THE STHUCTURE OF MEDIAN GRANHS

Martyn MULDER
 Nelterlamés

Received 21 June 1977
Devised 30 Janwary 1978

A median priph is a comected graph, such that for any three vertices u, v and w there is exactly one veriex x that lies simult neousiy on a shortest (n :) path, a shortest ($0, w$)-path and a shortest (k, ,)-path. It is proved that a median graph can lis cbtained from a one-vertex graph by an txpansion procedure. From this characterization some nice propesties are derived.

0. Introduction

In [2] the concept of median graph was introduced. It v as shown that there is a close velation hotween median graphs and some at first sight fairly distinct mathenatical smuctures. One of these is a special class of Heliy hypergraphs. This class consists of the hypergraphs with vertex-set V and edge-set $E \subset P(V)$, such that

$$
A \in E \Leftrightarrow V A \in E
$$

and

$$
E^{\prime} \subset E \cap E^{\prime}=\emptyset \Rightarrow \exists A, B \in E^{\prime}: A \cap B=\emptyset .
$$

In the seque a structural characterization of median graphs is give a and some mice properties are derived.

With some minor adaptations the terminology of Bondy and Murty [1] is, adopted.

1. Detinitions and prelimionries

Lat $G=(V, E)$ be a simpie lcopless graph with vertex-set V, edge-set E and distance function d. The grapt. G is a median graph if G is connected, and for any three vertices u, v and w of G there is exactly one vertex x, called the median of $4, v$ and w and denoted by (u, v, w), such that

$$
\begin{aligned}
& d(u, x)+d(x, v)=d(u, v) \\
& d(u, x)+d(x, w)=d(v, w) \\
& d(w, x)+I(x, u=d(w, u)
\end{aligned}
$$

The notion of median graph was introducet in [2]. All trees and the n-abes are median graphs. It is easily seen that a median graph is bipartite (as will be proved later).

A cutset in a connected graph is a minmal disconnecting edge-set (a bond in [1]).

A cuiset colouring of a connocted graph is a proper edge volouring of the gaph (adjacent edges have different colours), such that for any colour i, the set of elges assigned colour i is a cutset (or the emsty set). Necessary conditions for the existence of a cutset colouring of a connected graph G are:
$-G$ is loopless (because of the minimality, a cutset conaans no loops):

- G is simple (two edges joining the same patr of vertices have to be woned differently, but they must belong to the same cutset):
- O is bipartite (a cutset contans an even number of edges of each circuit (in [1] called cycle); so a circuit contains an even number of edges of each colou: in the cutset colouring, and thus has even lergth);
- G does not contain $K_{2,3}$ as a subgraph (if a cutser contains an edge of $K_{2,3}$ t ten it contains at least two adjacent edges of $K_{2,3}$).
A connected graph is said to be miquel, cutset colourdble, it the graph adnits, ap to the labelling of the colours, exactly one cutet colouring.
Note that, if we want to establist a cutset colouring of a con nected graph, we are forced to assign the same colour to non-adjacent edges in any circuit of lergth four. Hence the n-abe is uniquely cutset colonable with n colours.

A convex subgraph of a graph G is an induced subgrapa $O[W]$ of G such thet with any two vertices $u, v \in W$ all shortest u, v)-paths in G lie entirely in $G[W]$. Cieary a convex subgraph of a median greph is itself a median graph.

For subsets S, T of the vertex-set of a raph. [S. Ti denotes the set of ecges with ane end in S and the other in T.

Fig

I et G be a smple loonless graph. Ler $W, W^{\prime} \subset V$ be such hat $W \cup W^{\prime}=V$. $W \cap W^{\prime} \neq 0$ and $\left[W \backslash W^{\prime}, W^{\prime} \backslash W^{\prime}\right]=0$.

The expmasion of G with respect to W and W ' is the granh G constructed as follows:
(i) replace each vertex $v \in W \cap W^{\prime}$ by two vertices u_{v}, u_{0}^{\prime}, which are joined by in edge:
(i) join w, to the neighbours of v in $W \backslash W^{\prime}$ and u, those in $W^{\prime \prime} \backslash W$;
(ii) if $c, w \in W \cap W^{\prime}$ and $v \in \in E$, then join $u_{\text {, }}$ to u_{w} and u_{0}^{\prime} to $u_{w}^{\prime \prime}$.

In rig. I the constrution of an expasion of a graph is ifustrated by an example.
HI GlW] and G[W'] are conves smbraphs of G, then G will be called a conver

2. The structure of median grapis

Theorem. A srah G is a motion graph iff G con be obtained from a one-venex grapi by a sequence of convex cxpansions.

The proof of the theorem will be given in the next section. In the course of the proof several properties of median graphs will be inferred. which are interesting in their own night and which clucidats the structure of median gaphs. Therefore they are stated here as corollaries to the theorem.

Corolary 表. A i, chan graph is untucly cutar colourable.
Corollary 2. Len G be a median graph and $F=[W, V \backslash W]$ a contur of the catset colnang of G. St $U=\{u \in W \mid u$ end of an edge of $F\}$ and $U=\{u \in V \backslash W \mid$ a cud of an elge of F. Then
(i) $G[U], G[U], G[W]$ and $G[V \backslash W]$ are convex subgraphs of G, and thus are mediun graphs;
(ii) the mapping $f: U \rightarrow U^{\prime}$ defined by

$$
f(u)=u^{\prime} \text { iff } u u^{\prime} \in F
$$

induces a colour meserving isonorphism berweem $G[U]$ and $G[U]$.
Note that not all uniquely cuiset colourable graphs are median graphs. Deleting a k-cube from an n-cube, with $n-3 \equiv k \geqslant 0$, produces a uniquely cutset colourab 'e graph, which is not a median graph.
From the theorem, the folfowing charactenzation (cf. [2]) of median graphs is casily deduced by induction on the number of vertices, or on the number of colours in the cu set colouring.

Corollary 3. A graph G is a median graph iff G is a connected induced subgrarh of Gn n-cube shich that with any three verices of G their median in the n-cube is also a vertex of G.

Remark. Other chanacterizations of median gaphs obtained in [2] can also be derived from the theorem.

3. Prowit of the theorem

First the if part of the proof.
Let G be a median graph. Let G^{\prime} be a conves expansion of G say, with respect to W and W. Let

$$
U=\left\{u_{\mathrm{e}} \mid v \in W \cap W^{\prime \prime}\right\}
$$

and

$$
U^{\prime}=\left\{u_{\mathrm{v}}^{\prime} \mid v \in W \cap W^{\prime}\right\}
$$

where u_{v} and u_{v}^{\prime} are as in Section 1.
Set $Z=\left(W \backslash W^{\prime}\right) \cup U$ and $Z^{\prime}=\left(V^{\prime} \backslash W\right) \cup L^{\prime}$. Then $Z \cup Z^{\prime}$ is the vertex-se; of G^{\prime}.

From the definition of expansion, it is clear tat $G[Z] \equiv G[W], G^{\prime}\left[Z^{\prime}\right] \equiv G\left[W^{\prime}\right]$ and $G^{\prime}[U] \equiv G^{\prime}\left[U^{\prime}\right]$. Futhermore, thelows hat $G[Z]$ and $G[Z]$ are convex subgraphs of G^{\prime}. And thus, since $G[W]$ and $C\left[W^{\prime}\right]$ are median graphs, any three vertices in Z (or in Z^{\prime} have a unigue mediar in Q^{\prime}.

Take three vertices of G^{\prime}, not all in Z or in Z^{\prime}, say $a, b \in Z$ and $c \in Z^{\prime}$. Let x be the redian of the ver ices in G corresponding to a, b and c. Now a shortest path in G from a vertex in Z to a vertex in Z^{\prime} can se obtained from a shortest path in G between the corresponding vertices, by "adcing" an edge bewcen U and U 'to the peth. Moreover, all vertices on a shotest (t, b)-path in O^{*} ie in z. Hence the vercex of G^{\prime} in Z corresponding to x is the uniquely determined median of a, b and c in G^{\prime}.

Although it goes against the advice of [3], the proof of the only $i]$ part of the theorem is broken into a succession of steps. This is done, because the proof is rather lengthy, and also because several prope ties of median graphs can thereby be stated separately.

Let $G=(V, E)$ be a median graph. Far an dge $e=a b$ of a and defno

$$
\begin{aligned}
& W_{a}:=\{w \in V \mid d(a, w)+1=d(b, w)\} \\
& W_{b}:=\{w \in V \mid d(a, w)=d(b, w)+1\}, \\
& F:=\left[W_{a}, W_{b}\right], \\
& U_{a}:=\left\{u \in W_{a} \mid u \text { end } c \text { an edge in } r\right\}, \\
& U_{b}:=\left\{u \in W_{b} \mid u \text { end of an } d \text { de in } F\right\}
\end{aligned}
$$

Note that W_{s} is the set of all vertices that are nearer to a than to b, and W_{s} of all vertices that are nearer to b than to a. Clearl $a \in W_{a}$ and $b \in W_{b}$.
(0) If u, veV are jomed by an edge, then $(4,2, w)=u$ or a but clearly not both, for all $w \in V$.

Proof. Apply the defintion of median.
(1) $W_{c}=\{w \in V \mid(a, w, b)=a\}$, and $W_{t}=\{w \in V \mid(a, w, b)=b\}$

Proo. Follows directly from (0).
(2) $W_{b}=V \backslash W_{a}$.

Proof. Use (0) and (1).
(3) G is bipartite.

Pronf. Since ab is an abitary edge of G, asserticn (2) implies that for any two adjacent vertices u and v there exists no vertex w in G, such that $d(u, w)=$ $d(v, w)$. So G contains on odd circuts.
(4) For $v \in W_{a}$ ean shortest (a, v) path lies entiely in $G\left[W_{a}\right]$, for $v \in W_{b}$, each shortest (b, v)-path ias entirely in $G\left[W_{b}\right]$.

Proot. Use the deflation of W_{a} and W_{b}.
(5) F is a cutset.

Proof. Assertion (2) implies that F is a disconnecting edge-set. And (4) implics that $G\left[W_{a}\right]$ and $G\left[W_{0}\right]$ are connected, so F is mimimal.
(6) If $u \in U_{a} . v \in L_{b}$, such that $u v \in F$, then $d(u, a)=d(v, b)$.

Proof. Since $w \in f$, we have

$$
d(v, b)+1=d(0, a) \leq d(u, a)+1=d(u, b) \leq d(v, b)+1
$$

(7) F is a matching.

Proof. Assume on the contrary that there exists a vertex u, say $u \in U_{a}$, such that u has two distinct neghbours a' $v^{\prime} \in U_{b}$.

According to (3) ,he graph G contains no triangles, so $d\left(v, v^{\prime}\right)=2$. Furthermore, (6) implies thet $d(v, a)=d\left(v^{\prime}, a\right)=d(u, a)+1$, so we have $\left(v, v^{\prime}, a\right)=u$.

Since $v, v^{\prime} \in W_{b}$, it follows from the defnition of W_{b}, that b hies on a shortest (a, v)-path, as well as on a shortest $\left(a, v^{\prime}\right)$-path. Hence $\left(v, v^{\prime}, b\right)=\left(v, v^{\prime}, a\right)$.

Eut (4) iruplies that $\left(v, v^{\prime}, b\right) \approx W_{\text {, }}$ So $u \in W_{b} \cap U_{a} \subset V_{b} \cap W_{a}$ thes estabishing a contradiction with $V_{a} \cap W_{b}=\tilde{y}$.
(8) For $u \in U_{a}$ each shortest (a, i)-path ies entirely in $G\left[U_{a}\right]$. for $u \in U_{b}$, ach shortest (b, u)-path les entirely in $G\left[U_{b}\right]$.

Proof. We only prove the first assertion, ising induction on $t(a, a)$,
Let v be the neighbour of z in U_{t} and let $w \in w_{a}$ be a neighbour of u ueh that $d(a, w)=d(a, u)-1$.

Then (6) implies $d(v, b)=d(a, u)=d(a, v)+1=d(b, w)$. Moreover, $d(b, w)=2$. Hence (v, w, b) is a common neighbour σ and w. According to (4), we tave $(u, w, b) \in W_{b}$ and thas $w \in U_{a}$.
(9) For any cdge wo of G such that $u \in U_{a}$ and $v \in U_{b}$, we have $W_{a}=$ $\{w \in V \mid(u, w, v)=u\}$ and $W_{b}=\{w \in V \mid(u, w, v)=v\}$.

Proof. First let in be a neighbour of a an thus θ a neighbour of b.
We shall prove that $\left.W_{i} \subseteq\{w \in V)(4, w, v)=u\right\}$. Then similarly W, \underline{B} $\{w \in V \mid(u, w, v)=c\}$ and thus, using (1), b th equalities hold.

Take a vertex $w \in W_{a}$. Set $d(a, w)=k$. Then $d(b, w)=k+1$.
If $(a, u, w)=u$, then $d(u, w)=d(a, w)-1=k-1$. Now

$$
d(u, w)+1 \geq d(u, w) \geq d(h, w)-1=k+1-1>k-1 \approx d(u, w) .
$$

And hence $c^{2}(v, w)=d(u, w)+1$.
If $(a, u, w)=a$, then $d(k, w)=d(a, w)+1=k+1=d(b, w$. So $(u, w, b)=a$ and $d(v, w)=k 0, k+2$, since G is bipartite. Bit $d(0, w)=k$ implies $a=(u, w, b)=v$. which a contratiction. So again $d(v, w)=: d(u, w)+1$.

The general case now follows by induction on $d(a, t)$, using (8).
(10) $G\left[U_{a}\right]$ and $G\left[U_{b}\right]$ are convex sulegmphs of C, ard thes they are medan graphs.

Proof. Take $u, u^{\prime} \in U_{a}$. Let v^{\prime} be the neigh our of u^{\prime} in $U_{\text {s }}$ According to (9) we also could have used the edge u'v' insead of the coge ab for the defintim of W_{0} and W_{b}, and thus of F, U_{a} and U_{b}. Ths implies that assertion (8) still hu th. when a is replacec by u^{\prime}. So we can conclude that each shorest (u^{\prime}, u) path list entity

Similarly $13\left[U_{b}\right]$ is convex.
(11; $G\left[W_{a}\right]$ and $G\left[W_{b}\right]$ are convex subgraphs of G, and the they are median graphs.

Proef. Use (10).
(12) The mapping $f: U_{u} \rightarrow U_{b}$, defined by $f(t)=v$ iff w $w \in F$, induces an isomomphism between $G\left[U_{n}\right]$ and $G\left[U_{b}\right]$.

Prof. Since F is a mathing hetween f_{1} and U, the mapping f is bijective.
Take $u, u^{\prime} \& \mathcal{U}_{4}$. Acoodng to (9) assertion (6) still hods when we replace a by u^{\prime} and b by $f\left(u^{\prime}\right)$. That is, $d(u, u)=d\left(f(u), f\left(u^{\prime}\right)\right)$. So $u u^{\prime} \in E$ iff $f(u) f(u) \in E$.
(13) G is uniquely conset colourable.

Sroof. Take an edge w of G, with $u \in U_{0}$ and $n \in U_{b}$. Set $W_{1}=$ $\{w \in V \mid(u, w, v)=u\}$ and $W_{v}=\{w \in V \mid(u, w, 0)=v\}$. Assertion (9) irnslies that $F=\left[W_{u}, W_{v}\right]$. That is, the edge u defnes the same cutset-matching F as the edge $a b$. Since $a b$ is an arbitrary edge of G. it follows that G is cutse colourable.

Now let $a=a_{0}, u_{1} \ldots \ldots u_{0}=u$ be a path from a to u in $G\left[U_{a}\right]$. Then $b=$ $f\left(t_{0}\right), f\left(u_{1}\right) \ldots \ldots f\left(u_{\mathrm{p}}\right)=3$ is a path from b to v in $G\left[U_{b}\right]$. As observed in Section 1, non-adjacent edges in a creuit of length four in G are to be assigned the same colour in any cutset colouring of G. So the edges $a b=u_{0} f\left(u_{0}\right)$. $u_{1} f\left(u_{1}\right), \ldots, u_{1} f\left(u_{\mathrm{T}}\right)=$ ut are to be assigned the same colour in any cutset colouring of G. And thus it follows that the cutset colouring of G, constructed above, is unicue.
(14) The isomorphism f. defined in (12). is colour preserving.

Proof. Let $u u^{\prime}$ e e in edge in $G\left[U_{a}\right]$. The $a u, f(u), f\left(u^{\prime}\right), u^{\prime}, u$ is a circuit of length four in G.
(15) G can be obtained as a convex expansion from a graph with less vertices.

Proof. Let G^{\prime} be the graph constructed from $G\left[V \backslash U_{b}\right]$, by joining each vertex $u \in U_{a}$ to ail reighbours of $f(u)$ in $W_{b} \backslash U_{b}^{\prime}$. In other words, C^{\prime} is obtained from G by "contractine," F. $3 \times W_{b}=\left(W, \backslash U_{b}\right) \cup U_{a}$.
Now $\left.G_{[}^{\prime} W_{a}\right]=G\left[W_{a}\right], G^{\prime}\left[W_{b}^{\prime}\right] \equiv G\left[W_{b}\right]$ and $G^{\prime}\left[U_{c}\right]=G\left[U_{a}\right] \cong G\left[U_{b}\right]$. Clearly G is the expansion of G^{\prime} with respect to W_{a} and W_{b}^{\prime}.

Take $u, v \in U_{d}$. No shortest (u, v)-path in G passes through a vertex of $V \backslash U_{a}$, and no shortest $(f(u), f(v))$-path in G passes through a vertex of $V \backslash U_{b}$. So ali shortest ($1, v$)-paths in G^{\prime} he entirely in $G\left[U_{a}\right]$. That is, $G^{\prime}\left[U_{a}, j\right.$ is a conver subgraph of G. Since there are no edges in G^{\prime} between $W_{a} \backslash W_{b}^{\prime}$ and $W_{b}^{\prime} \backslash W_{a}^{\prime}$, it follows from the convexity of $G^{\prime}\left[U_{a}\right]$, that $G^{\prime}\left[W_{a}\right]$ and $G^{\prime}\left[W_{b}\right]$ also are convex sulgraphs of Q.

Assertion (11) now implies that any chree vertices in W_{a} have a mique median in G^{\prime}. The same hoids for three wertices in W_{b}^{\prime}. et $n, v \in W_{a}$ and $w \in W_{o}^{\prime} W_{a}$. Then u, v and w have a unique median, say, x in G. Note that $: \in \|_{a}$. Let P be a shortest path : G from w to u. Then P passes through exactly cne edge, say $f\left(u_{p}\right) u_{p}$, from F. Let $f\left(u_{1}\right)$ be the inst vertex of P that lies in $\left[u_{3}\right.$. Since $G\left[U_{b}\right]$ is convex, P is of the form $P_{1}, f\left(u_{1}\right), f\left(u_{2}\right), \ldots, f\left(u_{\mathrm{p}}\right), u_{p^{+}} P_{2}$, where $P_{:}, f\left(u_{1}\right)$ is the subpath of P from w to $f\left(u_{1}\right)$ and ${ }_{2}, P_{2}$ is the subpath of P from u_{1}, 10 , Now the path $Q:=P_{1}, f\left(u_{1}\right), u_{1}, u_{2}, \ldots, u_{7} . P_{2}$ also is a shortest path from v io u in G. And Q contains exactly one versa of U_{b}. It is clear that, in determining the median of u, v and w in G, we cen confine ourselves to paths of the same form as Q. Wher we "contract" the edge ($\left.u_{1}\right) u_{1} \in F$ in Q. then we obtain a shortest path Q^{\prime} from w to u in G^{\prime}. Any shortest (w u u-path in G^{\prime} can be obtaned in thes way from a path of "type Q ". From these observations if is clear, that x is the umque median of u, v and w in G^{\prime}.

Sinilarly, $w \in W_{a} \backslash W_{b}^{\prime}$ and $k, n \in W_{b}^{\prime}$ have a mique median in G^{\prime}. Thus G^{\prime} is a median graph.

This finishes the poof of the therem.

Note added in proof

It was brought to my attention by L. Nebesky that some of the above results are contained in his paper "Medan saphs", Comment. Math. Univ. Carolinae 12 (1971) 317-325.

Referentes

[1] J.A. Bondy and U.S.R. Pury, Grarh 'heory with Applations (McMmin, wondon, 1076).
[2] H.M. Mulder and A. Schriset, Medin graphs ard Holh inpe graphs (to appent).
[3] N.E. Steenrod et al. A Manual in sh hors of Nathemetical Fapers, zad edition (Amer. Math. Soc., Providence, RI, 1973).

