma 3.3. For g, h € L?(RY) we haveF, |V, g|? = V,hV,g. For g = h, this isF,|V,g|? = |V, g|?.
Lemma 3.3 is proven in [18, p. 17].

Lemma 34. Let F,:R? - R, n € N, be continuous functions with",_ F,(x) < B a.e. Then
> nen Fu(x) < B for all x e RY.

Proof. If there isxo for whichoo > A =Y """, F,(x0) > B, then there exist& € N such that

1
Gy (x0) = ZF (xo) = B—l— mln{A B+1).
n=1

SinceGy is continuous, there exists an open et R? such that
3 1
ZF Gy > 7B+ min(A, B+1}> B

onV, and this is a contradiction.O
The crucial lemma to prove Theorem 3.1, part (b), and Theorem 3.2 is the following result.

Lemma 35. Let A be a full rank lattice inRYxRY, and let g,h € L2(RY) with P,|V,g|? €
L®RIxRY /A). If h =g, orif (g, A°) and (h, A°) are Bessel sequences, then|V,¢|* = @ a..
for some functio® which is continuous o4 xR? / A.

Proof. We shall twice apply the Poisson Summation Formula for the symplectic Fourier transform. To
this end, we define the symplectic Fourier transformatiol. &R xR¢ ~ A) as follows:

Fy i LARIXRY /A) — 13(A°), FF()= f F()e Mgy,
RIxRE /A

For F € LY(RYxR4) with P, F € L2(RYxR? / A) andx € A°, we have

FsPAF(L) = / ( Z F()\,/ _ )L//)>62ni[)\’y)h] d = / F()L/)efZHi[)J,A] di = F.F(L).

Y AM'eA N
RdxR4 / A R4 xR

Therefore, the Poisson Summation Formula,
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PyF =A% Y FF()etH, (11)

reA°

with convergence of the right-hand sidefiIR(RY xR? / A), is valid. We apply (11) and Lemma 3.3 to
|Vigl? € LY(RYxRY) with P,4|V,g|? € L*(RYxR? / A) C L>(R?xRR? / A) to obtain

PsIVigP(W)=14°1 Y Vih (W) Veg(h) 4 ae i e RYxR? /A (12)
reA°

If (g, A°) and(h, A°) are Bessel sequences, thgii(1)}icao, {Veg (M) }reae € 12(A°) and, conse-
quently, {V,h(A) V,g(M)}iea- € 11(A°). Hence, the right-hand side of (12) is absolutely convergent and
s0 it is continuous ofR? xIR? / A. A

Let us now turn to the case= g and P,|V,g|*> € L°(R?xR? /A). P,|V,g|? bounded andV,g|?
continuous and positive impl#, [V, g|2(1) < || P4|V,g|?[l .~ for all » € RYxR? /A by Lemma 3.4. In
particular,P,|V,gl2(0,0) € R, i.e.,{|V,g>(M}ica € I1(A). SinceF,|V,g|? = | V,g|? the adjoint version
of Eqg. (11) implies that|V,g|>(A) }1c4 is the symplectic Fourier transform .|V, g|? and, therefore,

Pyl VeglP(W) = A D 1VegP(We?™ M ae ) e RIxRY /A, (13)
rEA

The right-hand side of (13) is continuous and therefore bounded. HEncd/, g|* € L>(R? x]f%‘l/A)
and, applying Lemma 3.4 again, we conclude that|V,g|? is bounded everywhere. In particular, we
have(| V,g|*(M)}rcae € 11(A°).

ReplacingA by A° in (13) and repeating the argument above, we conclude{tiag|?(A) }ic a0y €
M((A°)°).

The argument is completed by observing that)° = A [30, p. 257], and therefore

PalVeglP(W) = 14°] Y [VegP(We”™ M ae ) eRIxRY /A,
reA°

where the right-hand side is continuous®hxR? /A. O

Proof of Theorem 3.1. (a) The equivalence in Theorem 3.1, part (a), follows directly from (8), (10),
and Theorem 2.1, part (a). Alternatively it can be derived simply by using Feichtinger’s result in [9]
which we mentioned at the beginning of Section 3, since Lemma 3.3 and (11) imply,g|*> =
FYIVeg(M)[?}iea. For g # h, Feichtinger's criterion requires an analysis of the lower bound of

| F Y Vih (M) Vo8 (M }eal, Which is made significantly easier by means of our observation that

Ppe|Vigl? = f;l{th(k)Vgg(k)}keA.

(b) In order for{p(A) P, 4}1c4 to form a non-exact frameF = P,-|V, g|?> would have to be bounded,
vanish on a set of positive measure and be bounded away from zero off this set. Obviously, this criteria
cannot be fulfilled for continuou&, and Lemma 3.5 therefore implies Theorem 3.1, part (b), for the case
that(g, A) and(h, A) are Bessel sequences.

(c) To prove Theorem 3.1, part (c), let us observe thdt € Sy implies thatP,-|V,g|? converges
absolutely and uniformly ofR?xRR4 /A [7, p. 255]. SinceV, g is uniformly continuous for any e
L%(R?), we conclude thaP .|V, g|? is continuous and bounded.



34 J.J. Benedetto, G.E. Pfander / Appl. Comput. Harmon. Anal. 20 (2006) 26—40

Sinceg, h # 0 there exists.o € R? xIR? such thatV,g (o) # 0. Using the continuity o¥,g, we can
find an open, convex, and bounded ¥esuch thaiV, g|*> > %thgl2 > 0 onV. For any full rank lattice
A we can now choose > 0 so thatV contains a fundamental domain of' A°, guaranteeing a lower
bound of P,-1,.|V,g|? for anya > r. The fact thata A)° = @ =1 A° completes the proof. O

Proof of Theorem 3.2. See the proof of Theorem 3.1, part (b)a

Remark 3.6. The hypotheses in Theorem 3.1, part (b), and Theorem 3.1, part (c), can be weakened
considerably. For example, we could replace the Bessel sequence hypothégjsiorand (k, A) in
Theorem 3.1, part (b), with the hypothesis tifgt1{V,,h (1) V,g}ica- be continuous ORI xIRY / A;

and the hypothesis that & € So(R?) in Theorem 3.1, part (c), can be replaced with the hypothesis
|Ving|? € So(R?xRY).

4. Examples

Let us now provide examples illustrating our results for the easel. The first example in the case
of a Gaussian was pointed out to us by Hans Feichtinger.

Example4.1. For g € So(R) with V,g (1) # O forall A e RxR, e.g., letg be a Gaussian, sa\(x) = e,
we have thafp (L) P, . }1c 4 is @ Riesz basis iRIS(R) for any full rank latticeA.

Example4.2. There exist non-exact framesHS(R) of the form{p (1) H}; 4, whereH is not rank one.

For example, we may defing by means of its Kohn—Nirenberg symbol by choosifigy = 112 and

A= %(ZxZ). Since{M, F;ox}rca forms a non-exact frame for its closed linear spanL?mIR{xI@), o]

does{T,oy}; and, thereforefp (1) H};,c 4 forms a non-exact frame for its closed linear spahl${R).
Note that any such example implieg ¢ So(RxR), since otherwise - |oy|? is continuous.

Example 4.3. There also exist non-exact framesHiS(R) of rank one operators with smooth kernels,
e.g., letgo be a Gaussian and sét= {(n, 5)}n.nez- TheN(go ® go, A ® A) is a frame forLZ(RxR) and
we obtain thaf{z (1) P, (1) },,57ca IS @ non-exact frame (for its closed linear spam&(R)) composed
of rank one operators.

Example 4.4. There existg € Sp(R) and A C RxR such that{p (1) P,},.c4 is not a frame for its closed
linear span irHS(R). Consider any e So(R) such that supp < [0, 1]; thenV,g(x, &) =0 for |x| > 1.
If A=BZx3Z, B> 0, we haveA® = 4Z><%Z. Since in this case®,-|V,g|?(A) = 0 wheneveri e

[2, 4]0, %] C RxR/4Zx%Z, we have that{p(A)Pg}Aeﬁzx%Z, B > 0 is not a frame for its closed
linear span irHS(R).

Example 4.5. We now illustrate that Theorem 3.1, part (c), does not hold for arbiggakye L?(R).
Letg=> 72, Tka% 1_11,€ L?(R),whereD, f(x) = f(ax). For example, we haVP4D4g 1[7%

-3.41

1[7%+5’%+5] and||Tkagl[,%,%]||1 = ”Tka% 1[

217

2: 2
pal2 =K%



J.J. Benedetto, G.E. Pfander / Appl. Comput. Harmon. Anal. 20 (2006) 26—-40 35

We shall prove thagp (1) P, },ck zxz) iS not a frame for its closed linear spanHIS(R) for any K € N
by showing that, for ank e N,

L1
Pé(ZXZ)|Vgg|2¢L°°(RXR/?(ZXZ)>. (14)

To this end observe that

Vgg<n,0>=fg(x>g<x—n>dx=/ Y TD gl g p@di= Y k7
k=n+1 k=n+1

> / x“idx = 2(n + 2)_%.
n+2
Therefore

v, (o—ﬁ,o—ﬁ)
KK

An application of Lemma 3.4 gives (14).

Pz Veg?(0,00= )

n,me7z

2 00
> Z‘Vgg(n, O)’2 > ZZ(n +2)7 1 = .
n=1

nez

Remark 4.6. In [32] it is shown that forgs, g» € So(R), and f1, f> € L2(R) we haveV, f1-V,, fo €
So(RxR).

Example 4.5, on the other hand, shows that there exist&.?(R) such that Vgg|2 ¢ So(RxIR) since
for g constructed in Example 4.5 we have

00 = Pz.z|Vygl?(0) = <|vgg|2, > 5,,>

neZ?

with 3, 8, € SH(RxR).

Example 4.7. We shall now consider a classical example, namebt 10 and A = aZxbZ, a, b > 0.
The question for whicla, b, ¢ the Gabor systeng,., aZxbZ) is a frame has been analyzed extensively
by Janssen [33].

Note that{p(an, bm) P, }, mez is a frame or Riesz basis for its closed linear spangfo= 1o if
and only if{p($n, bem) Py, }o mez 1S the same. Hence, we shall analyze the functieng; = 10.1;, See
Figs. 1 and 2. In this case,

f01+x e~ %mittdr, for —1< x <0,
V. (x, S) = 1 _onite
g8 fx e dr, forO<x <1,

0, for |x| > 1,
and therefore
Sir? m (1—|x )& for x| < 1
|V, g|2<x,s>={ 722 xI< L
¢ 0, for x| > 1.
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Fig. 1. (A) Zero set on[O_l] 10,1 (dark). (B) Set containing all paikg, ), &, # > 0 such that®, 7. g7 Vgg|2 has a root (dark).
We include as reference the cunvg = 1 (dashed). (C) Set containing all paits b), a, b > 0 such tha{p (an, bm) Pg}, mez,
is not a Riesz basis iIHS(R) (dark). The curveib = 1 is included (dashed).

) 05

Fig. 2. (A) Janssen tie, i.e., set containing p&irsh), a, b > 0, such thatl,g 1}, a, b) is not a frame (dark), set containing pairs
(a,b), a,b > 0, such thatljg 1), a. b) is a frame (white). In the light area, it is known th@dig 1), a, b) is a frame ifab is
irrational. (B) Superposition of Janssen tie and Fig. 1.B. (C) Superposition of Janssen tie and Fig. 1.C.

Thus, Ppe|V,g|? = P%ZX;Z|V&,g|2 is continuous and bounded and we can rule out the existence of non-
exact frames for ang, b ’

Elementary calculations show that, fer= l andB = 1, PaZXﬂZW,ng is not bounded below if and
only if « =% andB = 3n forn e N\ {1}, or 2 <a<1andﬂ 2 formeN\{1},or§ <a <1
andp =2t fork e N\ {1}, or 1<« <2andﬂ e Ul 7=, forl eN\ {1}, or2<a.

Hence,{p(an, bm)P,}, ncz iS NOta Riesz basis for its closed linear sparHB(R), and, therefore,
by Theorem 3.2, it is not a frame for its closed linear spaH8iR) if and only if b < 1 or% <b<l1

2b—1 1 3k+1 2b—1 3 _ 2b-1
anda € Ul>2[ 1, 7] orl<b < 301 anda = g2 for k e N\ {1}, or 1< b < 3 anda = 5 for

meN\{l},orb_iandﬁzgforneN\{l}.

5. Gabor multipliers

Multipliers play a central role in functional and harmonic analysis. The theory of multipliers is based
on simple pointwise multiplication operators(, : L?(X) — L?(X), f — s - f, whereX is a measure
space and is a bounded function defined dn[34].
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In applied harmonic analysis, frequency domain multipliers, i.e., convolution operAftgrsf > 8 %
f wheres/*\f =35 f, are widely used, e.g., to model time-invariant channels in signal processing. Here,
we shall consider operators which are composed of an analysis op€ratd(R?) — L?(X), whose
range consists of real or complex valued functions or sequences, a pointwise multiplication by a fixed
function (sequence) on X, i.e., by the symbaot of the operator, and a synthesis operdto.?(X) —
L2(R?) For example, we havét; = F Lo M;oF.

Continuous Gabor multiplierare given by

Vi o Mp o Vg L3(RY) — L*(RY), fH/F(A)-ng(x)n(x)hdx,
A

for g, h € L?(R?), and they are widely discussed in the literature, e.g., in [35-37]. In the following, we
shall discussliscrete Gabor multipliersvhich, as noted in the Introduction, are formally given by

G f =TioMuoCyf =Y my(f. mWh)m()g =D mi(p(W)Pes) £, (15)

rEA reA

for f € L2(R?), whereA is a full rank lattice inR? xR?, g, h € L2(R?), and the so-calledpper symbol
{m; }rca is @ complex valued sequence [9,10]. The operé&tgrin (15) is well defined and bounded on
L?(RY), if, for example, the Gabor systers, A) and(k, A) are Bessel sequences anghif,} € I°(A).
Thus, (g, A) and(h, A) are dual Gabor frames fdr>(R?) if and only if G, = Id; > wherel, = 1 for all
reEA.

Discrete Gabor multipliers ofi?>(R) can be used to model time-varying filters in communications
engineering. While a convolution operator represents a time-invariant filter which allows the removal
of global frequency components in a signal, a Gabor multiplier allows for the decimation of a frequency
band[$2,, £2,] during atime intervalT;, T>] by settingn, = 0forA = (x, &) € [Ty, To]1 x[§21, 221N A C
RxR.

If (g, A) is an orthonormal basis df?(R%), and, thereforeA = 1, and ifh = g, then, discrete Ga-
bor multipliers associated tg, A) are exactly those operators mappib§(R?) to L?(R?) which are
represented by bi-infinite diagonal matrices with respect to the orthonormal(lgasis. In this case,
the operatoiG,, in (15) is bounded if and only ifm; },c4 is bounded, ands,, is stable if and only if
{Imx] "}, is well defined and bounded. Nevertheless, families of Gabor multipliers associated to Gabor
frames(g, A) and(h, A) are not simultaneously diagonalizable in generaiif < 1.

A contribution to the study of Gabor multipliers in the cgdsg # 1 is given in terms of operator
identification in Theorem 5.2. This result further illuminates the role of the critical defsity: 1 in the
theory of Gabor multipliers. Recall that Figs. 1.A and 1.B show {p&t) P, »},c4 may or may not be a
Riesz basis for its closed linear span in the sgas8eR?), regardless ifA| < 1,|A| =1, or|A| > 1.

Definition 5.1. Let X andY be normed linear spaces oV&r and let£(X, Y) be the space of bounded
linear operators mappinkj to Y. A normed space of linear operat&fsc £(X, Y) is identifiableif there
existsf € X such thal|Zf ||y < || Z| z forall Z € Z.

The operator space® which are considered here are defined by fixing a full rank lattice R? x R
andg, h € So(RY) with {p (1) P, 1}1c4 @ Bessel sequence HS(R?). We set
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Z=G(g.h, A)=1Gu=>_ mp()Pes: {m;} €1%(A) } C HRY), (16)
reA
and choose as norm afithe Hilbert—Schmidt norm, i.el|,- ||z = || - llns. The operators ig (g, h, A) C

L(L*(RY), L?(R?)) extend taSy(R?) sinceg, i € So(R?), i.e., we have(g, h, A) C L(SHR?), L2(RY))
with domainX = S{(RY) and range’ = L2(RY).

Theorem 5.2. Given a full rank latticeA in R? x R? andg, h € So(RY) such that{p (1) P, 1 }rca is @ Riesz
basis for its closed linear span in KI8?).

(@) If |[A] > 1 and (g, A) and (h, A) are Riesz bases for their closed linear spanZifR¢), then
G(g, h, A) is identifiable.
(b) If |[A| < 1, thenG (g, h, A) is not identifiable.

Proof. (a) Let|A| > 1 andg, & € So(R?) with (g, A) and(h, A) are Riesz bases for their closed linear
span inL2(RY). In order to construcy € Sy(R¢) which identifiesG(g, h, A), we pickg € So(RY) such
that(g, A°) is a dual frame ofg, A°) for L?(R%) [38]. Consequently we havé,g(0) =1 andV,g(r) =

0if A € A\ {0} [7, p. 133], [39]. We havef = > 7 (1) g € SH(RY) with weakK-convergence [22, p. 141],
and, therefore,

1Gm Sz = Y malf w)g)w (A)h me<2 T (M)g, n<x>g>n(x)h
reA L2 AEA MNeA L2
mex)h = [{m} | o py =< NG mllms,
reA

since(h, A) is a Riesz basis for its closed linear sparL#(R?) and{p(A) Py 1}rca is a Riesz basis for
its closed linear span IHS(R?). Hence,f identifiesG (g, i, A).

(b) Let |A] <1 and g,k € So(RY), and suppose thaf e Sé(Rd) identifies G(g, h, A). Since
H{my 2 < |G llus by hypothesis, identification df (g, 2, A) by f is equivalent to the fact that the
operator® ; :12(A) — L%R?), {m;} — G, f is bounded and stable.

Let M be the multiplication operator given byt :12(A) — [2(A), {m,} — {m, - (f,7(L)g)} and
observe that we havé s = T;, o M. The multiplication operato/M is bounded sincé f, w(1)g)| <
I fllsliglls, for all & € A and, therefore|| M{m; }2 < || f s g llsoll{m:}ll2. By assumption, we have
@ is stable and, is bounded, and, hencé/ is stable, i.e.{|(f, 7 (»)g)|~*} is bounded. This implies
that M is onto as well, and therefor®! is an homeomorphism.

Since|A| < 1, T, is not stable, and, sindd is bounded and onto, this contradicts the assumption that
the operato®; is stable. O

Identifiability results such as Theorem 5.2 can be found in [12]. There, it is shown that classes of
Hilbert—-Schmidt operators which are characterized by a rectangular band limitation of their Kohn—
Nirenberg symbols are identifiable if and only if the characterizing rectangle has area less than or equal
to one. Similarly, it is shown that classes of Gabor frame operators are identifiable if and only if the
generating latticer of time—frequency shifts satisfied | < 1.

Additional applications of the time—frequency analysis of such operators are found in [30,40-49].
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