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Abstract

Discrete Gabor multipliers are composed of rank one operators. We shall prove, in the case of rank one p
operators, that the generating operators for such multipliers are either Riesz bases (exact frames) or not f
their closed linear spans. The same dichotomy conclusion is valid for general rank one operators under
natural conditions. This is relevant since discrete Gabor multipliers have an emerging role in communi
radar, and waveform design, where redundant frame decompositions are increasingly applicable.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Inspired and initiated by von Neumann in quantum mechanics [1, pp. 405 ff.], and Gabor in co
nications and acoustics [2], decompositions of functionsf ∈ L2(Rd), such as

f =
∑

(x,ξ)∈Λ

〈f,MξTxh〉MξTxg, (1)
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have become a fundamental tool in time–frequency analysis and applications dealing with time-
spectra, e.g., [3–8]. In (1),g,h ∈ L2(Rd) are given square integrable functions on Euclidean spaceRd ,
Λ ⊂ Rd×R̂d is a full rank lattice (such asZ2d ) whereR̂d is Rd considered as a spectral domain,Tx is
the translation operatorTxk(y) = k(y−x), Mξ is themodulation operatorMξk(y) = e2πiy·ξ k(y), 〈· , ·〉
is the inner product inL2(Rd), and convergence is inL2(Rd).

The expansion (1) can be written operator theoretically in terms of the resolution of the id
IdL2 :L2(Rd) → L2(Rd) as

IdL2 =
∑
λ∈Λ

ρ(λ)Pg,h, (2)

where the rank one operatorPg,h :L2(Rd) → L2(Rd) is defined byf �→ 〈f,h〉g, and whereρ(λ)Pg,h is
the composition (conjugation)

ρ(λ)Pg,h = π(λ) ◦ Pg,h ◦ π(λ)∗, (3)

for π(λ)k(y) = MξTxk(y), λ = (x, ξ) ∈ Λ, and for the adjointU ∗ of the unitary operatorU . The equiv-
alence of (1) and (2) follows from the elementary calculation

π(λ) ◦ Pg,h ◦ π(λ)∗f (y) = 〈
f,π(λ)h

〉
π(λ)g(y). (4)

Further, the right side of (4) is∫
Rd

f (z)e−2πi(z−y)·ξ g(y − x)h(z − x)dz;

and so, from (3) and (4),ρ(λ)Pg,h is a Hilbert–Schmidt operator with kernelkλ(y, z) = e−2πi(z−y)·ξ g(y −
x)h(z − x), whereλ = (x, ξ). We denotePg,g by Pg.

In this context, the “dichotomy” theorem we shall prove, under mild necessary conditions ong andh,
is that{ρ(λ)Pg,h}λ∈Λ is a Riesz basis for its closed linear span in the space HS(Rd) of Hilbert–Schmidt
operators, or it is not a frame for this span, see Theorem 3.1.

The reason for the abstraction to the setting ofHS(Rd) for our theorem is the emerging importance
Gabor multipliersGm, which are formally defined by a weighted version of (2), namely

Gm=
∑
λ∈Λ

mλρ(λ)Pg,h, mλ ∈ C for λ ∈ Λ, (5)

e.g., [9–11], and the revitalization of underspread operators in the mathematical community, e.g.
As a concluding application of our dichotomy result and the inherent characterization of Riesz

of the form{ρ(λ)Pg,h}λ∈Λ, we shall describe the role of the volume of the latticeΛ in (5) in terms of
operator identification. In fact, we shall show that with natural hypothesesthe Gabor multiplier class
spanned by{ρ(λ)Pg,h}λ∈Λ is identifiable if the volume ofΛ is greater than one and not identifiable if th
volume ofΛ is less than one, see Theorem 5.2.

We begin in Section 2 with mathematical preliminaries concerning Gabor analysis, Hilbert–Sc
operators, and shift invariant spaces. Section 3 contains a precise statement and proof of our di
result, mentioned above, as well as some related results. Section 4 is devoted to relevant exam
Section 5 to Gabor multipliers and identification.
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2. Preliminaries

Throughout this paper we shall use standard notation from harmonic analysis and in particula
analysis as found in [7]. For example, we shall use the unitary Fourier transformationF onL2(Rd) which
is normalized to satisfyFg(γ ) = ĝ(γ ) = ∫

g(y)e−2πiy·γ dy, γ ∈ R̂d , for g ∈ L1(Rd) ∩ L2(Rd).
In addition, the notationP 
 R onX is used to abbreviate the following statement: there existA,B >

0 such that for allx ∈ X we haveAP(x) � R(x) � BP(x).

2.1. Gabor analysis

The short time Fourier transform off ∈ L2(Rd) with respect to a window functiong ∈ L2(Rd) \ {0}
is given by

Vgf (λ) = 〈
f,π(λ)g

〉 = ∫
Rd

f (y)g(y − x)e−2πiy·ξ dy, λ = (x, ξ) ∈ Rd×R̂d .

We haveVgf ∈ L2(Rd×R̂d) and‖Vgf ‖
L2(Rd×R̂d )

= ‖f ‖L2(Rd )‖g‖L2(Rd ). Further, we cansynthesizef ∈
L2(Rd), using translates and modulates of anyh ∈ L2(Rd) with 〈h,g〉 = 1, in the sense that the integr∫
λ
Vgf (λ)π(λ)hdλ converges weakly tof .

A central goal in Gabor analysis is to findg,h ∈ L2(Rd) and full rank latticesΛ ⊂ Rd×R̂d which
allow adiscretizationof the reconstruction formulaf ≡ ∫

λ
Vgf (λ)π(λ)hdλ of the form

f =
∑
λ∈Λ

Vgf (λ)π(λ)h, f ∈ L2
(
Rd

)
, (6)

with convergence inL2(Rd) and whereg andh are independent off .
A discussion of the validity of (6) entails Bessel sequences, Gabor frames, and Riesz bases

we now define.
Let g ∈ L2(Rd) and letΛ ⊂ Rd×R̂d be a full rank lattice. Formally, consider the discrete anal

operatorCg defined by

Cg :L2
(
Rd

) → l2(Λ), f �→ {
Vgf (λ)

}
λ∈Λ

,

and the discrete synthesis operatorTg = C∗
g defined by

Tg : l2(Λ) → L2
(
Rd

)
, {cλ}λ∈Λ �→

∑
λ∈Λ

cλπ(λ)g.

The set(g,Λ) = {π(λ)g}λ∈Λ is called aGabor system; and a Gabor system is aBessel sequenceif Cg

is a well-defined linear operator in which case bothCg andTg are bounded. A Bessel sequence(g,Λ) is
a framefor L2(Rd) if Cg is also stable, i.e., if‖f ‖L2(Rd ) 
 ‖Cgf ‖l2(Λ) for f ∈ L2(Rd), and it is aRiesz
basis(bounded unconditional basis) for its closed linear span inL2(Rd) if Tg is stable in addition to
being bounded, i.e., if‖{cλ}‖l2(Λ) 
 ‖Tg{cλ}‖L2(Rd ), for {cλ} ∈ l2(Λ).

The right-hand side of (6) is well defined if the Gabor systems(g,Λ) and(h,Λ) are Bessel sequence
Further, if(g,Λ) and(h,Λ) are frames, then the operator

Sg,h :L2
(
Rd

) → L2
(
Rd

)
, f �→

∑
Vgf (λ)π(λ)h
λ∈Λ
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is an algebraic and topological isomorphism. If(g,Λ) and(h,Λ) are frames, andSg,h = I :f �→ f ,we
say that(h,Λ) is adual frameof (g,Λ) [7].

Fundamental to the analysis of Gabor systems(g,Λ) is thevolume|Λ| of the full rank latticeΛ, which
is given by|Λ| = |detA|, whereA is chosen such thatAZ2d = Λ. In fact, if (g,Λ) is a Riesz basis for it
closed linear span inL2(Rd), then|Λ| � 1; and if(g,Λ) is a frame forL2(Rd), and therefore complet
in L2(Rd), then|Λ| � 1.

In the case thatΛ hascritical density, i.e., if |Λ| = 1, and(g,Λ) is a frame forL2(Rd), then(g,Λ) is
automatically a Riesz basis forL2(Rd), or, equivalently, anexact framefor L2(Rd), i.e.,(g,Λ) ceases to
be a frame if any one of its elements is removed. In case|Λ| < 1, any frame(g,Λ) for L2(Rd) is non-
exact(overcomplete), and one can remove any finite number of elements from(g,Λ) and the resulting
family remains a frame forL2(Rd). Further, if|Λ| < 1, then, for anyg ∈ L2(Rd), there exists non-trivia
{cλ}λ∈Λ ∈ l2(Λ) \ {0} for which 0= ∑

λ∈Λ cλπ(λ)g in L2(Rd).
The uncertainty principle provides insight into any decomposition such as (6) [13–18]. For ex

in the case of Gabor systems one manifestation of the uncertainty principle is the Balian–Low th
[19–21], which asserts that if(g,Λ) is a Riesz basis forL2(Rd), in which case we have|Λ| = 1, theng

cannot be well localized in time and frequency, in the sense that(∫ ∣∣yg(y)
∣∣2

dy

)
·
(∫ ∣∣ηĝ(η)

∣∣2
dη

)
= ∞ (7)

must occur.
We shall sometimes use the Feichtinger algebraS0(Rd) in place ofL2(Rd). S0(Rd) is the Banach

algebra composed of those functionsf ∈ L2(Rd) with the property thatVg0f ∈ L1(Rd×R̂d) for the
Gaussiang0(x) = e−‖x‖2

, x ∈ Rd . The norm‖f ‖S0(R
d ) = ‖Vg0f ‖

L1(Rd×R̂d )
givesS0(Rd) a Banach algebr

structure under pointwise multiplication and/or convolution. For equivalent definitions ofS0(Rd), as well
as basic theory, see [22].

2.2. Hilbert–Schmidt operators

A Hilbert–Schmidt operatorH ∈ HS(Rd) is a compact integral operator onL2(Rd), i.e.,H is defined
by

Hf (x) =
∫

κH (x, t)f (t)dt =
∫

κH (x, x − t)f (x − t)dt a.e.,f ∈ L2
(
Rd

)
,

with kernelκH ∈ L2(R2d). The space of Hilbert–Schmidt operators is a Hilbert space with inner pro
〈H1,H2〉HS = 〈κH1, κH2〉L2 [23,24]. For any orthonormal basis{ei}i∈I of L2(Rd) we have

‖H‖2
HS = 〈H,H 〉HS =

∑
i∈I

‖Hei‖2
L2(Rd )

,

and therefore‖H‖HS � ‖H‖L where‖ · ‖L denotes the operator norm ofH ∈ L(L2(Rd),L2(Rd)).
Our use of families of Hilbert–Schmidt operators is carried out on a symbolic level. For any Hi

Schmidt operatorH with kernelκH ∈ L2(R2d), theKohn–Nirenberg symbolσH of H is defined as

σH(λ) = σH(x, ξ) =
∫

κH (x, x − y)e−2πiy·ξ dy a.e.
Rd
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[25]. The operatorH can then be expressed using the Kohn–Nirenberg symbol by means of the fo

Hf (x) =
∫
R̂d

σH (x, ξ)f̂ (ξ)e2πix·ξ dξ a.e.

Critical to our analysis is the fact that the linear operatorK :κH �→ σH is the composition of a partia
Fourier transformation and a volume preserving axis transformation. Hence,K is unitary and, conse
quently,

〈H1,H2〉HS = 〈κH1, κH2〉L2(R2d ) = 〈σH1, σH2〉L2(Rd×R̂d )
. (8)

Since, in addition to (8), the Kohn–Nirenberg symbol ofρ(λ)H = π(λ) ◦ H ◦ π(λ)∗ for H ∈ HS(Rd)

andλ ∈ Rd×R̂d satisfiesσρ(λ)H = TλσH , we obtain that{ρ(λ)Pg,h}λ∈Λ is a frame or Riesz basis for it
closed linear span in HS(Rd) if and only if {TλσPg,h

}λ∈Λ is a frame or Riesz basis for its closed line

span inL2(Rd×R̂d). The question of asking if{TλσPg,h
}λ∈Λ is a frame or Riesz basis for the closed sh

invariant space generated by{TλσPg,h
}λ∈Λ in L2(Rd×R̂d) can be answered using zero set criteria

spectral periodizations, e.g., [17,26–28] and Theorem 2.1.

2.3. Shift-invariance of functions defined on phase space

We have reduced the analysis of sequences{ρ(λ)Pg,h}λ∈Λ of Hilbert–Schmidt operators inHS(Rd) to
the analysis of function sequences{TλσPg,h

}λ∈Λ in L2(Rd×R̂d). Since the sequences{ρ(λ)Pg,h}λ∈Λ are
defined on phase space, we shall state a symplectic version of Theorem 1.4.1 in [17] as Theo
part (b). The Fourier version of Theorem 2.1, part (a), is well-known and elementary to prove; and
proof of Theorem 2.1, part (a), is also straightforward.

Thesymplectic Fourier transformation,Fs , of functions defined on the phase spaceRd×R̂d is formally
defined as follows:

Fs :L2
(
Rd×R̂d

) → L2
(
Rd×R̂d

)
, f �→Fsf :λ �→

∫
Rd×R̂d

f (λ′)e−2πi[λ′,λ] dλ′,

where

[λ′, λ] = [
(x ′, ξ ′), (x, ξ)

] = x ′ · ξ − ξ ′ · x, λ,λ′ ∈ Rd×R̂d (9)

is the standard symplectic form onRd×R̂d .
The dual lattice ofΛ with respect to the standard symplectic form onRd×R̂d is the so-calledadjoint

lattice Λ◦ ⊂ Rd×R̂d of Λ; and it is defined by the rule:λ′ ∈ Λ◦ if and only if [λ′, λ] ∈ Z for all λ ∈ Λ.
Therefore, ifΛ = aZ×bZ then we haveΛ◦ = 1

b
Z× 1

a
Z, and, in general, we have|Λ◦| = |Λ|−1 [29,30].

To illustrate the important role of the adjoint lattice and, consequently, the symplectic Fourier tra
mation, in time–frequency analysis, we mention the fact that(h,Λ) is a Riesz basis for its closed line
span inL2(Rd) if and only if(h,Λ◦) is a frame forL2(Rd) [30,31].

In the following, PΛ denotes periodization by the latticeΛ, i.e., PΛF(λ) = ∑
λ′∈Λ F(λ − λ′), λ ∈

Rd×R̂d�Λ.

Theorem 2.1. GivenF ∈ L2(Rd×R̂d) and a full rank latticeΛ ⊂ Rd×R̂d .
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(a) The family {TλF }λ∈Λ is a Riesz basis for its closed linear span inL2(Rd×R̂d) if and only if
PΛ◦ |FsF |2 
 1 a.e. onRd×R̂d�Λ◦.

(b) The family{TλF }λ∈Λ is a frame for its closed linear span inL2(Rd×R̂d) if and only ifPΛ◦ |FsF |2 
 1
a.e. on(Rd×R̂d�Λ◦) \ {x: PΛ◦ |FsF |2(x) = 0}.

Theorem 2.1 and the material of Section 2.2 illustrate that the analysis of{TλσPg,h
}λ∈Λ in L2(Rd×R̂d)

and therefore of{ρ(λ)Pg,h}λ∈Λ in HS(Rd) requires only a thorough investigation ofPΛ◦ |FsσPg,h
|2 on

Rd×R̂d�Λ◦.
To this end, note that for any rank one operatorPg,h we have

σPg,h
(λ) = σPg,h

(x, ξ) =
∫
Rd

g(x)h(x − y)e−2πiy·ξ dy = e−2πix·ξ g(x)ĥ(ξ) a.e.

and therefore

FsσPg,h
(λ) = FsσPg,h

(x, ξ) =
∫
Rd

∫
R̂d

g(x ′)ĥ(ξ ′)e−2πi(x′·ξ ′+x′·ξ−x·ξ ′) dx ′ dξ ′

=
∫
Rd

g(x ′) h(x ′ − x)e−2πix′·ξ dx ′ = Vhg(x, ξ) = Vhg(λ). (10)

The results of Sections 2.2 and 2.3 allow us to prove Theorem 3.1.

3. Results

In [9], Feichtinger proved thatif (g,Λ) is a Gabor frame forL2(Rd) generated byg ∈ S0(Rd), then
{ρ(λ)Pg}λ∈Λ is a Riesz basis for its closed linear span in HS(Rd) if and only if |Ψ | 
 1, whereΨ (χ) =∑

λ∈Λ |Vgg(λ)|2e2πiλ·χ , χ ∈ Rd×R̂d�Λ.
Theorem 3.1, part (a), is essentially Feichtinger’s theorem; and is, itself, the motivation for

rem 3.1, parts (b) and (c). Theorem 3.1, part (b), and Theorem 3.2 are precise statements of o
theorem which was stated without hypotheses in Section 1. We emphasize that this is adichotomy the-
orem, asserting that{ρ(λ)Pg,h}λ∈Λ is either a Riesz basis or not a frame for its closed linear spa
HS(Rd).

Theorem 3.1. Letg,h ∈ L2(Rd) and letΛ ⊂ Rd×R̂d be a full rank lattice.

(a) The family {ρ(λ)Pg,h}λ∈Λ is a Riesz basis for its closed linear span in HS(Rd) if and only if
PΛ◦ |Vhg|2 
 1 on Rd×R̂d�Λ◦.

(b) If (g,Λ) and (h,Λ) are Bessel sequences inL2(Rd), then{ρ(λ)Pg,h}λ∈Λ is either a Riesz basis o
not a frame for its closed linear span in HS(Rd).

(c) If g,h ∈ S0(Rd) \ {0}, then there existsr > 0 such that, for allα > r > 0, {ρ(αλ)Pg,h}λ∈Λ is a Riesz
basis for its closed linear span in HS(Rd).
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In the case ofg = h, we can drop the Bessel sequence condition in Theorem 3.1, part (b), a
obtain the following result.

Theorem 3.2. Letg ∈ L2(Rd) and letΛ ⊂ R2d be a full rank lattice.{ρ(λ)Pg}λ∈Λ is either a Riesz basi
or not a frame for its closed linear span in HS(Rd).

For the calculations in the proofs of Theorems 3.1 and 3.2, we need the following simple facts

Lemma 3.3. For g,h ∈ L2(Rd) we haveFs |Vhg|2 = VhhVgg. For g = h, this isFs |Vgg|2 = |Vgg|2.

Lemma 3.3 is proven in [18, p. 17].

Lemma 3.4. Let Fn :Rd → R+, n ∈ N, be continuous functions with
∑

n∈N Fn(x) � B a.e. Then∑
n∈N Fn(x) � B for all x ∈ Rd .

Proof. If there isx0 for which∞ � A = ∑∞
n=1 Fn(x0) > B, then there existsN ∈ N such that

GN(x0) =
N∑

n=1

Fn(x0) � 1

2
B + 1

2
min{A,B + 1}.

SinceGN is continuous, there exists an open setV ⊂ Rd such that
∞∑

n=1

Fn � GN >
3

4
B + 1

4
min{A,B + 1} > B

onV , and this is a contradiction.�
The crucial lemma to prove Theorem 3.1, part (b), and Theorem 3.2 is the following result.

Lemma 3.5. Let Λ be a full rank lattice in Rd×R̂d , and let g,h ∈ L2(Rd) with PΛ|Vhg|2 ∈
L∞(Rd×R̂d�Λ). If h = g, or if (g,Λ◦) and (h,Λ◦) are Bessel sequences, thenPΛ|Vhg|2 = Φ a.e.
for some functionΦ which is continuous onRd×R̂d�Λ.

Proof. We shall twice apply the Poisson Summation Formula for the symplectic Fourier transfor
this end, we define the symplectic Fourier transformation onL2(Rd×R̂d�Λ) as follows:

Fs :L2
(
Rd×R̂d�Λ

) → l2(Λ◦), FsF (λ) =
∫

Rd×R̂d�Λ

F(λ′)e−2πi[λ′,λ] dλ′.

ForF ∈ L1(Rd×R̂d) with PΛF ∈ L2(Rd×R̂d�Λ) andλ ∈ Λ◦, we have

FsPΛF(λ) =
∫

Rd×R̂d�Λ

( ∑
λ′′∈Λ

F(λ′ − λ′′)

)
e−2πi[λ′,λ] dλ′ =

∫
Rd×R̂d

F (λ′)e−2πi[λ′,λ] dλ′ = FsF (λ).

Therefore, the Poisson Summation Formula,
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PΛF = |Λ◦|
∑
λ∈Λ◦

FsF (λ)e2πi[ · ,λ], (11)

with convergence of the right-hand side inL2(Rd×R̂d�Λ), is valid. We apply (11) and Lemma 3.3
|Vhg|2 ∈ L1(Rd×R̂d) with PΛ|Vhg|2 ∈ L∞(Rd×R̂d�Λ) ⊂ L2(Rd×R̂d�Λ) to obtain

PΛ|Vhg|2(λ′)=|Λ◦|
∑
λ∈Λ◦

Vhh(λ)Vgg(λ) e2πi[λ′,λ] a.e. λ′ ∈ Rd×R̂d�Λ. (12)

If (g,Λ◦) and (h,Λ◦) are Bessel sequences, then{Vhh(λ)}λ∈Λ◦, {Vgg(λ)}λ∈Λ◦ ∈ l2(Λ◦) and, conse
quently,{Vhh(λ)Vgg(λ)}λ∈Λ◦ ∈ l1(Λ◦). Hence, the right-hand side of (12) is absolutely convergent
so it is continuous onRd×R̂d�Λ.

Let us now turn to the caseh = g andPΛ|Vgg|2 ∈ L∞(Rd×R̂d�Λ). PΛ|Vgg|2 bounded and|Vgg|2
continuous and positive implyPΛ|Vgg|2(λ) � ‖PΛ|Vgg|2‖L∞ for all λ ∈ Rd×R̂d�Λ by Lemma 3.4. In
particular,PΛ|Vgg|2(0,0) ∈ R, i.e.,{|Vgg|2(λ)}λ∈Λ ∈ l1(Λ). SinceFs |Vgg|2 = |Vgg|2, the adjoint version
of Eq. (11) implies that{|Vgg|2(λ)}λ∈Λ is the symplectic Fourier transform ofPΛ◦ |Vgg|2 and, therefore,

PΛ◦ |Vgg|2(λ′) = |Λ|
∑
λ∈Λ

|Vgg|2(λ)e2πi[λ′,λ] a.e. λ′ ∈ Rd×R̂d�Λ◦. (13)

The right-hand side of (13) is continuous and therefore bounded. Hence,PΛ◦ |Vgg|2 ∈ L∞(Rd×R̂d�Λ)

and, applying Lemma 3.4 again, we conclude thatPΛ◦ |Vgg|2 is bounded everywhere. In particular, w
have{|Vgg|2(λ)}λ∈Λ◦ ∈ l1(Λ◦).

ReplacingΛ by Λ◦ in (13) and repeating the argument above, we conclude that{|Vgg|2(λ)}λ∈(Λ◦)◦ ∈
l1((Λ◦)◦).

The argument is completed by observing that(Λ◦)◦ = Λ [30, p. 257], and therefore

PΛ|Vgg|2(λ′) = |Λ◦|
∑
λ∈Λ◦

|Vgg|2(λ)e2πi[λ′,λ] a.e. λ′ ∈ Rd×R̂d�Λ,

where the right-hand side is continuous onRd×R̂d�Λ. �
Proof of Theorem 3.1. (a) The equivalence in Theorem 3.1, part (a), follows directly from (8), (
and Theorem 2.1, part (a). Alternatively it can be derived simply by using Feichtinger’s result
which we mentioned at the beginning of Section 3, since Lemma 3.3 and (11) implyPΛ◦ |Vgg|2 =
F−1

s {|Vgg(λ)|2}λ∈Λ. For g �= h, Feichtinger’s criterion requires an analysis of the lower bound
|F−1

s {Vhh(λ)Vgg(λ)}λ∈Λ|, which is made significantly easier by means of our observation that

PΛ◦ |Vhg|2 = F−1
s

{
Vhh(λ)Vgg(λ)

}
λ∈Λ

.

(b) In order for{ρ(λ)Pg,h}λ∈Λ to form a non-exact frame,G = PΛ◦ |Vhg|2 would have to be bounded
vanish on a set of positive measure and be bounded away from zero off this set. Obviously, this
cannot be fulfilled for continuousG, and Lemma 3.5 therefore implies Theorem 3.1, part (b), for the
that(g,Λ) and(h,Λ) are Bessel sequences.

(c) To prove Theorem 3.1, part (c), let us observe thatg,h ∈ S0 implies thatPΛ◦ |Vgg|2 converges
absolutely and uniformly onRd×R̂d�Λ [7, p. 255]. SinceVgg is uniformly continuous for anyg ∈
L2(Rd), we conclude thatPΛ◦ |Vgg|2 is continuous and bounded.
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Sinceg,h �= 0 there existsλ0 ∈ Rd×R̂d such thatVhg(λ0) �= 0. Using the continuity ofVhg, we can
find an open, convex, and bounded setV such that|Vhg|2 � 1

2|Vhg|2 > 0 onV . For any full rank lattice
Λ we can now chooser > 0 so thatV contains a fundamental domain ofr−1Λ◦, guaranteeing a lowe
bound ofPα−1Λ◦ |Vgg|2 for anyα � r . The fact that(αΛ)◦ = α−1Λ◦ completes the proof. �
Proof of Theorem 3.2. See the proof of Theorem 3.1, part (b).�
Remark 3.6. The hypotheses in Theorem 3.1, part (b), and Theorem 3.1, part (c), can be we
considerably. For example, we could replace the Bessel sequence hypothesis on(g,Λ) and (h,Λ) in
Theorem 3.1, part (b), with the hypothesis thatF−1

s {Vhh(λ)Vgg}λ∈Λ◦ be continuous onRd×R̂d�Λ;
and the hypothesis thatg,h ∈ S0(Rd) in Theorem 3.1, part (c), can be replaced with the hypoth
|Vhg|2 ∈ S0(Rd×R̂d).

4. Examples

Let us now provide examples illustrating our results for the cased = 1. The first example in the cas
of a Gaussian was pointed out to us by Hans Feichtinger.

Example 4.1. Forg ∈ S0(R) with Vgg(λ) �= 0 for all λ ∈ R×R̂, e.g., letg be a Gaussian, sayg(x) = e−x2
,

we have that{ρ(λ)Pg,g}λ∈Λ is a Riesz basis inHS(R) for any full rank latticeΛ.

Example 4.2. There exist non-exact frames inHS(R) of the form{ρ(λ)H }λ∈Λ, whereH is not rank one
For example, we may defineH by means of its Kohn–Nirenberg symbol by choosingFsσH = 1[0,1]2 and
Λ = 1

2(Z×Z). Since{MλFsσH }λ∈Λ forms a non-exact frame for its closed linear span inL2(R×R̂), so
does{TλσH }; and, therefore,{ρ(λ)H }λ∈Λ forms a non-exact frame for its closed linear span inHS(R).

Note that any such example impliesσH /∈ S0(R×R̂), since otherwisePΛ◦ |σH |2 is continuous.

Example 4.3. There also exist non-exact frames inHS(R) of rank one operators with smooth kerne
e.g., letg0 be a Gaussian and setΛ = {(n, m

2 )}m,n∈Z. Then(g0 ⊗ g0,Λ⊗Λ) is a frame forL2(R×R̂) and
we obtain that{π(λ)Pgπ(λ′)}λ,λ′∈Λ is a non-exact frame (for its closed linear span inHS(R)) composed
of rank one operators.

Example 4.4. There existg ∈ S0(R) andΛ ⊂ R×R̂ such that{ρ(λ)Pg}λ∈Λ is not a frame for its close
linear span inHS(R). Consider anyg ∈ S0(R) such that suppg ⊆ [0,1]; thenVgg(x, ξ) = 0 for |x| > 1.
If Λ = βZ×1

4Z, β > 0, we haveΛ◦ = 4Z× 1
β
Z. Since in this casePΛ◦ |Vgg|2(λ) = 0 wheneverλ ∈

[2,4]×[0, 1
β
] ⊂ R×R̂�4Z× 1

β
Z, we have that{ρ(λ)Pg}λ∈βZ× 1

4Z, β > 0 is not a frame for its close
linear span inHS(R).

Example 4.5. We now illustrate that Theorem 3.1, part (c), does not hold for arbitraryg,h ∈ L2(R).
Letg = ∑∞

k=1 TkD
k

3
2
1[− 1

2 , 1
2 ] ∈ L2(R), whereDaf (x) = f (ax). For example, we haveT4D

4
3
2
1[− 1

2 , 1
2 ] =

1 1 1 and‖TkD 3 1 1 1 ‖1 = ‖TkD 3 1 1 1 ‖2 = k− 3
2 .
[− 8+5, 8+5] k 2 [− 2 , 2 ] k 2 [− 2 , 2 ] 2
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ely
We shall prove that{ρ(λ)Pg}λ∈K(Z×Z) is not a frame for its closed linear span inHS(R) for anyK ∈ N
by showing that, for anyK ∈ N,

P 1
K

(Z×Z)|Vgg|2 /∈ L∞
(

R×R̂�
1

K
(Z×Z)

)
. (14)

To this end observe that

Vgg(n,0) =
∫

g(x)g(x − n)dx =
∫ ∞∑

k=n+1

TkD
k

3
2
1[− 1

2 , 1
2 ](x)dx =

∞∑
k=n+1

k− 3
2

>

∞∫
n+2

x− 3
2 dx = 2(n + 2)− 1

2 .

Therefore

P 1
K

(Z×Z)|Vgg|2(0,0) =
∑

n,m∈Z

∣∣∣∣Vgg

(
0− n

K
,0− m

K

)∣∣∣∣
2

�
∑
n∈Z

∣∣Vgg(n,0)
∣∣2 � 2

∞∑
n=1

(n + 2)−1 = ∞.

An application of Lemma 3.4 gives (14).

Remark 4.6. In [32] it is shown that forg1, g2 ∈ S0(R), andf1, f2 ∈ L2(R) we haveVg1f1 · Vg2f2 ∈
S0(R×R̂).

Example 4.5, on the other hand, shows that there existsg ∈ L2(R) such that|Vgg|2 /∈ S0(R×R̂) since
for g constructed in Example 4.5 we have

∞ = PZ×Z|Vgg|2(0) =
〈
|Vgg|2,

∑
n∈Z2

δn

〉

with
∑

n∈Z δn ∈ S ′
0(R×R̂).

Example 4.7. We shall now consider a classical example, namelygc = 1[0,c] andΛ = aZ×bZ, a, b > 0.
The question for whicha, b, c the Gabor system(gc, aZ×bZ) is a frame has been analyzed extensiv
by Janssen [33].

Note that{ρ(an, bm)Pgc
}n,m∈Z is a frame or Riesz basis for its closed linear span forgc = 1[0,c] if

and only if{ρ(a
c
n, bcm)Pg1}n,m∈Z is the same. Hence, we shall analyze the functiong = g1 = 1[0,1], see

Figs. 1 and 2. In this case,

Vgg(x, ξ) =



∫ 1+x

0 e−2πitξ dt, for −1� x � 0,∫ 1
x

e−2πitξ dt, for 0� x � 1,

0, for |x| � 1,

and therefore

|Vgg|2(x, ξ) =
{

sin2 π(1−|x|)ξ
π2ξ2 , for |x| � 1,
0, for |x| � 1.
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Fig. 1. (A) Zero set ofV1[0,1]1[0,1] (dark). (B) Set containing all pairs(α,β), α,β > 0 such thatPαZ×βZ|Vgg|2 has a root (dark)
We include as reference the curveαβ = 1 (dashed). (C) Set containing all pairs(a, b), a, b > 0 such that{ρ(an, bm)Pg}n,m∈Z

is not a Riesz basis inHS(R) (dark). The curveab = 1 is included (dashed).

Fig. 2. (A) Janssen tie, i.e., set containing pairs(a, b), a, b > 0, such that(1[0,1], a, b) is not a frame (dark), set containing pa
(a, b), a, b > 0, such that(1[0,1], a, b) is a frame (white). In the light area, it is known that(1[0,1], a, b) is a frame ifab is
irrational. (B) Superposition of Janssen tie and Fig. 1.B. (C) Superposition of Janssen tie and Fig. 1.C.

Thus,PΛ◦ |Vgg|2 = P 1
b
Z× 1

a
Z|Vgg|2 is continuous and bounded and we can rule out the existence of

exact frames for anya, b.
Elementary calculations show that, forα = 1

b
andβ = 1

a
, PαZ×βZ|Vgg|2 is not bounded below if and

only if α = 2
3 andβ = 3

2n for n ∈ N \ {1}, or 2
3 < α < 1 andβ = 2m

2−α
for m ∈ N \ {1}, or 2k+1

3k+1 < α < 1
andβ = 2k+1

2−α
for k ∈ N \ {1}, or 1� α < 2 andβ ∈ ⋃∞

l�2

[
l, l

2−α

]
, for l ∈ N \ {1}, or 2� α.

Hence,{ρ(an, bm)Pg}n,m∈Z is not a Riesz basis for its closed linear span inHS(R), and, therefore
by Theorem 3.2, it is not a frame for its closed linear span inHS(R) if and only if b � 1

2, or 1
2 < b � 1

anda ∈ ⋃∞
l�2

[
2b−1

bl
, 1

l

]
, or 1< b < 3k+1

2k+1 anda = 2b−1
(2k+1)b

for k ∈ N \ {1}, or 1< b < 3
2 anda = 2b−1

2mb
for

m ∈ N \ {1}, or b = 3
2 andβ = 2

3n
for n ∈ N \ {1}.

5. Gabor multipliers

Multipliers play a central role in functional and harmonic analysis. The theory of multipliers is b
on simple pointwise multiplication operatorsMs :L2(X) → L2(X), f �→ s · f , whereX is a measure
space ands is a bounded function defined onX [34].



J.J. Benedetto, G.E. Pfander / Appl. Comput. Harmon. Anal. 20 (2006) 26–40 37

Here,

a fixed

, we

l
n

ons
moval
uency

-

Gabor

r

d

In applied harmonic analysis, frequency domain multipliers, i.e., convolution operators,M̂ŝ :f �→ s ∗
f whereŝ ∗ f = ŝ · f̂ , are widely used, e.g., to model time-invariant channels in signal processing.
we shall consider operators which are composed of an analysis operatorC :L2(Rd) → L2(X), whose
range consists of real or complex valued functions or sequences, a pointwise multiplication by
function (sequence)s on X, i.e., by the symbols of the operator, and a synthesis operatorT :L2(X) →
L2(Rd) For example, we havêMŝ = F−1◦Mŝ◦F .

Continuous Gabor multipliersare given by

V ∗
h ◦MF ◦ Vg :L2

(
Rd

) → L2
(
Rd

)
, f �→

∫
λ

F (λ)·Vgf (λ) π(λ)hdλ,

for g,h ∈ L2(Rd), and they are widely discussed in the literature, e.g., in [35–37]. In the following
shall discussdiscrete Gabor multiplierswhich, as noted in the Introduction, are formally given by

Gmf = Th◦Mm◦Cgf =
∑
λ∈Λ

mλ

〈
f,π(λ)h

〉
π(λ)g =

∑
λ∈Λ

mλ

(
ρ(λ)Pg,h

)
f, (15)

for f ∈ L2(Rd), whereΛ is a full rank lattice inRd×R̂d , g,h ∈ L2(Rd), and the so-calledupper symbo
{mλ}λ∈Λ is a complex valued sequence [9,10]. The operatorGm in (15) is well defined and bounded o
L2(Rd), if, for example, the Gabor systems(g,Λ) and(h,Λ) are Bessel sequences and if{mλ} ∈ l∞(Λ).
Thus,(g,Λ) and(h,Λ) are dual Gabor frames forL2(Rd) if and only if G1 = IdL2 where1λ = 1 for all
λ ∈ Λ.

Discrete Gabor multipliers onL2(R) can be used to model time-varying filters in communicati
engineering. While a convolution operator represents a time-invariant filter which allows the re
of global frequency components in a signal, a Gabor multiplier allows for the decimation of a freq
band[Ω1,Ω2] during a time interval[T1, T2] by settingmλ = 0 for λ = (x, ξ) ∈ [T1, T2]×[Ω1,Ω2]∩Λ ⊂
R×R̂.

If (g,Λ) is an orthonormal basis ofL2(Rd), and, thereforeΛ = 1, and ifh = g, then, discrete Ga
bor multipliers associated to(g,Λ) are exactly those operators mappingL2(Rd) to L2(Rd) which are
represented by bi-infinite diagonal matrices with respect to the orthonormal basis(g,Λ). In this case,
the operatorGm in (15) is bounded if and only if{mλ}λ∈Λ is bounded, andGm is stable if and only if
{|mλ|−1}λ∈Λ is well defined and bounded. Nevertheless, families of Gabor multipliers associated to
frames(g,Λ) and(h,Λ) are not simultaneously diagonalizable in general if|Λ| < 1.

A contribution to the study of Gabor multipliers in the case|Λ| �= 1 is given in terms of operato
identification in Theorem 5.2. This result further illuminates the role of the critical density|Λ| = 1 in the
theory of Gabor multipliers. Recall that Figs. 1.A and 1.B show that{ρ(λ)Pg,h}λ∈Λ may or may not be a
Riesz basis for its closed linear span in the spaceHS(Rd), regardless if|Λ| < 1, |Λ| = 1, or |Λ| > 1.

Definition 5.1. Let X andY be normed linear spaces overC; and letL(X,Y ) be the space of bounde
linear operators mappingX to Y . A normed space of linear operatorsZ ⊂ L(X,Y ) is identifiableif there
existsf ∈ X such that‖Zf ‖Y 
 ‖Z‖Z for all Z ∈Z .

The operator spacesZ which are considered here are defined by fixing a full rank latticeΛ in Rd×R̂d

andg,h ∈ S0(Rd) with {ρ(λ)Pg,h}λ∈Λ a Bessel sequence inHS(Rd). We set
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Z = G(g,h,Λ) =
{

Gm =
∑
λ∈Λ

mλρ(λ)Pg,h: {mλ} ∈ l2(Λ)

}
⊂ HS

(
Rd

)
, (16)

and choose as norm onZ the Hilbert–Schmidt norm, i.e.,‖ · ‖Z = ‖ · ‖HS. The operators inG(g,h,Λ) ⊂
L(L2(Rd),L2(Rd)) extend toS ′

0(R
d) sinceg,h ∈ S0(Rd), i.e., we haveG(g,h,Λ) ⊂ L(S ′

0(R
d),L2(Rd))

with domainX = S ′
0(R

d) and rangeY = L2(Rd).

Theorem 5.2. Given a full rank latticeΛ in Rd×R̂d andg,h ∈ S0(Rd) such that{ρ(λ)Pg,h}λ∈Λ is a Riesz
basis for its closed linear span in HS(Rd).

(a) If |Λ| > 1 and (g,Λ) and (h,Λ) are Riesz bases for their closed linear span inL2(Rd), then
G(g,h,Λ) is identifiable.

(b) If |Λ| < 1, thenG(g,h,Λ) is not identifiable.

Proof. (a) Let |Λ| > 1 andg,h ∈ S0(Rd) with (g,Λ) and(h,Λ) are Riesz bases for their closed line
span inL2(Rd). In order to constructf ∈ S ′

0(R
d) which identifiesG(g,h,Λ), we pick g̃ ∈ S0(Rd) such

that(g̃,Λ◦) is a dual frame of(g,Λ◦) for L2(Rd) [38]. Consequently we haveVgg̃(0) = 1 andVgg̃(λ) =
0 if λ ∈ Λ \ {0} [7, p. 133], [39]. We havef = ∑

π(λ)g̃ ∈ S ′
0(R

d) with weak∗-convergence [22, p. 141
and, therefore,

‖Gmf ‖L2 =
∥∥∥∥∥

∑
λ∈Λ

mλ

〈
f,π(λ)g

〉
π(λ)h

∥∥∥∥∥
L2

=
∥∥∥∥∥

∑
λ∈Λ

mλ

〈∑
λ′∈Λ

π(λ′)g̃, π(λ)g

〉
π(λ)h

∥∥∥∥∥
L2

=
∥∥∥∥∥

∑
λ∈Λ

mλπ(λ)h

∥∥∥∥∥
L2


 ∥∥{mλ}
∥∥

l2(Λ)

 ‖Gm‖HS,

since(h,Λ) is a Riesz basis for its closed linear span inL2(Rd) and{ρ(λ)Pg,h}λ∈Λ is a Riesz basis fo
its closed linear span inHS(Rd). Hence,f identifiesG(g,h,Λ).

(b) Let |Λ| < 1 and g,h ∈ S0(Rd), and suppose thatf ∈ S ′
0(R

d) identifies G(g,h,Λ). Since
‖{mλ}‖l2 
 ‖Gm‖HS by hypothesis, identification ofG(g,h,Λ) by f is equivalent to the fact that th
operatorΦf : l2(Λ) → L2(Rd), {mλ} �→ Gmf is bounded and stable.

Let M be the multiplication operator given byM : l2(Λ) → l2(Λ), {mλ} �→ {mλ · 〈f,π(λ)g〉} and
observe that we haveΦf = Th ◦ M. The multiplication operatorM is bounded since|〈f,π(λ)g〉| �
‖f ‖S′

0
‖g‖S0 for all λ ∈ Λ and, therefore,‖M{mλ}‖l2 � ‖f ‖S′

0
‖g‖S0‖{mλ}‖l2. By assumption, we hav

Φf is stable andTh is bounded, and, hence,M is stable, i.e.,{|〈f,π(λ)g〉|−1} is bounded. This implie
thatM is onto as well, and thereforeM is an homeomorphism.

Since|Λ| < 1, Th is not stable, and, sinceM is bounded and onto, this contradicts the assumption
the operatorΦf is stable. �

Identifiability results such as Theorem 5.2 can be found in [12]. There, it is shown that clas
Hilbert–Schmidt operators which are characterized by a rectangular band limitation of their
Nirenberg symbols are identifiable if and only if the characterizing rectangle has area less than o
to one. Similarly, it is shown that classes of Gabor frame operators are identifiable if and only
generating latticeΛ of time–frequency shifts satisfies|Λ| � 1.

Additional applications of the time–frequency analysis of such operators are found in [30,40–4
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