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Whnt signalling regulates several aspects of kidney development such as nephrogenesis, ureteric bud
branching and organisation of the collecting duct cells. We addressed the potential involvement of Dickkopf-1
(Dkk1), a secreted Wnt pathway antagonist. Dkk1 is expressed in the developing mouse kidney by pretubular
cell aggregates and the nephrons derived from them. Besides the mesenchyme cells, the epithelial ureteric
bud and more mature ureteric bud derivatives in the medulla and the papilla tip express the Dkk1 gene. To
reveal the potential roles of Dkk1, we generated a floxed allele and used three Cre lines to inactivate Dkk1
function in the developing kidney. Interestingly, Dkk1 deficiency induced by Pax8Cre in the kidneys led in
newborn mice to an overgrown papilla that was generated by stimulated proliferation of the collecting duct
and loop of Henle cells, implying a role for Dkk1 in the collecting duct and/or loop of Henle development.
Since Pax8Cre-induced Dkk1 deficiency reduced marker gene expression, Scnn1b in the collecting duct and
Slc12a1 in the loop of Henle, these results together with the extended papilla phenotype are likely reasons for
the decreased amount of ions and urine produced by Dkk1-deficient kidneys in the adult. Recombinant Dkk1
protein in cultured cells inhibited Wnt-7b-induced canonical Wnt signalling, which is critical for collecting
duct and loop of Henle development. Moreover, Dkk1 deficiency led to an increase in the expression of
canonical Wnt signalling of target Lef-1 gene expression in the stromal cells of the developing papilla. Based
on the results, we propose that Dkk1 controls the degree of Wnt-7b signalling in the papilla to coordinate

kidney organogenesis.

© 2011 Elsevier Inc. All rights reserved.

Introduction

Development of the permanent mammalian kidney begins when
the epithelial Wolffian duct at its caudal-most end starts to grow
dorsally towards the predetermined metanephric mesenchyme and
forms the ureteric bud. The ureteric bud branches from its tips during
kidney organogenesis, and each of the generated branches induces
nephrogenesis in discrete cells of the adjacent mesenchyme, the cap
cells, leading subsequently to their mesenchyme-to-epithelium
transition. This process is followed by simple morphogenesis steps
of the epithelialised renal vesicles and leads to formation of the
segmented nephrons via comma and S-shaped stages and fusion of
the structures to the branches of the ureteric tree. In association with
nephrogenesis, the endothelial cells are attracted to establish the
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functional glomerular and nephron-associated vasculature network
(Vainio and Lin, 2002; Yu et al., 2004; Schedl, 2007; Merkel et al.,
2007; Costantini and Kopan, 2010).

The developing kidney expresses a number of Wnt gene family
members that encode secreted signalling factors whose function is critical
for organogenesis (Merkel et al., 2007; Nusse et al., 2008; Haegebarth and
Clevers, 2009). These include Wnt-2b, -4, -6, -7b, -9b and — 11 (Stark et al.,
1994; Kispert et al., 1996; 1998; Lin et al., 2001a; Itdranta et al.,, 2002; Yu
etal,, 2009; Carroll et al., 2005), and knockout studies have so far identified
roles for Wnt-4, Wnt-7b, Wnt-9b and Wnt-11 in the control of kidney
organogenesis.

The availability of Wnts for signalling is regulated in part by the
extracellular matrix (ECM) and certain secreted and ECM-integrated
antagonists. The antagonists can bind directly to Wnt proteins and
prevent their binding to Frizzled or LRP5/6 co-receptors at the cell
surface. Dickkopf (Dkk) proteins represent secreted Wnt antagonists
(Glinka et al., 1998; Niehrs, 2006) and they are thought to block Wnt
signalling by interacting directly with specific domains of the Frizzled
or LRP5/6 co-receptors, preventing formation of a Frizzled-Wnt-LRP6
complex (Bafico et al., 2001; Mao et al., 2001; Semenov et al., 2001;


http://dx.doi.org/10.1016/j.ydbio.2011.02.019
mailto:seppo.vainio@oulu.fi
http://dx.doi.org/10.1016/j.ydbio.2011.02.019
http://www.sciencedirect.com/science/journal/00121606

1. Pietild et al. / Developmental Biology 353 (2011) 50-60 51

Bourhis et al,, 2010). Besides this, Dkks can form a complex with
Kremen co-receptors, which leads to Dkk-regulated caveolae-medi-
ated endocytosis of LRP to inhibit Wnt signalling in a target cell (Mao
et al.,, 2002; Yamamoto et al., 2008; Li et al., 2010a; Sakane et al.,
2010). R-Spondin1 is thought to relieve the inhibition that Dkk1
imposes on the Wnt pathway (Binnerts et al., 2007). Dkk1 is a critical
head inducer in the developing frog and mouse (Niehrs et al., 2001),
and evidence is available that in mammals, Dkks are involved directly
or via modulation of the LRPs in ontogeny of the limb, bone, vertebra,
craniofacial, skin and eye morphogenesis and certain diseases such as
cancer, blindness and bone disorders (Niehrs, 2006; Li et al., 2010b;
Lin et al., 2010).

Given the critical role of Wnt signalling in kidney organogenesis
and the presence of Dkks in murine kidney (Monaghan et al., 1999) we
addressed if Dkks would be involved in organogenesis and focused our
analysis on Dkki. We demonstrate that Dkk1 is expressed in the
developing kidney, particularly the developing nephrons, and the
ureteric bud cells and is later confined to the collecting duct and the
kidney papilla epithelial tip cells. By making a floxed Dkk1 allele and
by inactivating Dkk1 function with Pax8Cre, we show that Dkk1 is
important for development of the kidney papilla. Dkk1 deficiency by
Pax8Cre-stimulated papilla development by enhancing cell prolifer-
ation in the collecting duct and the loop of Henle cells, whose marker
gene expression was concurrently reduced. In a cell culture model,
Dkk1 attenuated signalling of Wnt-7b, which represents a Wnt that is
critical for papilla development and induced expression of Lef-1 gene
encoding a canonical Wnt signalling target. We propose that Dkk1
coordinates kidney papilla development by taking part in the control
over the degree of Wnt-7b signalling from the collecting duct cells to
the stroma.

Methods
Mouse lines and embryos

Generation of Dkk1flox mice and the Cre lines used for conditional gene
inactivation

To generate tissue-specific Dkk1 mutant mice, we used homolo-
gous recombination in ES cells to modify the Dkk1 allele so that Dkk1
exons 1 and 2 were flanked by loxP sites (Fig. 2). The targeting vector
was linearised by Notl digestion prior to electroporation into 129/0la
embryonic stem (ES) cells. To select for correct gene targeting, the
electroporated ES cells were cultured in the presence of 300 pug/ml
G418. Single G418-resistant ES cell clones were picked and expanded
individually. ES cell clones containing a Dkk1°¢ allele were
identified by Southern blot (Fig. 2B). Two positive Dkk10xme?/+ ES
cells were used to generate chimeric mice by blastocyst injection.
Male chimeras were mated with C57BL/6 wild-type females for germ
line transmission of the Dkk170*m¢® gene. Dkk1°m¢o/* progeny
were distinguished from wild-type littermates by PCR genotyping of
tail samples. To remove the thymidine kinase (TK) and neo selection
cassettes by FLP-mediated recombination, the Dkk1°¥"¢®/* mjce were
mated with transgenic Tg(ACTFLPe)9205Dym mice (Dymecki, 1996)
kindly provided by Prof. Giinther Schiitz (DKFZ Heidelberg). This gave
rise to Dkk1"/* mice that lack the selection cassettes, and in which
the exons 1 and 2 are flanked by LoxP sites. Recombination was
confirmed by PCR and Southern blot analysis. The Dkk1™%*
mice were back-crossed with C57BL/6 mice to obtain a congenic
strain.

Generation and genotyping of Wnt-4Cre, Pax3Cre and Pax8Cre
mouse lines has been described earlier (Bouchard et al., 2004; Engleka
et al,, 2005; Shan et al., 2010). Cre expression and its function were
confirmed by crossing the Cre lines with a floxed Rosa26-LacZ reporter
line (Soriano, 1999). The embryos for the studies were collected from
matings between the C57BI6 and 129SV mice. The embryos were

considered to be E0.5 at noon of the day of the appearance of the
vaginal plug.

The presence of Cre and loss of floxed Dkk1 exons (n, null allele) was
analysed by PCR in genomic DNA samples extracted from ear clips. The
following primers were used to genotype the Dkk1 conditional "c” allele;
5’-AGA ACT AAC CCA GCC CCA CAG CAG A-3',5'-CTC CTC AGG GAA GAC
AAC AAA GCC G-3’ and 5'-GTG CTC AAA CAC AAG CCA GTG ACG A-3'.
Inheritance of the Cre gene in the embryos and transgenic mice was
analysed with the primers 5'-GCA CGT TCA CCG GCA TCA AC-3’ and 5'-
CGA TGC AAC GAG TGA TGA GGT TC-3'. To obtain embryos with the
conditional Dkk1 knockout, first the Dkk1™ " mice were crossed with the
respective Cre™ line, and the littermates that had inherited the Cre”;
Dkk1 ™+ genotype were maintained and crossed with the Dkk1%¢ mice
to generate Cre™;Dkk1 ™ mice.

The animal care and procedures in this study were in accordance
with the principles and guidelines of the ATBW (officials for animal
welfare), German law and Finnish national legislation concerning the
use of laboratory animals, the European Convention for the protection
of vertebrate animals used for experimental and other scientific
purpose (ETS 123), and EU Directive 86/609/EEC. The experiments
involving generation of Dkk1°* mice were reviewed by the Internal
Animal Protection Commission of the DKFZ and finally approved by
the administrative headquarters “Regierungsprasidium Karlsruhe” of
the State of Baden-Wiirttemberg. The approval is based on a positive
votum of an appointed state governmental ethical commission
according to §15 of the German Animal Protection law (approved
licence numbers: G-108/05, A-08/05).

RNA isolation and quantitative real-time PCR

RNA from freshly collected wild-type mouse tissue was isolated
with Trizol Reagent (Invitrogen). cDNA was synthesised from total
RNA using Superscript II Reverse Transcriptase (Invitrogen). The
cDNA samples were further diluted and used for quantification of
gene expression by real-time PCR. Quantitative real-time PCR (qRT-
PCR) was used to analyse and compare Dkk1 expression levels using
cDNA templates from different tissues of newborn mice. Experiments
were performed with a Roche LightCycler 480 using the following
primer pairs and UPL mono-colour hydrolysis probes: Actb: 5’-CTA
AGG CCA ACC GTG AAA AG-3’; 5'-ACC AGA GGC ATA CAG GGA CA-37;
Dkk1, 5'-CCG GGA ACT ACT GCA AAA AT-3’ and 5’-GGT TTT CAA TGA
TGC TTT CCT C-3’, and UPL probes.

For real-time PCR employing the UPL probes, 20-ul reactions
containing 10 ul Probes Master mix (2x) (Roche), 1l primer mix
(10 pM each), 0.2 pl UPL probe, 3.8 ul H,0, and 5 pl template cDNA
were prepared in LightCycler 96 well plates (Roche). PCR was
performed with a programme that involved a pre-incubation step
followed by 55 amplification cycles, cooling and one-second-long
annealing at 60 °C. The samples were analysed in duplicates. Relative
expression levels were normalised to the values obtained from the
3-actin gene.

Histology, immunohistochemistry and [(3-galactosidase staining

Kidneys were prepared from E14.5 to E17.5 embryos or newborn
mice as indicated in the results section. The organs were fixed in 4%
paraformaldehyde (PFA) and processed via routine methods for
histology. The serially sectioned paraffin-embedded preparates were
either used for in situ hybridisation, immunohistochemistry or stained
with haematoxylin and eosin to inspect the tissue structures by histology.

Dkk1 protein was detected by immunohistochemistry with an
antibody against Dkk1 (Abcam) and an AlexaFluor 546-conjugated
goat-anti-rabbit secondary antibody. An antibody against Aquaporin
2 (AQP2) (Sigma) served to identify the collecting ducts while Lef-1
one (Cell Signalling) was used as a readout for canonical Wnt
signalling. Hoechst 33258 (Polysciences, Inc) reagent was applied to
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stain the nuclei from the sections. The activity of the LacZ-derived
3-galactosidase was visualised according to Jokela & Vainio (2007).

In situ hybridisation

Kidneys were fixed overnight in 4% PFA at +4 °C and stored in 70%
EtOH/PBT at — 20 °C before they were processed for in situ hybridisa-
tion that was performed as described earlier (Lin et al., 2001b; Zhang
etal., 2001). Changes in gene expression due to Dkk1 knockout during
kidney development was analysed by whole mount or section in situ
hybridisation with the aid of Insitupro (Intavis AG Bioanalytical
Instruments) or BioLane™ HTI (Holle & Hiittner AG) robots. Changes
in the expression of the Dkk genes during kidney development was
analysed by using embryonic kidneys obtained from embryos derived
from crosses between wild-type CD-1 mice. Probes used to analyse
changes in Podx1, Slc34al, Slc12al, Clcnkb and Scnn1b gene expression
were obtained as generous gifts, whereas the Dkk1, Dkk2 and Dkk3
were obtained as sequence tags and confirmed by sequencing.

Cell proliferation assay

Potential changes in cell proliferation induced by Dkk1 loss of
function were analysed in histological sections using a PCNA cell
proliferation kit (Zymed Laboratories Inc. Invitrogen) used according
to the manufacturer's instructions. Haematoxylin staining was
omitted to obtain better resolution of the proliferating cells. Mitotic
cells were counted with Image] software, using staining intensity as
the threshold criterion for assessing proliferating cells, and based on
scaling of the nuclear staining. Student's t-test was used to estimate
the statistical significance of the data.

Collection of urine

The Wnt-4Cre;Dkk1™° and Pax8Cre;Dkk1™¢ mice and the wild-type
littermates at the age of one year were kept separately and
individually for 24 h in metabolic cages, and during this period their
urine was collected and frozen immediately. The samples were
analysed for a panel of constituents of urine by the Mary Lyon Centre's
Clinical Pathology Service Laboratory at MRC Harwell in the UK.
Biochemical analysis was performed with a Beckman Coulter AU400
clinical chemistry analyser by applying the reagents and protocols
recommended by the manufacturer. The amount of ions present in the
urine produced by the Pax8Cre;Dkk1™¢ mice during the 24-h period
was normalised to the respective values obtained from the wild-type
littermates set at zero. The overall performance of the kidneys was
scored by calculating the total volume of urine produced at three time
points indicated in the results section. Student's t-test was applied to
estimate the statistical significance of the results.

Identification of proteins in urine

A total of 400 pl of urine produced by the wild-type or the Dkk1
mutant mice was centrifuged for 5 min at 10,000 rpm. The supernatant
was separated and the pellet was diluted in 30 pl of distilled sterile water
and mixed with 10 pl of SDS-PAGE buffer, while 30 pl of the supernatant
was diluted to 10 pl of buffer for SDS-PAGE analysis. Proteins present in
the urine were separated in a 10% SDS-PAGE gel and identified by
staining the gel with a silver staining kit (PageSilver™ Silver Staining Kit,
Fermentas). The gels were photographed with a Canon 40D camera. A
portion of the urine samples were used to analyse the proteins in it. A
MALDI-TOF sequencing of this urine protein component was performed
in the protein analysis core facility of Biocenter Oulu (http://www.
biocenter.oulu.fi/) using routine methods.

Wht reporter assay

AWnt reporter assay was done according to Railo et al. (2008). The
following amounts of plasmids were used; 5 ng of Wnt3a or Wnt-7b
expression plasmid, 250 ng of empty pcDNA3 plasmid that served as
the carrier DNA, 100 ng of SuperTopFlash canonical Wnt pathway
reporter and 5 ng of CMV-3-gal plasmid. Recombinant mouse Dkk-1
protein (R&D systems) was applied 6 h after the transfections as
indicated in the results section. Cells were lysed with Cell Culture Lysis
Reagent (Promega) 24 h after the transfection, and the respective
luciferase signals were monitored using the Luciferase Assay System
(Promega) with the aid of the Victor3V Multilabel Counter (Perkin
Elmer).

Results

Dkk1 is expressed in the developing ureter and nephrons and later
locally in their derivatives

To address the potential functions of Dkks during kidney
development, we analysed their expression pattern during organo-
genesis. For this purpose we used data from publicly available kidney
atlases (genepaint.org/Frameset.html and gudmap.org/), and based
on this we performed further studies with quantitative real-time PCR,
RNA in situ hybridisation and immunohistochemistry.

Dkk1-3 genes are expressed in the developing kidney (data not
shown). Comparing the relative expression of Dkk1 in different tissues
and organs of newborn mouse embryos, Dkk1 transcripts are
particularly abundant in the kidney (Supplementary Fig. 1), consis-
tent with the presence of a kidney regulatory element in the Dkk1
gene (Lieven et al,, 2010). In histology Dkk1 is expressed from E10.5
onwards in the metanephric mesenchymal cells and later in their
derivatives, the assembling nephrons (Fig. 1A-C; genepaint.org/
Frameset.html, gudmap.org/; Monaghan et al., 1999). Besides this,
Dkk1 is expressed by cells of the epithelial ureteric bud (Fig. 1B, C,
black arrowheads), tubular structures (Fig. 1B, grey arrowhead), in
the cortical region at birth where tubules are maturing (Fig. 1B), in the
developing ureteric bud-derived collecting duct (Fig. 1C, blue arrow-
heads), and at the tip of the kidney papilla (Fig.1D, arrowheads).
Consistent with the mRNA distribution, Dkk1 protein is present in the
cells of the collecting duct depicted with Aquaporin 2 (AQP2)
expression (Fig. 1E, compare F, arrowheads with E) and the loop of
Henle (Fig. 1, compare F with E, stars). Dkk2 is expressed by the
interstitial cells around the condensed mesenchymal cells during
kidney development, whereas Dkk3 is expressed weakly throughout
the embryonic kidney (data not shown). In addition to Dkk1 (Fig. 1D),
Dkk2 and Dkk3 are expressed in the epithelial tip cells of the
developing papilla (Supplementary Fig. 2A, C, arrowheads). Dkk1
expression during kidney development suggests that Dkk1 may be
involved in development of the nephrons and/or ureteric bud, both of
which contribute to kidney papilla development.

Dkk1 function is dispensable for early nephrogenesis, but it coordinates
tubulogenesis during renal papilla development

To address if Dkk1 is involved in kidney development, we
generated a mouse line that enabled tissue-specific knockout studies
and made Dkk1-floxed mice by homologous recombination in
embryonic stem (ES) cells (Fig. 2). The Dkk1/°*/* mjce demonstrated
normal expression of Dkk1 in all tissues, including the kidney (data
not shown). To address if Dkk1 plays a role in kidney ontogeny, we
used the Pax3Cre, Wnt-4Cre and Pax8Cre mouse lines, which all target
Cre from the early developmental stages onward to the kidney
(Bouchard et al., 2004; Engleka et al., 2005; Shan et al., 2010). In the
Pax3Cre and Wnt-4Cre mouse lines, recombination of the floxed
Rosa26 LacZ reporter occurs in kidney mesenchyme. Pax3Cre mediates
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Dkk1

WT

Pax8“*;Dkk1™

Fig. 1. Dkk1 is expressed during nephrogenesis as well as in the ureteric bud derivatives and later in epithelial tip cells of the kidney papilla. Expression patterns of Dkk1 were
analysed in the urogenital system by in situ hybridisation as whole mount (A), on tissue sections (B-D) or IHC (E-H). Dkk1 is expressed in defined regions in the embryonic kidney
(A), the developing nephrons (B, grey arrowhead), ureteric bud-derived collecting duct cells (B and F, arrowheads), the kidney papilla (E), the loop of Henle (C, blue arrowhead,
E, stars) and epithelial tip cells of the kidney papilla (D, arrowheads). Aquaporin 2 (AQP2) immunostaining in F and H depicts the collecting duct cells. Dkk1 deficiency induced with
Pax8Cre removes Dkk1 protein expression from the kidney papilla from both the collecting duct and the loop of Henle cells (compare G with E). (A) E14.5; (B-H) newborn (NB). Scale

bar 100 um.

recombination throughout most of the kidney mesenchyme and the
structures derived from it. Wnt-4Cre recombines the floxed marker
gene specifically in the early pretubular cells that give rise to the
nephrons (Supplementary Fig. 3A-F; Shan et al,, 2010). Some weak
LacZ-derived, Wnt-4Cre-activated expression is noted also in the
epithelial tip cells of the renal papilla (Supplementary Fig. 3E, F, black
arrowheads). Pax8Cre mediates recombination of the floxed Rosa26
LacZ reporter in cells adjacent to the developing nephrons in the
ureteric bud (Supplementary Fig. 3G-I, black arrowheads), even
though the endogenous Pax8 transcripts are normally not detected in
these cells, and also in the nephron-forming cells (Supplementary
Fig. 3G-I, white arrowheads) (Plachov et al., 1990). The introduced
Cre lines are suitable for addressing if Dkk1 plays a role in the

development of the nephrons and ureteric bud, which are regulated
by Wnt signalling (Stark et al., 1994; Karner et al., 2009; Yu et al.,
2009).

Pax3Cre-mediated inactivation of Dkkl function truncated the
anterior portion of the embryos, with the craniofacial region being
more poorly developed than in wild-type embryos (Supplementary
Fig. 4, compare K with ). This phenotype resembles the head defects of a
complete Dkk1 knockout (Mukhopadhyay et al., 2001) and is the likely
reason for the frequent perinatal deaths of Pax3Cre; Dkk1™¢ embryos. The
kidneys of the Pax3Cre;Dkk1™¢ embryos appeared normal and develop-
ment of the kidney compartments was indistinguishable from that of
the wild-type controls (Supplementary Fig. 4A-F; data not shown). This
was also the case if Dkk1 was conditionally inactivated by Wnt-4Cre
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Fig. 2. Generation of a floxed Dkk1 allele for conditional inactivation of Dkk1 by Cre-LoxP technology. A) Dkk1-targeting vector for production of a floxed version of the Dkk1 gene
contains a 5.1 kb 5’ arm for homologous recombination followed by Dkk1 exons 1 and 2 with LoxP sites introduced into the surrounding intronic sequences, a TK-neo selection
cassette flanked by FRT recombination sites and a 3.3 kb 3’ arm for homologous recombination. Upstream of the 5’ homology arm, the vector contains sequence encoding for the o
subunit of diphtheria toxin (DTa) as a negative selection marker. Due to the integration of the TK-neo selection cassette into the second intron of the Dkk1 gene, the size of a HindlIII
restriction fragment detected with an internal 3’ probe increases from 5 kb to 8 kb (B). Correct targeting introduces a new Xbal restriction site, which gives rise to an 8 kb fragment
from the Dkk1/x"¢° a]lele after Xbal digestion (B). This fragment is recognised by Southern blot with an external 5’ probe which identifies a 10 kb Xbal fragment from wild-type

genomic DNA and an extra 8 kb fragment when correct targeting has taken place.

(Supplementary Fig. 4, compare G-I with A-C), seen also as unchanged
expression of Wnt-11, Pax8, smooth muscle actin markers and
parameters of the urine (data not shown).

The efficiency of Pax8Cre-mediated Dkk1 inactivation was esti-
mated by staining wild-type and Pax8Cre;Dkk1™ embryonic kidneys
with an antibody against Dkk1. The results revealed those cells where
Dkk1 gene recombination had taken place and had thus inactivated

Dkk1 and the resulting Dkk1 protein expression. Pax8Cre inactivated
Dkk1 expression in the tubules in the emerging medulla, including the
papilla (Fig. 1, compare H with G). Dkk1 expression was lost both from
the collecting duct and the loops of Henle cells, as judged by double
immunostaining with Aquaporin 2 (AQP2), a collecting duct marker
(Fig.1, compare G with F, E, stars). In contrast, Pax8Cre-mediated
deletion of Dkk1 did not alter the expression of Dkk2 and Dkk3 in the
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tip cells of the kidney papilla (Supplementary Fig. 2B, D, arrowheads),
and these may compensate Dkkl actions to a certain degree, as
reported in some other systems (Phillips et al., in press).

In contrast to Pax3Cre- and Wnt-4Cre-mediated knockouts,
Pax8Cre-induced inactivation of Dkk1 function lead to two character-
istic phenotypes. The medulla of the kidney, especially the papilla
cells, were affected in the Pax8Cre-mediated Dkk1 knockout. Two out
of ten kidneys prepared from the Pax8Cre;Dkk1 ™ newborn mice had
developed hydronephrosis (Fig. 3, compare C with A). Besides this
condition, a typical phenotype with high penetrance was overgrowth
of the renal papilla in proportion to the rest of the kidney (Fig. 3B). In
such cases the papilla in the kidney medulla had become extended
over the lateral edge of the kidney capsule at the stalk and had
reached the epithelial lining of the lumen of the ureter outside the
kidney (Fig. 3B). An extended papilla was observed in both kidneys of
seven out of ten analysed knockout mice, whereas the kidneys of the
stage-matched wild-type mice that served as controls did not show
such a phenotype (Fig. 3, compare B with A).

An additional characteristic feature in the kidneys of the Pax8Cre;
Dkk1™¢ mice was hypertrophic collecting duct epithelial cells
observed at the tip of the extended renal papilla. The corresponding
cells of the kidneys of wild-type controls were cuboidal and arranged
in a row with respect to each other in the epithelial lining of the
papilla tip (Fig. 3, compare B with A, inserts). The results indicate that
Dkk1 coordinates development of the kidney papilla.

Dkk1 deficiency stimulates cell proliferation in the epithelial tubules of
the developing kidney papilla

Elongation of the kidney papilla in the Pax8Cre;Dkk1™* mice is of
interest, since morphological changes in the papilla may also have an
effect on kidney function. Deletion of Dkk1 function in the papilla may
lead to stimulated Wnt signalling activity that may promote cell
proliferation in the papilla region. To address this possibility we
analysed the degree of cell proliferation in different proximo-distal
areas of the papilla in Pax8Cre;Dkk1™¢ embryonic kidneys in
comparison to wild-type controls.

Kidney sections were stained with PCNA antibodies and the
amount of cells in mitosis was evaluated. As expected, Dkk1 deficiency

Wit

by Pax8Cre (Fig. 4B) did not change the rate of cell proliferation in the
kidney cortex when the rate was compared with wild-type controls
(Fig. 4. compare B with A). However, in the papilla region, Dkk1
deficiency enhanced the amount of mitotic cells when compared with
wild-type controls (Fig. 4, compare D with C).

The papilla of wild-type and Pax8Cre;Dkk1"* kidneys (N=5) was
divided into three non-overlapping areas: the root, middle and tip
regions, depicted in Fig 4E. The number of mitotic cells was evaluated in
each of the areas along the proximo-distal axis by defining the mitotic
index with the aid of Image] software. These studies revealed that the
most proximal papilla region contained the highest amount of mitotic
cells, in both the wild-type and Dkki1-deficient kidneys, but cell
proliferation was notably enhanced due to Dkk1 deficiency in
comparison with controls (p<0.005). The number of actively prolifer-
ating cells decreased towards the papilla tip region in both the Dkk1
knockout and wild-type kidneys, but the Dkk1-deficient papilla still
showed enhanced proliferation in each of the analysed papilla segments
(Fig. 4G, p<0.1 for the middle and p<0.05 for the tip region).

To reveal the nature of the cells that were stimulated to proliferate
due to Dkk1 deficiency in the papilla region, we used double staining.
Tissue sections were stained simultaneously with PCNA, to monitor
changes in cell proliferation, and collecting duct or loop of Henle
markers. These studies revealed that actively proliferating Dkk1-
deficient cells were present in both the collecting ducts and the
epithelial cells of the loops of Henle, but the loops of Henle contained
more actively dividing cells than the collecting duct (Supplementary
Fig. 5, compare B with A, in brown, arrowheads). We conclude that Dkk1
deficiency promotes development of the kidney papilla by stimulating
cell proliferation, possibly due to derepressed Wnt signalling.

Dkk1 antagonises Wnt-7b signalling that is critical for development of
the kidney papilla

Given that Dkk1 functions in some other systems as a secreted Wnt
antagonist, it may provide this inhibitory function to coordinate Wnt
activities also during kidney papilla development. Of the Wnts, Wnt-7b
has been implicated in medulla formation, since Wnt-7b deficiency in
the collecting duct leads to compromised papilla and pelvis development
(Yu et al., 2009). We therefore analysed if Dkk1 would indeed regulate
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Fig. 3. Conditional knockout of Dkk1 with Pax8Cre stimulates growth of the kidney papilla and can lead to hydronephrosis. Kidneys were prepared from newborn wild-type (Wt) and
Pax8Cre;Dkk1™ mice and processed for histology and hematoxylin-eosin staining. A) Section of a wild-type kidney. The lateral edge of the kidney capsule crossing the ureter is
depicted by a black dotted line and an arrow indicates the position of the papilla. A") High-power micrograph of the boxed area at the tip region of the papilla, revealing that the
papilla tip epithelial cells are cuboidal and project towards the renal pelvis. B) Knockout of Dkk1 with Pax8Cre has led to overgrowth of the whole papilla in proportion to the rest of
the kidney. The papilla extends outside the kidney all along the lateral extreme of the lumen of the ureter (arrowhead). The dotted line serves as a reference, indicating the
corresponding region depicted in (A). B') Note that the tip cells of the renal papilla appear hypertrophic (compare B' with A"). C) An example of a kidney prepared from a Pax8Cre;

Dkk1™¢ newborn mouse with hydronephrosis. (A-C) Newborn.
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Fig. 4. Pax8Cre-mediated Dkk1 deficiency induces cell proliferation in the kidney papilla. Expression of mitosis marker PCNA is not changed in the cortex of kidneys from Pax8Cre;
Dklk1™¢ newborn mice, when compared with the corresponding region in wild-type kidneys (A, B). Proliferation has been induced in the kidney papilla due to Dkk1 deficiency, as
judged by PCNA expression (compare D with C). (E) All the cells that express the PCNA were counted in the boxed areas (Root, Middle and Tip), and the values are presented in (G).
(F) Dkk1 deficiency stimulates cell proliferation in the papilla, as depicted by Hoechst staining. Note that some epithelial cells at the papilla tips contain two nuclei, indicating mitosis

(white arrows). (A-F) Newborn. Scale bar 50 pm.

the degree of Wnt-7b signalling. Wnt-3a was used as a positive control,
since it activates canonical Wnt/B-catenin signalling in most cell lines.
Indeed, transfection of Wnt-3a cDNA to both of the model cell lines,
the CHO-KI and the embryonic kidney mesenchyme-derived mK4
cells led to activation of the SuperTopFlash canonical Wnt pathway
reporter (Fig. 5A, C). In contrast to Wnt-3a, Wnt-7b activated the Wnt
signalling reporter only in the CHO-KI cells and the activation was
weaker than with Wnt-3a (Fig. 5. B, D). Thus, the CHO cells harbor a
receptor for Wnt-7b and serve as a relevant model for addressing if
Dkk1 regulates the degree of Wnt-7b signalling. We found that the
recombinant Dkk1 protein (100 ng/ml) efficiently inhibited both Wnt-
7b- and Wnt-3a-mediated activation of the Wnt reporter (Fig. 5A-C).
We next addressed if Pax8Cre-mediated Dkk1 deficiency would
change Wnt-7b gene expression, which could be relevant for enhanced
growth of the papilla. In wild-type kidneys, Wnt-7b is expressed

specifically in the collecting duct cells of the papilla (Yu et al,
2009) (Supplementary Fig. 6A). Wnt-7b remained expressed in the
collecting duct cells irrespective of Dkk1 deficiency induced by Pax8Cre
(Supplementary Fig. 6B). However, we found that Pax8Cre-mediated
deficiency of Dkk1 increased the number of cells that expressed canonical
Whnt signalling of target gene Lef-1 in the stroma of the medulla
(Supplementary Fig. 7A-C). Hence Dkk1 likely regulates Wnt-7b
signalling from the collecting duct cells to stromal cells during kidney
papilla development.

Pax8Cre-mediated knockout of Dkk1 in the developing nephrons and ureteric
bud reduces collecting duct and loop of Henle marker gene expression

Dkk1 is expressed in cells that give rise to the nephrons, the
collecting duct and the ureter. Dkk1 deficiency in the ureteric bud
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Fig. 5. Dkk1 inhibits Wnt-7b signalling in a model cell line. CHO-KI and embryonic kidney mesenchyme-derived mK4 cells were transfected with canonical Wnt signalling pathway
reporter SuperTopFlash lusiferase (Luc), Wnt-3a that served as the positive control or Wnt-7b cDNAs, CMV-B-Gal and carrier DNA. The capacity of recombinant Dkk1 protein to
regulate Wnt signalling was compared with non-Dkk1 treated controls. The cells were harvested 18 h after incubation with Dkk1, and changes in Luc activity were measured and
compared with the controls. Normalised luciferase activity in the control sample was arbitrarily set at 100. A) Wnt-3a induces robust activation of the SuperTopFlash reporter, which
is efficiently inhibited by the presence of recombinant Dkk1 protein. B) Dkk1 inhibits signalling of Wnt-7b. C) Dkk1 inhibited Wnt-3a-induced activation of the SuperTopFlash reporter
in the mK4 cells. D) The mK4 cells are not responsive to Wnt-7b signalling, suggesting that the kidney mesenchymal cells do not express a proper receptor for Wnt-7b.

stimulated cell proliferation, likely via increased Wnt-7b activity, and
thereby enhanced growth of the papilla. To analyse if Dkk1 deficiency
leads to defects in the structures derived from the Dkk1-expressing
precursor tissues, we studied segmentation of the nephron, formation
of glomeruli and the collecting duct based on in situ hybridisation of
marker genes. Podx1 serves as marker for the glomerulus (Takemoto
et al., 2006), Slc34al for the proximal tubulus (Raciti et al., 2008),
Clcnkb for the distal tubulus (Simon et al., 1997), Slc12a1 for the loop
of Henle (Raciti et al. 2008), and Scnnib for the collecting duct
(Brooker et al., 1995).

The results indicate that the glomeruli and major segments of the
nephron appeared to be correctly specified irrespective of Pax8Cre-
mediated Dkk1 deficiency, since no changes in the expression of Podx,
Slc34al or Clenkb were noted in the kidneys of the Pax8Cre;Dkk1™¢
embryos when compared with the wild-type controls (Supplementary
Fig. 8, compare E, F, G with A, B, C). However, expression of the loop of
Henle marker, Sic12al, and the collecting duct marker, Scnn1b, were
both reduced in their intensity in comparison with the wild-type
controls (Fig. 6, compare C, D, F with A, B, E). Hence, Pax8-Cre-mediated
Dkk1 deficiency reduces marker gene expression in the loop of Henle
and collecting duct, suggesting that besides affecting the tubular
organisation in the papilla, Dkk1 deficiency also affects these structures
and may therefore have an impact on the functional performance of the
kidney.

Dkk1 deficiency induced by Pax8Cre compromises kidney performance

Inactivation of Dkk1 with Pax8Cre led to overgrowth of the kidney
papilla, elongation of the loop of Henle segments of the nephrons and
the collecting ducts in this region. In addition to these changes, the
expression of specific ion channels in these tissues was reduced.
Collectively, these alterations may cause compromised kidney
performance. We addressed this possibility by analysing the amount
of urine and the presence of urinary proteins and solutes produced by
the kidneys of the wild-type and Pax8Cre;Dkk1™¢ mice.

Indeed, the kidneys of the 1-year-old Pax8Cre;Dkkl ™° mice
produced clearly less urine than the kidneys of the wild-type control
mice during the analysed 24-h time period (Fig. 7A). Moreover, the
analysis of the constituents of the urine obtained from the Pax8Cre;
Dkk1™¢ mice revealed changes in the amount of ions in comparison with
the wild-type controls. Sodium, potassium, urea, creatinine (CreUr),
phosphate, glucose and protein/Uprot amounts were all decreased. In
contrast, the amount of chloride and calcium was increased in the urine
produced by the Pax8Cre;Dkk1™¢ mice when compared with the
corresponding values of the wild-type mice (data not shown).

Given the changes in urine constituents due to tissue-specific
deficiency of Dkk1, we finally analysed potential changes in urinary
proteins. We found no changes in the amount of albumin in the Pax8Cre;
Dkk1™* samples in comparison with the controls. However, protein with
a size of around 100 kDa, which was detected in the urine of the wild-
type mice, was not present in the urine of the Pax8Cre;Dkk1™ mice
(Fig. 7B, arrowheads and data not shown). MALDI-TOF sequencing of this
component of urine revealed notable amino acid sequence similarity to
the major urinary proteins (MUP; Cavaggioni and Mucignat-Caretta,
2000) that normally are synthesised in the liver, submaxillary, lachrymal
and mammary glands, and secreted to serum, being excreted also to
urine (Shaw et al., 1983). These results suggest that Pax8Cre-mediated
Dkk1 deficiency leads to compromised kidney function.

Discussion

Dkk1 deficiency in the ureteric bud leads to defects in kidney papilla
development by impaired Dkk1-mediated antagonism of Wnt-7b signalling

We showed that, of the Dkks, Dkk1 is expressed in the assembling
nephrons of the embryonic kidney from the early developmental
stages onwards, especially during their epithelialisation, in line with
the findings of Monaghan et al. (1999). During maturation of the
nephrons, Dkk1 expression is confined to the medullary junction of
the loop of Henle. Besides the nephrons, Dkk1 is expressed in the
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Fig. 6. Pax8Cre-mediated Dkk1 deficiency reduces collecting duct and loop of Henle marker gene expression. Changes in the epithelial ducts of the kidney papilla due to conditional
Dkk1 deficiency were studied by in situ hybridisation with Scnn1b, a collecting duct marker, and Slc12a1, a loop of Henle marker probe. Slc12al is expressed in the loops of Henle (A),
but its expression intensity is reduced in the case of Dkk1 deficiency in the kidney in samples processed identically but excluding the extended papilla tip, depicted in Figs. 3B and 4E
(compare C with A, D with B). B, D) High magnification micrographs of A and C, respectively. Scnn1b is expressed in the collecting duct epithelial cells of the kidney medulla
throughout the papilla, but expression is reduced in this region due to Dkk1 deficiency (compare F with E). E, F) High magnification of in situ hybridisation, depicting the papilla tip

region. (A-G), newborn. Scale bars, A and C 500 um; B, D, E, F100 pm.

ureteric bud, the collecting duct and the papilla epithelial tip cells that
derive from it. The expression pattern raised the possibility that Dkk1
would coordinate Wnt signalling during nephrogenesis and/or
formation of the ureteric bud derivatives.

We addressed the potential role of Dkk1 in kidney development by
making a floxed Dkk1 mouse line. Pax3Cre, Pax8Cre and Wnt-4Cre
crossing was used and all these recombine the floxed Rosa26 LacZ
reporter in developing nephrons (Bouchard et al., 2004; Engleka et al.,
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2005; Shan et al., 2010). However, all the cases where the embryo had
inherited one null and one floxed Dkk1 allele but no Cre demonstrated
normal nephrogenesis in a situation where we noted, for example,
severe craniofacial defects in the Pax3Cre;Dkk1™¢ embryos, a
phenotype that is typical for DkkI1-null embryos (Mukhopadhyay
etal.,, 2001). Of the Wnts, the Wnt-4 gene is expressed in the pretubular
cells but becomes inactivated during transition of mesenchymal cells to
tubular epithelial cells (Stark et al., 1994). Hence in principle, of the
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Fig. 7. Pax8Cre-mediated inactivation of Dkk1 reduces urine production. A population of mice (N=5) were maintained individually in metabolic cages for 24 h and the urine
produced during this time was collected. A) The total amount of urine produced by the kidneys of the Pax8Cre;Dkk1™ mice is reduced considerably when compared with the amount
produced by the wild-type mice during the same time (p<0.0079). B) Analysis of the protein constituents of the urine produced by the wild-type and Pax8Cre;Dkk1™ mice by SDS-

PAGE indicates the loss of protein with around MW 100 kDa.
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Dkks, Dkk1 could regulate Wnt-4 signalling to control nephrogenesis.
However, besides Dkk1, embryonic kidney mesenchyme expresses
other Wnt antagonists, namely secreted Frizzled-related proteins
(sFRPs) 1 and 2, and these either inhibit or stimulate Wnt-4 signalling
(Yoshino et al., 2001). Hence, the FRPs may compensate for the loss of
Dkk1 in the control of early stages of nephrogenesis. It is also worth
noting that we detected some Dkk1 protein in the cortical regions of the
developing kidney in the case of Pax8Cre-mediated inactivation of Dkk1
in a situation where kidney papilla development was disturbed. In the
hypomorphic Dkk1 allele, doubleridge, where only 10% of the normal
Dkk1 remain expressed, for example, head development is still normal
(MacDonald et al., 2004). Hence, greatly reduced Dkk1 amounts can still
be physiologically effective and therefore, residual cortical Dkk1 in the
Pax8Cre;Dkk1™¢ embryonic kidney may still be sufficient to drive
nephrogenesis. Deficiency in Lrp6 that is bound by Dkk1 perturbs kidney
development, with a certain resemblance to the phenotype caused by
Whnt-4 loss of function (Stark et al., 1994; Pinson et al., 2000). This may
be taken as indirect support for the premise that Dkk1 may indeed have
arole in kidney mesenchyme development. Dkk1 deficiency in the adult
protects against diabetes-induced renal dysfunction and indicates that
Dkk1 has an intrinsic role in the kidney later (Lin et al.,, 2010). Hence,
new and more effective kidney-targeting Cre lines may be required to
obtain complete inactivation of Dkk1 in the nephron precursor cells to
reveal potential roles in early nephrogenesis stages.

Besides the cells that undergo nephrogenesis, Pax8Cre recombines
the floxed reporter gene in the ureteric bud and its derivatives. The
staining revealed that Pax8Cre inactivated Dkk1 function in the ureteric
bud derivatives, the collecting duct, the cells of the renal pelvis epithelial
cells, the papilla tip cells and the ureter. Indeed, an extended papilla
developed in the kidneys of seven out of ten of the analysed Pax8Cre;
Dkk1™¢ mice, and some kidneys were hydronephrotic. The extended
papilla phenotype is likely caused by enhanced proliferation of the
kidney papilla cells, the collecting duct and the loop of Henle cells.
Typically, reduction of Dkk function is connected to enhanced pro-
liferation of cancer cells (Niehrs, 2006; Hirata et al., 2010; Zhou et al.,
2010), and this is in line with our findings. Hence, we conclude that Dkk1
function is connected to maturation of the papillary epithelial cells, the
ureteric bud-derived collecting duct, the loops of Henle cells or both.

Kidney medulla expresses several Wnts, namely Wnt-2b, -4, -6, -7b,
-9b and —11 (Stark et al., 1994; Kispert et al,, 1996; 1998; Lin et al.,
2001a; Itdranta et al., 2002; Yu et al., 2009; Carroll et al., 2005), but out of
these, Wnt-7b is critical for papilla development (Yu et al., 2009), a
process thatis influenced by Dkk1 deficiency. Wnt-7b is expressed in the
collecting duct epithelial cells in the developing papilla region, but the
knockout also influences the loop of Henle development, making Wnt-
7b a signal that also coordinates loop of Henle development via the
stromal cells. Since Pax8Cre; Dkk1™° kidneys exhibit an extended papilla
and inhibition of both collecting duct and loop of Henle marker gene
expression took place at the same time, we propose that Dkk1 in the
kidney papilla regulates kidney development by controlling the activity
of Wnt-7b in the stromal cells. Thus, by binding to the Frizzled/LRP
complex in the stromal cells, Dkk1 may fine-tune the activity of Wnt-7b,
thereby also influencing loop of Henle growth and maturation (Glinka
et al., 1998; Niehrs, 2006) (Supplementary Fig. 9). As support to this
proposal, we demonstrated that Dkk1 protein indeed inhibits Wnt-7b-
induced activity of a canonical Wnt signalling pathway reporter when
the receptor for Wnt-7b is expressed in the target cell. Also, expression of
canonical Wnt signalling of targeted gene Lef-1 was increased due to
Dkk1 deficiency. We cannot exclude at present that Dkk1 may also have
an independent role in the embryonic loop of Henle cells.

Dkk1 deficiency in the ureteric bud leads to changes in the performance
of the kidney

The length of tubules in the kidney papilla was extended in the
kidneys of the Pax8Cre;Dkk1™¢ mice, and especially the loop of Henle

cells, but also the collecting duct contained more proliferating cells
when compared with the controls. We showed that Dkk1 knock out by
Pax8Cre reduced expression of loop of Henle and collecting duct
marker genes. Of these, the Slc12al gene encodes a Nat-K*-2Cl~
pump in the loop of Henle, and the Scnnib gene encodes a sodium
channel non-voltage-gated 1, 3 in the collecting duct. The respective
proteins take part in the tubules to control reabsorption of ions,
calcium and magnesium from the urine into the body and mainte-
nance of the volume of extracellular fluid (Mount et al., 1999). Thus,
the reduction in Slci2al expression is in line with the increase in
calcium that was observed in the urine of the Dkk1-deficient mice. The
reason for the reduced overall urine production noted in the Dkk1
mutant mice may be the elongated papilla with an extended loop of
Henle, the collecting duct tubules and a defect in their maturation.
These changes likely alter the balance of the ion channels that are
involved in absorption of ions and fluids from primary urine. Hence,
by controlling development of the papilla and expression of the
associated genes, Dkk1 is involved in setting up the functional capacity
of the mature kidney.

Dkk function and the papilla tip

Based on long-term tracing of bromodeoxy uridine-labelled cells
in the kidney papilla, the papilla has been shown to contain slowly
cycling cells (Al-Awqati and Oliver, 2006). We found that the
proximal papilla tip had less proliferating cells than the more distal
papilla region. Moreover, fate mapping experiments with the aid of
Pax8Cre and Wnt-4Cre crossed with the floxed Rosa26 LacZ reporter
line revealed LacZ-positive cells in the tip of the papilla. We noted
LacZ-positive cells in both the epithelial lining of the papilla and the
adjacent mesenchymal zone. These data indicate that in cells
expressing Wnt-4 and Pax8, their established cell lineages give rise
to cells that contribute to papilla development. Even though Wnt-4Cre
line-based fate mapping is not a direct indication of Wnt activity in the
papilla tip region, the presence of Dkk1 and other Dkk gene transcripts
suggests that the Wnt signalling system operates in the tip region to
coordinate generation of cells from the possible stem cell niche.
Whether the Wnt signals indeed also control the papilla tip and
promote generation of progenitor cells in these regions warrants
further investigations.

In summary, we showed that Pax8Cre-mediated Dkk1 knockout
leads to enhanced cell proliferation in the kidney papilla, especially in
the collecting duct and loop of Henle, being the likely reason for
extended papilla growth. The overgrown papilla is expected to be
behind the more efficient water absorption from primary urine due to
the extended Henle's loops, which may cause the observed decrease
in urine volume in the Pax8Cre;Dkk1™° mice. In the case of Dkk1
deficiency we propose that Wnt-7b signalling to the stromal cells is
enhanced and stimulates growth of the papilla, including its loops of
Henle and collecting duct. Hence, Dkk1 may function during papilla
development by fine-tuning Wnt-7b signalling to coordinate the
canonical Wnt signalling connected to collecting duct and loop of
Henle development critical for kidney function (Supplementary Fig. 9;
Yu et al., 2009).

Supplementary materials related to this article can be found online
at doi: 10.1016/j.ydbio.2011.02.019.
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