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Abstract-Suppose k = (A + W)X is a system of stochastic differential equations, where A is a matrix of 
constants and W is a matrix of white noises. We say the system is reliable if the variance-covariance matrix 
of the states asymptotically approaches zero. We give conditions in terms of measures of the coefficient 
matrix and a matrix whose entries are standard deviation parameters of the coefficient noises which will 
insure that the system is reliable. 

The linear constant coefficient system of differential equations is a widely used mathematical 
model. If a situation can be described in terms of such a system, the solution provides 
predictions for the future states. For example, Lorenzen ef al.[3], have proposed a model for 
the phosphorus concentration in a lake. The model consists of a linear system of differential 
equations where the states are the phosphorus concentrations of the lake water and the lake 
bed as functions. of time. The predictions provided by the model are predicated on the 
assumption that the coefficients of the system are constant. These coefficients involve such 
physical parameters as the flow of water into the lake, and the volume and surface area of the 
lake. Parameters such as these may be subject to essentially unpredictable flucuations which 
could cast some doubt on the reliability of the predictions of the model. One approach to 
dealing with this problem is to introduce a stochastic noise term in the coefficients. The states 
then become stochastic processes. The expected values of the states can be used as a basis for 
predictions and their variances as a measure of the reliability of these predictions. 

The state variances are functions of the coefficients and their noise variances. One is 
naturally concerned with how much noise in the coefficients can be tolerated before the state 
predictions become unreliable, in that the state variances become large. We give here bounds 
on the variance parameters of the coefficient noises which will insure the state variances 
asymptotically approach zero. 

Suppose we have an n-dimensional system of differential equations 

i=(A+W)X (1) 

where A is a constant matrix and W is a matrix of white noises satisfying E(W) = 0 and 
E(Ws(t)Wjl(s)) = c&(t - s). The csj,‘s are covariance parameters and cijij is the variance 
parameter for the i,jth coefficient noise. 

This description is somewhat heuristic, but the system can be reformulated as an Ito 
equation of the form 

dX = f(X, t) dt + g(X, t) dB . (2) 

For our case, f(X, t) = AX, g(X, t) is an n x n* matrix whose diagonal entries are XT and off 
diagonal entries are zero matrices. Also, B is an n2-dimensional vector of second order 
stochastic processes with independent increments. For AB = R(t + At) - B(t) we asst.tme that 

E(AB) = 0 and E(ABAB? = CAt for a symmetric matrix, C. The relationship between this 
formulation and equation (1) is that one thinks of dB as being 
[W 11. * 9 w,,. . . w*, . . . Wzn.. * W,]. Also, the entries of C are the c&j,‘s. 

A second order, Markov solution exists and is unique for a given initial condition which is 
independent of the increments of B, ([2], Theorem 4.5; or [4], Theorem 5.2.4). Furthermore, if h 
is a function from R”+’ to R which has continuous second derivatives and X(t) is a solution to 
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(2), then 
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(see [5], Section 7.4.1 (c)). By applying this result to appropriate choices of h we obtain 
differential equations for the mean and second moments of X. In particular, if we let 
x(t) = E(X(t)) and S(t) = E(XX’) we have 

3=AX (3) 

Fi = AS + SAT + &,c&,]. (4) 

When the variance-covariance matrix for X approaches zero asymptotically, we say the 
system k = (A + W)X is reliable. Since this matrix is given by S - xx’, in order to insure that the 
system is reliable it suffices to provide conditions which imply that the zero solutions to 
equations (3) and (4) are asymptotically stable. 

Both systems are linear with constant coefficients. In fact, (4) can be written as an 
n’dimensional system whose coefficient matrix has entries of the form Uik& + &ail + cikil. A 
particular row of this matrix corresponds to a fixed value for i and j and a column to fixed 
values of k and 1. A sufficient condition for the reliability of the system is that all the 
eigenvalues of the coefficient matrices in (3) and (4) have negative real parts. The matrix A is 
assumed to be known, so, obtaining its eigenvalues would be a reasonable approach to dealing 
with (3). However, this may involve a great deal of computation, with its associated numerical 
difficulties. For (4), the problem is compounded by the fact that the coefficient matrix is n* x n*. 
This size could be reduced to n(n + 1)/2, since S is symmetric. In any case, finding eigenvalues 
for the coefficient matrix in (4) assumes that the cM’s are known. This does not allow one to 
establish, in advance, tolerance levels for the noise which will insure reliable predictions by the 
model. 

An alternate approach is provided by using matrix measurements. We define the measure of 
an n X n matrix, A, by 

P(A) = sup {Re (G) + z,,iI+I> . 

Letting Ix/= sup [xi1 for a vector x in C”, the measure of A satisfies 

lim (Ix + hA.r( - lxl)/h zs p(A>lxl. 
h-4+ 

(3 

Furthermore, if x is an eigenvector of A with eigenvalue, A, then the limit is equal to Re (A)(x(. 
So, the measure of a matrix is at least as large as the real part of any of its eigenvalues. This 
means that solutions to a system of differential equations are asymptotically stable if the 
measure of the coe5cient matrix is negative. 

This measure is one of a family of measures which have found wide application in the study 
of stability. For any norm on C”, an associated matrix measure can be defined to be the smallest 
number satisfying the inequality (5) for all vectors in C” (see [l], Chap. 2). We have chosen the 
measure induced by the sup-norm because it can be computed by inspection and provides 
significant simplification in dealing with noise covariances. In fact, our first result involves only 
p(A) and p(D) where D is the n x n matrix whose entries are di, = (ci,ij)“*. The entries of D are 
standard deviation parameters. Furthermore, we have Ictifils d&p 

THJZOREM 1. The system & = (A + W); is reliable if p(A) < 0 and p(D) < (-2p(A))ln. 

Proof. In view of our previous remarks, all that needs to be shown is that the coefficient 
matrix for the linear system equivalent to (4) has negative measure, i.e. for 
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we have Rii < 0. But, 

and the result follows. 
These estimates are somewhat crude,. in that the measure of a matrix may be positive, but 

the real parts of all its eigenvalues are negative. For the measure to be negative, the diagonal 
entries must be negative and small enough to dominate the absolute values of the other entries 
in the corresponding rows. For this reason, one might say that the theorem is useful only in 
systems where each state is the main contributor to its own decay. On the other hand, the 
estimates are very simple to compute and have meaningful physical interpretation, in that the 
entries of D are the standard deviation of the noise for corresponding entries in A. 

If one is willing to tolerate more computation then it is possible to avoid the problem caused 
by A having positive measure by transforming the system. If we let Y = BX for a non-singular 
matrix. B, then Y satisfies Y = (BAB-‘+ BWB-‘)Y and E(YYT) = BSBT. Therefore, if the 
system for Y is reliable, then so is the system for X. We denote by DB the matrix of deviations 
for the noise matrix BWB-‘. 

THEOREM 2. If there is a non-singular matrix B so that p(BAB-‘) ~0 and p(Dg) < 
(-2p(BAB-‘))I” then the system X = (A + W)X is reliable. 

The new states, Y, and the matrix, DB, may have no meaningful physical interpretation. 
In particular, the second inequality in Theorem 2 may be difficult to interpret in terms 
of tolerance levels for the original system noises. However, information about the original noise 
deviations, D, can be recovered because 

CL(&) 5 WBMD) 

where M(B) is the condition number of the matrix B. The condition number is defined by 
M(B) = sup {S,,(bikllb”l}, where bij and be are the entries of B and B-l, resp. We can then 
replace p(DB) in Theorem 2 by M(B)p(D) and the conclusion still follows. 

If p(BAB-‘) < 0 for some B then the real parts of all the eigenvalues of A must be negative. 
It follows from the proof of the next theorem that the converse is also true. 

If we let I= -sup Re(h) for A an eigenvalue of A then - p(BAB-‘) 5 I for any B. In order to 
have a generous estimate for p(D), it is reasonable to choose B to make -p(BAB-‘) as close to 
I as possible; this means making BAB-’ as close to diagonal as possible. For this reason, we 
choose B to be a matrix which transforms A to Jordan cannonical form, A + H, where A is 
diagonal and H has ones and zeros on the superdiagonal and zeroes elsewhere. Let k + 1 denote 
the size of the largest Jordan block in A + H, or in other words, k is the length of the longest 
string of consecutive ones in H. If A is diagonal, then k = 0, and conversely. Finally, if k > 0, 
then let L = -sup Re(h) for A an eigenvalue with at least one non-zero entry on the super- 
diagonal of one of its corresponding Jordan blocks. We can then give tolerance levels for the 
noise matrix DB in terms of the numbers, k, I and L. 

The nature of the estimates depends on relationships between k, 1 and L which we 
distinguish as follows: 

CaseI. k=OorLsI+l. 
Case II. k > 0 and I+ 1 > L 2 (2k + 1)/2k. 
Case III. k > 0 and I+ 1 > L and (2k + 1)/2k > L 2 (2k + 1)l. 
CaseIV. k>Oandl+l>Land(2k+1)/2k>Land(2k+l)l>L. 

THEOREM 3. If 1 >O then the inequalities below are sufficient conditions for X = (A + W)X to be 
reliable for the case indicated. 

Case I. p(DB) < (21)“*. 
Case II. g(DB) < (2(L - l))“*. 
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Case III. CL(&) < (21)“*(L - 1)‘. 
Case IV. CL(&) < (2L)“2(2kL)‘/(2k + 1)k+“2. 

Proof. The assumption, I> 0, implies that the eigenvalues of A have negative real parts and 
that solutions to R = AX are asymptotically stable. 

If k = 0, then A is diagonalizable, i.e. BAB-’ = A, so p(BAB-‘) = p(A) = -I and this part of 
Case I follows immediately from Theorem 2. For the remainder we have k > 0 so that HZ 0. 

For r>O, we construct a diagonal matrix, R, whose diagonal entries are powers of r, 
determined by the structure of A + H. For an m x m Jordan block in A + H, the m x m diagonal 
block in the same location in R is constructed as follows. For m = 1 the entry is 1; for m > 1 
the ith diagonal entry is rmei. Since r >O, R is non-singular and the largest power of r that 
appears is #. If we transform i = (A + W)X by RB, the coefficient matrix is A + rH, and for 
r < L we have p(A + rH) < 0. Moreover, p(DRB) s p(Dn) max (f, rek). So if, for 0 < r < L, 

p(Dg) < (-2p(A + rH))“2 min (r’, r-‘) (6) 

then k = (A + W)X is reliable. But, the quantity on the right in (6) is a continuous, non-negative 
function for 0 I r I L, and vanishes for r = 0 or r = L. Furthermore, it has at most three local 
maxima which, if they occur, are at r = L - 1, 1 and 2kL/(2k + 1). For each of the cases 
described in the theorem, the right hand side of the inequality is the global maximum for this 
function for 0 < r < L under the condition described in that case; so each is a special case of 

(6). 
As was the case with Theorem 2, if p(&) is replaced by M(B)F(D) the new estimates also 

imply that the system is reliable. 
In applications to modeling, the situation which occurs most often is that the eigenvalues of 

A are distinct. In this case A is diagonalizable and Theorem 3 assures the best possible 
tolerance level, (21)‘“. 
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