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Non-commutative LP-spaces, 1 < p < co. associated with a von Neumann 
algebra are considered. The paper consists of two parts. In part I. by making use of 
the complex interpolation method, non-commutative L”-spaces are defined as inter- 
polation spaces between the von Neumann algebra in question and its predual. 
Also, all expected properties (such as duality and uniform convexity) are proved in 
the frame of interpolaton theory and relative modular theory. In part II, these L”~ 
spaces are compared with Haagerup’s LQpaces. Based on this comparison, a non- 
commutative analogue of the classical Stein-Weiss interpolation theorem is 
obtained. 

Conrents. 0. Introduction. I. Non-commutative L’-spaces. I. The complex inter- 
polation method. 2. Relative modular theory. 3. Non-commutative L%paces. 
4. Properties of non-commutative LQpaces. 5. L%orm inequalities. 6. Bimodule 
structure. II. Non-commutative Stein-Weiss interpolation theorem. 7. Another 
imbeddings of M into M,. 8. Haagerup’s LQpaces. 9. Certain complex inters 
polation spaces. 10. Technical lemmas. 11. Non-commutative Stein-Weiss inter- 
polation theorem. 12. Remarks. 13. Proof of uniqueness theorem. Appendix. 

0. INTRODUCTION 

This paper is devoted to a new construction of non-commutative L”- 
spaces, 1 < p < co, from a von Neumann algebra (which is not necessarily 
semi-finite). The construction is based on the complex interpolation method 
(due to Calder6n [7]). All expected properties are proved by complex inter- 
polation theory and (relative) modular theory (Tomita-Takesaki theory 
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[37]). Also, a non-commutative analogue of the classical Stein-Weiss inter- 
polation theorem is obtained. 

Certain applications of the theory of operator algebras to other fields are 
carried out through theory of non-commutative Lp-spaces. Thus, starting 
from a pair (M, go) consisting of a semi-finite von Neumann algebra M and 
a trace #0 on it, many authors studied non-commutative LP-spaces, 
[ 13,26,29,33]. After the development of the Tomita-Takesaki theory, 
Haagerup [ 171 generalized them to the case when do is a weight (so that M 
need not be semi-finite; see also [4, 9, 19, 21, 22, 401). His L%paces are 
based on crossed products [39]. Roughly speaking, crossed product 
technique is “Fourier analysis” for von Neumann algebras. Instead of using 
it, we will employ the complex interpolation method which is a product of 
deep classical analysis (including Fourier analysis). This complex inter- 
polation method itself is quite an abstract method, however, when it is 
applied to a von Neumann algebra it is not abstract at all and actually 
fitting. Namely, it provides us a nice interpretation of “relative KMS 
functions.” It may be said (see Remark 3.5) that the study of non- 
commutative Lp-spaces is the study of the behavior of these functions inside 
of the strip. 

We now describe the origanization of the paper. It consists of two parts. 
Part I is devoted to non-commutative LP-spaces LP(M; &,), 1 < p < 03, for a 
distinguished faithful normal state #,, on a given von Neumann algebra M. 
After some preliminaries (Sections 1, 2), in Section 3 we imbed M into its 
predual M, via 

x-,x&, c*> 

and LP(M; #,,), 1 < p < co, is defined as the complex interpolation space 
C,= ,,p(M, M,), 0 < 0 < 1. Also we show the equivalence between L'(M, #o) 
and a (standard) Hilbert space. Based on this fact, in Section 4 we prove 
certain properties of our Lp’-spaces. Among other results, we prove the 
uniform convexity of the LP-spaces, 1 < p < co (Theorem 4.2) which gives 
rise to the affhmative answer to Dixmier’s question in [ 131. Actually we give 
two proofs. The one in Section 4 is based on quite a general result [ 111 on 
the complex interpolation method, whose proof is presented in the Appendix 
for the reader’s convenience. The other is based on the Clarkson and 
McCarthy inequalities in Section 5. In Section 4 we also state the uniqueness 
theorem (Theorem 4.5) of the LP-spaces. However, its proof is based on 
arguments used repeatedly in Part II so that it will be proved in Section 13 
(the last section in Part II). In Section 6, we consider an M-bimodule 
structure of the Lp-spaces. 

Part II deals with a non-commutative analogue of the classical 
Stein-Weiss interpolation theorem. Fixing two faithful normal states wO, &, 
in Section 7 we consider a one-parameter family of imbeddings of M into 
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M, , parametrized by 0 < q < 1. When q = 0 (resp. q = 1), this reduces to 
the “left” injection (*) (resp. the “right” injection x-1 tqox) so that we obtain 
the left LQpace LP(M; 4,,) = L”(M; #,J,. (resp. right LQpace LP(M; I+Y,,)~ 1. 
In Section 9, we investigate relations between these spaces and Haagcrup’s 
L”-spaces (Section 8). After preparing some technical lemmas in Section 10. 
in Section 11 we prove the main result (Theorem 11.1) of Part II which 
characterizes the complex interpolation spaces between the left and right L” 
spaces. This characterization can be considered as a non-commutative 
analogue of the classical Stein-Weiss interpolation theorem. (see the 
beginning of Section 12) In Section 12. we collect some remarks and related 
topics on this theorem. 

I. NON-COMMUTATIVE ZLP-S~~\ct;s 

1. The Complex Interpolation Method 
In this section we briefly recall the complex interpolation method due to 

Calderon. It will be helpful to make the present article readable to operator 
algebraists who (like the author) have little knowledge of interpolation 
theory, and partly to fix our notations. Full details of the materials until 
Lemma 1.3 can be found in 16, 7, 32, 421. However. Theorem 1.5 seems to be 
new. 

Let X = (X,,, X,) be a pair of two compatible Banach spaces with norms 
II IL,, =I Ilo and II /lx, = II III 3 respectively. Namely, there should exist a larger 
space X so that both of X0 and X, can be considered as subspaces. (In usual 
applications of interpolation theory to function spaces. the space ,F is 
sometimes unspecified. In our case it will be the predual of a given van 
Neumann algebra.) Then the algebraic sum C(=C(X) = C(X,, . .Y, )) = X,, + .Y, 
(in X) is a Banach space under the norm 

ilxl/z = inf(l/s,ll, + llx, Ii, ; s = s,, + s,. .yi E X1; 

due to the completeness of X, and X,. One then defines a space of certain 
C(X)-valued functions on the strip 0 < Re z ,< 1 as 

F (=F(X) = E-(X”, X,)) 
= (.f: 0 < Re z < 1 --t C satisfying 

(i) bounded and continuous, and analytic 
in the interior (with respect to 1) ill), 

(ii) f(j+it)EXi, tE1”, j=O. 1. 

(iii) forj=O, 1, the map: tEif+f(j+it)EX, 
is /I I/;-continuous, and lim, _ , lIf‘(j + it)ilj = 0). 
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It follows from the Phragmen-Lindelof theorem that the space F is a Banach 
space under the norm 

lllflll (=lllflllF) = Max(;f~ IIf(i% ;~g Il.171 + it>lIJ. 

DEFINITION 1.1 [6, 71. For each 0 < $ < 1, the complex interpolation 
space C, (=C,(X) = C&Y,, Xi)) is the set of all f(0), f E F, equipped with 
the complex interpolation norm 

II-% (=llxllc,> = i~fWlll~f~W(~) =x1. 

We remark that ]] I],, and ]] ]]i majorize ]) ]IX on X,, and X,, respectively. 
Therefore, the Phragmen-Lindelof theorem implies 

llf(~Il, G Illflll. 

In particular, C,(X) is continuously included in Z(X). Also, being the 
quotient space F/K@ (equipped with the quotient space norm), C,(X) is a 
Banach space. Here, K, is the closed subspace consisting of all f E F 
satisfying f(e) = 0. 

We now state two results which will be repeatedly used later. The first 
theorem is considered as an abstract version of the classical Riesz-Thorin 
interpolation theorem, while the second density result is a consequence of 
Fourier analysis. 

THEOREM 1.2 [6, Theorem 4.1.21. Let X= (X,,X,) and Y= (Y,,, Y,) 
be two pairs of compatible Banach spaces, and T be a linear operator from 
C(X) to Z(Y). Zf T maps X,, (resp. X,) into Y, (resp. Y,) with 

II T&,G M, Il-dx,~ %EXO 

(rev. II TX, lIyI GM, Ilx, LIT x, E X, ,) then T maps C,(X) into C,(Y) for 
each 0 < 0 < 1 with 

II TxIIcswj Of-“# lM.,cx,, x E C,(X). 

(In other words, C, is an exact interpolation functor of exponent B 161.) 

LEMMA 1.3 [6, Lemma4.2.31. Let F,,(X) be the set of all X,, n X,- 
valued functions of the form 

5 
f(z) = exp@z2) 2: exp(l,z)xn, 

n-l 

l>O; NEN+; A,,12,A3 ,..., &ER; x,,x2,x3 ,..., x,vEX,nX,. Then 
F,,(X) is dense in F(X). 
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So far we have been employing the standard definitions of the complex 
interpolation method found in [6, 71. We now replace condition (iii) in F(X) 
by a slightly weaker condition so that we will obtain a slightly larger F 
space. (Some discussions concerning them can be found in 142, Sect. 1.9 1.) 
We will consider the complex interpolation space constructed from this new 
F-space which is apparently larger than the space C,(X). We will show that 
this apparently larger space actually coincides with C,(X) with equal norms 
under mild assumptions. This fact will turn out to be our powerful tool later. 

DEFINITION 1.4. Let F’ (=F’(X) = F/(X,,, X,)) be the set of all functions 
S: 0 < Re z < 1 + 2 satisfying conditions (i) and (ii) in F(X). and 

(iii)’ IllfIll (=Max(w,,,~ lIf(~~No~ supfE Ii.01 + it)ll,)) < ~0. 

The complex interpolation space and its complex interpolation norm 
constructed (in the same way as explained in Definition 1.1) by using F’(X) 
instead of F(X) are denoted by C;(X) and /I 11;. respectively. 

As before, CA(X) equipped with ]/ ]]A is a Banach space continuously 
included in C(X). Since (iii)’ is weaker than (iii), one obviously has 

C,v-) z wa llxllk < l/-4f!. -y E c/&u (1) 

for each 0 < 0 < 1. The next result is an abstract version of some arguments 
in [ l&40 ] combined. 

THEOREM 1.5. Assume that the unit balls in X,, and X, are closed in 
C(X). Let Y (G(X) as a linear space) be a rejlexi@e Banach space. and 
0<8< 1. 

If we have 

C,(X) E YE c;(x). 

llxll;~ G I/XII> * x E Y. (2) 

IIXIIY G IIXIIO~ x E C,(X), 

then C,(X) = CA(X) = Y with all equal norms. In particular, when at least 
one of X, and X, is reflexive (so that C,(X) is reflexive ] 7 I), the C,,(X) = 
C’;(X) with equal norms. 

Without any assumption, it is known that C,(X) = C;,(X) with equivalenr 
norms (see [ 42, Sect. 1.9 1). However, the above result tells more. As far as 
our application is concerned, the interpolation space Cl, constructed in 
Definition 1.4 is more natural than that in Definition 1.1 (see Remark 3.5). 
However. we cannot disregard the space C,. the reason being that F,,(X) (in 
Lemma 1.3) is not dense in F’(X). 
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To prove the theorem, we need the following “smoothing lemma” due to 
Haagerup [ 181. 

LEMMA 1.6. Assume that the unit balls of X0 and X, are closed in Z(X). 
For any f’ in F’(X), there exists a sequence {f A} of Z(X)-valued functions 
on 0 < Re z < 1 such that each f A satisfies conditions (i), (ii), and 

(iii)” for j = 0, 1, the map: t E R + f A(j + it) E Xj is /I Ilj-cotinuous, 

(iv) lllf;lll G lllf ‘II0 
and, furthermore, for each 0 < 0 < 1 the sequence {f A(e)), satisfies 

(VI lim,,, IlfX@ -f ‘(WL. = 0. 
Proof For each n = 1,2,..., we set 

f A(z) = (nl~)“‘/“, exp(-nt2) f ‘(z - it) dt, O<Rez< 1, 

as a Z(X)-valued Bochner integral. (Real1 that f’(z) satisfies (i).) The unit 
balls of X0 and X, being closed in Z(X), each f :, satisfies (ii). Also, (i) and 
(iv) are easily checked for f :, because {(~/Tc)“’ exp(-nt’)}, is an approx- 
imate unit in L’(T?; dt). Easy computations show that 

f L(z) -f ;(z’) = (n/n)“2 Ja [exp{-n(t - i(z -z’))‘) 
~ (XI 

- exp(-nt’)] f’(z’ - it) dt (Re z = Re z’) 

f 3) - f ‘(0) = (nW’ J$r exp(-nt2)( f ‘(0 - it) -f ‘(8)) dt. 

The first (resp. second) equality guarantees that each f A satisfies (iii)’ 
(rev. @>I. Q.E.D. 

COROLLARY 1.7. Assume that the unit balls of X0 and X, are closed in 
Z(X) and that s > r > 0. The closure (with respect to II ilz) of the ball (C,), = 
{XE Ce;/Ixlle~SI in Z(X) is larger than the ball (C&), = {x E C;; 
II-a G r1. 

Proof Choose and fix an x E C; with ilxllk < r. We then pick up an 
f’ E F’(X) such that 

x =f ‘(0 lllf’ Ill G s. 

Applying the previous lemma to f ‘, we obtain {f L}. We then set 

f,(z) = exp((z2 - 82 - l)ln)f L(z), n = 1, 2,..., O<Rez< 1. 
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Since lexp((z* - 19’ - l)/n)l + 0 as Im z -+ f co, each f, belongs to F(X) so 
that the sequence {f,(e)},, is in C,(X). The above exponential factor is 
always majorized by 1 in modulus so that one estimates 

llfn(m3 G lllLlll 
G IllfIll 
G Ill f III (due to (iv)) 

\ s. < 

Finally,f,(B) = exp(-l/n) f;(B) and exp(-l/n) tends to 1 as n ---t co so that 
(v) implies 

Proof of Theorem 1.5. At first we prove Y = Cb with equal norms. We 
choose and fix an x E CA with lixllk = r. Because of Corollary 1.7, for any 
s > r, there exists a sequence {x,) in (C,), (s Y, due to (2)) satisfying 

lim IJx, - x/lZ = 0. 
n-02 (3) 

Since Y is reflexive, Alaoglu’s theorem asserts that (x,} admits a a(Y, Y*)- 
accumulation point y E Y, )/ y/l, < s. Passing to a suitable subsequence, we 
may and do assume that {x,,) tends to y in the a(Y, Y*)-topology. Since 
Y G C; E: C continuously (because of (2))? (x,) tends to y in the ~(2, C*)- 
topology as well. Thus (3) implies x = y, that is, x E Y and IlxII,. < s. The 
arbitrariness of s > r shows that 

lIxllv~ r= Ilxllk, 

Second, we prove C, = CL with equal norms. Again, we start from an 
x E Ch, /lxll; = r. For each s = e + r > r, we repeat the arguments in the first 
half and obtain a sequence (x,} in (C,), (a suitable subsequence of which) 
converges to y E (Ck), = Y, in the a(C;, Ck*)-topology and x = y (i.e.. x is 
the single a(Ck, C;*)-accumulation point of (x,}). Thus, (x,1 tends to x in 
the a(Ck, Ck*)-topology. In other words. (C&), is included in the 
a(Ck, CA*)-closure of (C,),. However, (C,), being convex, the Hahn 
Banach theorem implies 

where the closure is taken with respect to the norm /I 11;. Then Lemma 17.2, 
1411 yields 

(Wr z (Cd,+ *I’ 
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We thus conclude 

that is, 

ll-4le G r = llaI* Q.E.D. 

Finally, we combine Theorem 1.5 and Lemma 1.3 to obtain the next 
result. 

THEOREM 1.8. As before we assume that the unit balls of X,, and X, are 
closed in Z(X). Let Y be a reflexive Banach space satisfying X, n X, G Y G 
C(X) (as a linear space). Then C,(X) = Y = C;(X) with all equal norms 
provided that the following two conditions are fulfilled: 

(a) for each y in Y there exists an f E F’(X) such that 

f (0) = YY lllf Ill = II Y II*, 

(b) each g E F,(X) (described in Lemma 1.3) satisfies 

II g(mJ ,< Ill gIlI. 

Proof Condition (a) immediately implies 

Y G CL(X), IIYllk~llYll~~ YE I,-, 

One then considers the evaluation map e, : g E F(X) + g(8) E C(X), which is 
obviously continuous (see the paragraph after Definition 1.1). Condition (b), 
the density of F,(X) in F(X) (Lemma 1.3), and the completeness of Y imply 

d@ E y (S CA(X) G Z(X) continuously), g E F(X), 

II day G Ill gIlI 

that is, 

C,(X) c K 
llxllv G infllll gIlI; g E F(X), g(e) =x1 

= II4~ x E C,(X). 

Thus the theorem follows from Theorem 1.5. 

2. Relative Modular Theory 

Q.E.D. 

In this section we collect some basic notations and results on relative 
modular operators (8, 10, 121. Although these operators are usually defined 
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and studied for faithful normal positive functionals (or rather weights) on 
von Neumann algebras, we will have to deal with these associated with non- 
faithful functionals as well. However, almost all known properties remain 
valid for non-faithful ones under the natural modification concerning the 
supports of functionals in question. Full details are found in [ 22. Chap. I]. 

Let A4 be a (a-finite) von Neumann algebra. We fix an arbitrary Q and a 
faithful $0 in the positive part Mi of the predual M,. We take a standard 
form (M, H, J, P’) [2, 141, and let <, r,, be unique implementing vectors in P’ 
for 4 and cb,, respectively, that is, #o = (. to 1 I$) and 4 = (. r / 5). Let p (resp. 
p’) be the projection onto the closure of M’< (resp. A!<) so that 
p = Jp’JE M is the support projection of 4. Here, of course M’ (=JMJ) is 
the commutant of M being considered to act on the Hilbert space H. These 
are fixed throughout the section. 

We now consider the four operators 

They are (well-defined) densely defined closable (conjugate linear) operators 
form H to H, from pH to p’H, from p’H to PH. and from pp’H to pp’H. 
respectively. The first operator is exactly the usual S-operator determined by 
the pair (M, @,,), 1371. Also the last operator is the S-operator determined by 
the faithful 4 on the reduced von Neumann algebra pMp, which is 
isomorphic to p’pMp acting standardly on pp’H. 

DEFINITION 2.1. The absolute value parts of the polar decompositions of 
the closures of the above four operators are denoted by A:,,‘, A::,,, A:$,, 
A y’, respectively. The positive self-adjoint operator A,,(, is called the relative 
modular operator (of 4 relative to 4,). 

Remark 2.2. Obviously, Am,, AGO,, A$,,@, A, are non-singular positive 
self-adjoint operators on H, pH, p’H, and pp’H, respectively. However. in 
what follows, we will regard Amoo, Amom, A, as operators on H whose 
supports are pH, p’H, and pp’H, respectively. 

We note that the phase parts of the polar decompositions considered in 
Definition 2.1 are all J. In fact, this follows from the fact that < and <,, are in 
PQ (see (2, Theorem 11) Using the 2 x 2-matrix argument 181. one can easily 
prove 
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JA,,oJ=A;o:, 

A,$, = to, A*<= t, 
JA;$Ox<, = x*r, JA$x<=x*&,, XEM, 

M&, is a core for AiT (as well as A:!), 

A @@cl =A@0 if 4 = #O. 

(4) 

Also, the 2 x 2-matrix argument shows 

LEMMA 2.3. (i) For c EM, t E IR, 

A&OcA;;t = A;cA,-; E M. 

(ii) FordEM, tEIR, 

A&,0dA;,& = A;dA,” E M. 

DEFINITION 2.4 [8, lo]. For t E iR, we set 

(Qk PA,), = A fa’+,, A ,&,? 

the Radon-Nikodym cocycle (of $ relative to &,). More generally, for c E M, 
t E R, we set 

ofmmo(c) = A~&cA;~~~ = (Dq$ DqQta,(c). 

Here, u, = A dAFO is the modular automorphism on M determined by (M, q%,,) 

]371* 

Due to the previous lemma, (D#; Dg,),, t E R, is a partial isometry in M 
with the initial (resp. final) projection al(p) (resp. p), and ~~“0 maps M into 
itself. The following relations are easily checked: 

PQ; Wo)t+s = (Dh Dhh at(W WcJJ &SE IR, 

(D#; D&,>p~~(x>(Dgk D#o): = ~,m(x)(=A~xA,“), x E M. 

We now state a “predual version” of the relative KMS condition [8, lo]. 
Certainly the next result is known, however, we present its proof for the sake 
of completeness and because of the fact that this result will play an 
important role throughout. 

THEOREM 2.5. For each xEM, the map: t E R + upyx)&J 
(=Oo(- ot mmo(x))) E M, extends to a bounded and continuous (M,-valued) 

function f,(z) on -1 < Im z < 0, analytic in the interior. Here, the continuity 
and analyticity are understood with respect to the predual norm. 
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Furthermore, for z = -i + t, t E IF?, we have 

f,(-i + t) = fbfmo(x) (=#kpYx>> . )I. 

ProoJ: We set 

g(z) = (. 4&o I 4’) E M* 3 4<IlllZ<O, 

h(z)=(.r(A~~~‘;c*r)EM,, -1 <Imz<-+. 

Because of x&, E D(d:$ and x*rE D(d,$) (see (4)), g(z) and h(z) are 
bounded and continuous functions, analytic in the interior. For t E P’. 
y E M, we compute 

(g@))(Y) = (Y~&$l ITO) 
= w’,‘,ox&%l I &I) @,,)i’r,~ = to) 
= W,“““(x> lo I r,> = W”W i,)(Y>, 

(M-i + t>>(y) = (14 / A&,x*t) 
= (y( / Ll’,‘o,x*A,i’t;) MDiY=5) 
= (Yt (A;xd;;;)*r) 
= (.I4 / (A~,,xA,&9*5> (Lemma 2.3(i)) 

= (‘eYx) vr I (3 = (d(S,“m”(*Y))( Y), 

(A(--ii + t)>(y) = ($1 d~$+ifx*d3 

= (4/d?, Yr/4&,x*t) 

= w*kl I A;“,x*r) (due to (4)) 

= wf&J*r I v*r’J 

= (JA’,‘“,JA~;“x& j y”(,) (due to (4)) 

= (A &“A ;&%7 I 4’*50) (due to (4)) 

= (yA “2 + ifX& / f$) 

= (d-ii + t)Kv). 

It thus follows from Morera’s theorem that 

f,(z)=g(z) if -+<Imz<O, 

= h(z) if -1 <Imzg-$. 

enjoys the properties stated in the theorem. Q.E.D. 
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Remark 2.6. Keeping the above result in mind, we may and do write 
(J,“‘+)$,, , a:“(x)#, , and (D#; Dq$,), do, for -1 < Im z < 0, as elements in 
M, (although azmo(x), ato( and (Dd; D&J, make no sense as elements in 
M). Of course we then have 

for each t E IR. 

3. Non-commutative LP-Spaces 

We define LP-spaces, 1 < p < co, associated with a given von Neumann 
algebra by using the complex interpolation method explained in Section 1. 
We then show that the L’space is a (standard) Hilbert space. 

From now on, let q%,, be a distinguished faithful normal state on a (u-finite) 
von Neumann algebra M. We will define our Lp-spaces, 1 < p < 00, as 
complex interpolation spaces between the algebra M (=“L’%pace”) and its 
predual M, (=“L’-space”). Since we are dealing with a “non-commutative 
probability measure” do, the L”-space A4 must be included in the L ‘space 
M,. In other words, we have to imbed M into M,. 

As the above motivation suggests, we now imbed M into M, via 

xEM+x#,EM,, (5) 

and keep this imbedding throughout Part I. Shortly we will observe that this 
imbedding is fitting to the (relative) KMS condition which has been playing 
important roles in the recent development of the theory of operator algebras 
(see Remark 3.5). Also, another possibility of natural imbeddings will be 
studied in Part II. 

Thus, M is a subspace of M,, and we obtain the pair (M, M,). An 
element x =x& in M has the two norms 

II42 = II-40/l00~ the uniform norm of M, 

I/XIII = II-%lll~ the predual norm of M, . 

Of course, the imbedding does depend on a choice of #O. When there is 
possibility of confusion (Section 13), we write 
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Also, in such a case, we denote the pair (MY M,) by (Mm”. M,), that is. 
M”” = MtiO is the imbedded image of M under (5). 

The subspace M is dense in M,, and we have 

//xI/, = Ilx$4ll, G II& II~OIII = II47 = IlX@“ll, (6) 

so that the pair (M, M,) is compatible, Because M is included in M,, the 
general construction of complex interpolation spaces explained in Section 1 
is somewhat simplified. In fact, we have 

C(M, M,)= M,, 

MnM, =M. (7) 

II l/z =Il III. 

DEFINITION 3.1. The complex interpolation space C, ,ip(M; M:,:) 
(=C,,,(M”‘, M:,)), 1 < P < ~0, is denoted by L”(M; @“), the non- 
commutative LQpace associated with M (with respect to ti,,). For each 
a E LP(M; go), the complex interpolation norm l~aIjH ,,,, is denoted by Ilali,,. 
the LP-norm of a (L’(M; $,,) = M, and L”(M; 4(,) = M). 

Remark 3.2. Non-commutative L%paces L”(M; $,)), 1 < p < co, will be 
referred to as “left” LP-spaces in Part II because we considered the “left” 
injection defined by (5). Since E(M, M*) = M, ((7)), LP(M; q,), 1 < p < co. 
are realized inside of M,. Furthermore, as a consequence of (6). we have, 
for 1 < p’ < p < co, 

M (=M#,,) c LP(M; q,) G L”‘(M: @,J c: M,:. 

l/x/I, a /Ixl/, > I/4/p 2 Ilxll,, x E M 

(see 16. Theorem 4.2.1(a), (b)]). W e also note that M is dense in each 
L”(M; Q,,), 1 < p < co, due to 16, Theorem 4.1.2 I. while the intersection of 
L”-spaces considered in [ 171 with different p’s consists of zero alone. 

The rest of the section will be devoted to prove the equivalence between 
the L*-space and a standard Hilbert space. This fact will be crucially used in 
the next section. As in Section 2, let (M, H, .L, P”) be a standard form and i,, 
be the unique (unit) cyclic and separating vector in P” satisfying Q,, = 
(. 4, i toI = WI,, . We then imbed M into H and H into M:+ via 

X--td”, 

i- (. iIt”). 

respectively. If one combines these two, one obtains 
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which is exactly the imbedding (5). We clearly have 

I/4l, > IlaY = II=af a ll4ll = II&lll, = II(. xkl I Ldl1* (8) 

THEOREM 3.3. The non-commurative L 2-spate L2(M; 4,) is the standard 
Hilbert space H with equal norms. Here, H is being imbedded into M, via 
r- (* c I LJ. 

ProojI The unit ball of M is closed in Z(M, M,) = M,. (This can be 
proved easily. However, a more general fact will be proved later, 
Lemma 7.4.) The Hilbert space H being reflexive and satisfying M = 
Mn M, G H c M, = Z(M, M,), we have to check just conditions (a), (b) 
in Theorem 1.8. 

We begin with (a). Choose and fix an element [ in H with the polar 
decomposition [= u I[] in the sense of [2, 141; (U E M, ][I E P’). We 
consider the M,-valued function on the strip 0 < Re z < 1 defined by 

f[(z> = #(1>“‘2’-‘u(D#; Wll-iz#Ot 

where 4 = ~,51 = (a ICI 1 ICI). Ob viously, fs is a bounded and continuous M*- 
valued function, which is analytic in the interior (see Theorem 2.5). Also, for 
z = it, t E IR, we compute 

fJit) = #( 1)“‘2’-iG4(Dd; DqQId, E M(=Md,), 

Ilf@N, = CY2) II @Q; QhJAm 
= qql)“‘” 

= lll~lllH= IICIIH~ 

while, for z = 1 + it, t E F?, we compute 

f,(l + it) = #(I)- “‘“-“U(D#; D#o)-i+f#Q 

=4(l)- “‘2’-“ufqD#; Dqqt (Theorem 2,5), 

Il&(l + it)ll, = 4(1>-“‘ll4W; ~~ohlll 
= 4w”2 11~111 
=4(l)“’ = IICIIH. 

Thus f[ belongs to F’(M, M,) (Definition 1.4) with 

Also we have 

Ill.flll = IICIIH’ 

f,(f) = (* 4 I CA 

(9) 
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which is exactly [ imbedded into M, . In fact, for any x E M, one computes 

(&WK4 = #Cl) ‘l’*)-it(u(D& D&J,Q,))(X) 

= $Yl) c”2’-i’(x~(q; Q&l),<, ! 4,) 
= $qqw-if (-xu 4&r, / 5,,) 

so that (J,(~))(X) is computed by 

<.f&>>(.~> = (xu 4/q& I GJ 

= (xu ICI Ito) (0 = CO,,!) 

= (xi I <“I. 

To check (b), we take an arbitrary element g in F,(M. M,) (Lemma 1.3). 
Namely, g(z) is of the form g(z) = g’(z) #,,, 

g’(z) = exp(Az2) i ev@,z) x,,. (10) 
,, 7 1 

A > 0; A, E :D; x, E A4 (not imbedded into M,). For each <E H, we consider 
f&z) as in the first half of the proof, and set 

4) = (.f,(z))(g’(l - 4*1, O<Rez< I 

(fC(z) E M,, g’(1 - Y)* E M). We have already known that fC is an M,- 
valued bounded and continuous function, which is analytic in the interior. 
Using (lo), we compute 

H(z) = ew(J41 -z>‘> Y ev@,(l - ~))(f~(z))(xf) 
n-1 

so that the numerical function H(z) is bounded and continuous. analytic in 
the interior. To estimate its bound, we will use the Phragmen-Lindelof 
theorem by considering its boundary values. For z = 1 + if, t E IF,. we 
estimate 

H( 1 + if) = (fs( 1 + it))( g’(it)*), 

I W + 4 < II&41 + it>lll I/ it@)* II,-, 
= II&(1 + it)ll, I/ g’Gt)ll, 
= II&Cl + if)ll, /I g’(iGc4lL 
= lIfs(1 + it>lll I/ s(ir)ll I 
G Illf,lll III g/l/. 
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For each z = it, t E R, we have 

H(it) = (&(it))( g’( 1 + it) *), 

Since fC E F’(M, M,), &(it) is of the form 

fs(it) = f’(it)qbo, f’(it) E M (not imbedded into M,), 

we estimate 

IHWI = Kf’W Mg’(l + it>*>1 

= /Mg’(l + iO*f’(iO)l 
= 140(f’W*g’(1 + it>)1 (h(x*) = !ux>> 
= IWU + W hWYif)*)l 
G II g’(l + it> AA lIf’W*Il, 
= II .dl + it>lL Ilf’Wl, 
G Ill g/II lll~lll* 

We thus have 

IW)I G Ill glll Illf,lll = II% l/l glll 
for each 0 < Re z < 1 (due to (9)). In particular, with z = 4, we have 

Ifw = I~fs(~)>w(~>*)l G IlrllH III g/l/. 

We recall that h(i) = (. [ I r,) so that 

(fs(l))(s’(+)*) = bw*r I To) = cc I ma 

that is, 
KC I g’(+)ro)l G IlrllH III gIlI. 

Since this is valid for each [E H, we have 

II g’(~>mf G III ‘All- 

However, since g’(i)& E H is identified with 

(. g’cf>ro I To) = g’W0 = d4>> 

we have 

II ml, G Ill gIlI. (Q.E.D.) 

We close the section by stating the next remarks. 
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Remark 3.4. Theorem 1.8 actually shows that 

c,:,w M*) (=L’(M; $0)) = C;,,(M M,) = H (=(. H I To)). 

For C,, 0 < 8 < 1, many nice properties are known [6, 7 1, as we shall see in 
the next section. For example, the reiteration theorem (6. Theorem 4.6.1 ] 
implies 

LYM; hl> = C,,,(M L2(M #“)I, 2<p<co, 

LP(M; &I) = c,,,- ,(L2M &J, M*), 
(11) 

l<p<2. 

In both interpolations, the “boundary” space L2(M; 4,) is reflexive. Thus a 
result of Calderon [7] implies that all LP(M; #,,), 1 < p < 00, are reflexive 
Banach spaces. In particular, Theorem 1.5 implies that one actually has 

LP(M; 40) = C,,,(M, M,) = Cl ‘P(M, M,:) 

so that we can use either C, or Ck to deal with the L”-spaces. 

Remark 3.5. Usually, the complex interpolation method is used to 
identify some concrete function spaces with complex interpolation spaces 
between another such spaces. Therefore, the complex interpolation spaces 
themselves are regarded as quite abstract spaces. However, the reader might 
observe that, when the complex interpolation method is applied to (M, M:,). 
it is not abstract at all and actually fitting. For example, in the proof of 
H = L’(M h,) (=C,,, = Ci,J, we saw that any <=u]<] (uEM,]&lEP’, 
0 = uir,) with liiii,, = 4(l) = 1 admits a “representing” function 

in F’(M, M,:) (but not in F(M, M,)) satisfying 

f,(4) = i (=(. i I 4,)). 

Furthermore, this fJ attains the norm )/ []I,, = /I [iii ,? = i] ii] ,, :. (This situation 
remains valid for any 0 < 19 = l/p < 1 as we will see in Part II.) We note 
that this f3 is exaly a “relative KMS function,” operator algebraists’ favorite 
object. We thus come to the conclusion: The complex interpolation method 
C& gives us a nice interpretation of relative KMS functions. The study of 
their behavior inside of the strip is exactly the study of non-commutative L” 
states L”(M; 4,) = C;,,(M, M,), 1 < p < co. 

4. Properties of Non-commutative LP-spaces 

We exhibit some properties of our LQpaces. Having established 
Theorem 3.3, many of them are direct consequences of complex interpolation 
theory [ 6, 7 ]. 
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We begin with the following standard result: 

PROPOSITION 4.1. Let a be an automorphism of M satisfying 4, . a = &,. 
Then, for each 1 < p < co, a induces the (surjective) isometry a = ap on 
Lp(M, @,,). Also, let E be a normal projection of norm 1 from M onto its von 
Neumann subalgebra N satisfying &, 0 E = #,, (see [38]). Then, for each 
l<P<co, E induces the projection & = Ep from LP(M; oO) onto 

LP(N; 40 = 40 IN)’ 

Proof: Due to the invariance #O o a = &, the map: x40 - a(x)&, induces 
the surjective isometry al from M, = L(M, M,) onto itself, which sends M 
into itself isometrically. Thus the result follows from Theorem 1.2. 

The second assertion can be proved by similar arguments. Q.E.D. 

Theorem 4.2.1(a) [6] and (11) in Remark 3.4 show 

L”(M; 40) = c2,pw9 L2(M 40>>, @<PC co>, 

LP(M; 40) = c2,p-,(L2@4; hJ>, M*) (1 < P < 2) (12) 

=C 2(1--l,p)P* 2 L2(M 40)). 

The next result is the affirmative answer to Dixmier’s question in [ 131, for 
which we will give an alternative proof in Section 5. 

THEOREM 4.2. For each 1 < p < co, Lp(M; q&) is a uniformly convex 
Banach space. 

Proof Being a Hilbert space, L2(M; $,,) is uniformly convex. Thus the 
result follows from (12) and Theorem A in the Appendix. Q.E.D. 

THEOREM 4.3. If l/p + l/q = 1 and 1 < p < 00, then LP(M; &,) is the 
dual Banach space of Lq(M; #J. Thus Lp(M; I+&) is also uniformly smooth. 

Proof Due to the reflexivity obtained in Remark 3.4 (or rather the 
previous theorem), we may and do assume 2 < p < 00. Since M = (M,)* 
and L*(M; #,,)* = L*(M, &J, the result, follows from (12) and the duality 
theorem [6, Theorem 4.5.11 together with the reflexivity of L*(M; &,). 

Q.E.D. 

We finally state the following uniqueness theorem which will be proved in 
the last section (in Part II) by using the method employed in Part II. 

THEOREM 4.4. The space Lp(M; $,,), 1 < p < 00, does not depend on a 
choice of q$ in the sense that, for another faithful #, E M,, LP(M; &,) is 
isometrically isomorphic to LP(M; 4,). 
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We remark that the corresponding result for Haagerup’s L%paces [ 17. 
Sect. 81 follows from a certain universality of a crossed product and the dual 
action on it [39]. On the other hand, our proof in Section 13 is based on 
relative modular theory (Section 2) and complex interpolation theory. 

5. LP-Norm Inequalities 

Using the abstract Riesz-Thorin theorem (Theorem 1.2), we obtain certain 
Lp-norm inequalities. For each I < p, p’ < co, we consider the direct 
product L’(M; #,J x Lp(M; #,,) equipped with the norm 

ll(a, b)ll,,, = (Ilall~’ + Il~ll~‘)“p’~ 
As usual il(a, b)]l,, should be understood as 

Ma4 a lip 3 II b II,>. 

Throughout the section, this Banach space will be denoted by EE’. Having 
defined our Lp-spaces as complex interpolation spaces, we immediately have 
the next useful result by [6, Theorem 5.1.61. 

LEMMA 5.1. For 1 < p, p’, q, q’ < 00 and 0 < 8 < 1. The space Ei’ is 
exactly the complex interpolation space C,(Eg’, Ez’) with equal norms. Here. 
r and r’ are determined by 

1 1-B 0 1 l-0 B -=----+--,-= 
r P 9 r’ P’ -+7 

PROPOSITION 5.2. For, a, b E LP(M; &,). 2 < p < a3. 

(lla + blls + Ila - bll$“p < fi Cll4l~ + /lb//~)“‘. 
In particular, with the classical Hiilder’s inequality, the following Clarkson’s 
inequality holds: 

(lla + bllfj + Ila - b/l”,)“” < 2’~“P(IJal~~ + Jlbllg)‘,‘p. 

ProoJ The first inequality means that the map T: (a, b) E Ei 4 
(a + b, a - b) E Ei has the norm less than \/z. For the two extreme values, 
this is certainly the case. In fact, for p = 2, 00, one computes 

(lla + 611: + I/a - blli)“2 = \/z ([Iall: + I/bll:)“2 (Theorem 3.3), 

Max(lla +bll,~ lla-bllm)~llall, + Ilbll, 
< fi (Ilallk, + llbl/?x)“2. 



48 HIDEKI KOSAKI 

Since the previous lemma shows 

E; = C,(E:, E:), E; = C,(E&, E;), 0 = 2/p, 

the result follows from Theorem 1.2. Q.E.D. 

PROPOSITION 5.3. For a, b E LP(M; &,), 1 < p < 2, with l/p + l/q = 1, 
the following McCarthy’s inequality [28, 341 holds: 

(Ila + bll; + lla - b/l;Yq < 21’q(l14; + IlqyP. 

Proof: Lemma 5.1 shows 

E; = C,(E:, E:), E; = C&ET, E;), B = 2/q. 

On the other hand, the inequality is easily checked for the two extreme 
values p = 2, co. Thus, the map T: E; -+ Ei considered in the proof of the 
preceding theorem has the norm less than 

(p)~-m(p2)2/q = 21/q* Q.E.D. 

Remark 5.4. The uniform convexity established in Theorem 4.2 is also a 
consequence of the above two inequalities. Certain strengthenings of 
Clarkson’s inequality and applications of the uniform convexity will be 
obtained in [24]. 

We close the section by stating the next inequalities, which are reversed 
Clarkson-McCarthy inequalities. After replacing a, b by a + b, a - b, 
respectively, they can be proved by the same arguments as in the above two 
propositions. 

PROPOSITION 5.5. For a, b E Lp(M; #o), 1 < p < 2, 

(lla + bll; + Ila - bll;>“‘> \/z <lbll; + l/bll;)1’2 > 2’-“p(l14; + llbll;)“p. 

For a, b E Lp(M; @o), 2 < p < co, with l/p + l/q = 1, 

(Ila + 4; + lla - bll;)l’q > 21’q(l14; + llbll;>““. 

6. Bimodule Structure 

In this section, we shall let M act on LP-spaces from the left and the right 
so that the Lp-spaces turn out to be M-bimodules. A left action is easier 
because we imbedded M into M, via the “left” action (5) which is consistent 
with the natural left actions of M on M and M,. 
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We begin with a left action. W temporarily denote the natural left action 
of M on M, by T. Namely, for a pair (x, 4) E A4 X M,, we set 

T(x, 4) =x4(=4(. xl>. 

When 4 = y$O E M$O, we obviously have 

X(Y40) = (XY>&. 

In other words, the restriction of T to M x M (GM x M,) is exactly the 
usual left multiplication in M. Furthermore, we have 

llX4lll ~/I& ll@ll,~ 
llx(Y~o)ll, = lI-4cc G llxlla II Y/L = ~l4lx II Y~OII I’ 

(131 

Thus, a bilinear version of Theorem 1.2 [6, Theorem 4.1.11 implies that, for 
each 1 < p < co, T induces the bilinear map T, from M X LP(M; 4”) to 
L”(M; 4,). In what follows, we will write x . a instead of T,(x, a). Of course 
we have 

IIX . 4p G I/& ll4p 

due to (13). 

Remark 6.1. Let j, denote the inclusion map from M into LP(M; G,,) 
(GM*), that is, jp(y) = y#O considered as an element in LP(M; #(,). If 
a = j,(JJ), J’ E A4, one obviously has 

x . a = x . j,(y) = jp(xy) 

from the construction. Clearly, this M-left action gives an M-left module 
structure on LP(M; q&). 

We now try to define a right action of x E M. To avoid certain technical 
difficulties, we assume smoothness of this x for the modular automorphism 
group ot = @. More precisely, let x be an element in M such that the map: 
t E P --) a,(x) E M extends to an entire function. We, however, remark that a 
right action of an arbitrary x E M can be constructed by the method used in 
Sections 11 and 13. 

For this smooth x E M and f E F(A4, M,), we set 

(~,.I-)(z) =.fP) u-i(r- ,,(xh O<Rez< 1. 

For z = it, t E P?, f(it) is of the form 

f(it) = f’(it) 4” E M@,. 
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and one computes 

(%f)(it) = (f’(it) hJ Oi+tCX) 

= f ’ (it) u,(x) h (KMS condition), 

which belongs to M(=M&,) and I( (Ice- con inuous t on t E iR due to the norm 
(=weak) analyticity of o,(x). Furthermore, for z = 0, we have 

which is the imbedded image of the product f’(O)x in M under (5). Also, for 
z = 1 + it, t E IR, one computes 

(71, f)(l + it) = f( 1 + it) u,(x), 

hf)(l) =&f-(1)x, 

the second of which means that x is acting on f(1) E M, from the right. The 
above considerations show that rr, f belongs to P(M, M,) and 

Ill %f Ill G llXllm Ill flll5 f E mc M,). 

Also, f(8) = 0 implies (x,f)(B) = 0, 0 < 0 < 1. Thus, passing to the quotient 
spaces, we have the induced map 

n”, : a E LP(M; &) + 7qc-2) E Lp(M; q&J, 

and we rather write 

a . x = 71;(a). 

The fact (a . x) . y = a . (xy) (a E Lp(M; &,); x, y E M) is proved from the 
automorphism property cr,(xy) = u,(x) a,(y). 

Remark 6.2. For a (smooth) x E M and a = j,(y), y E M (see 
Remark 6. l), we have 

a * x = j,(Y) * x = .lp(Y~-i,p(X))- 

(Notice that YO-~,,(X)$, = (Y#o)a-i(l,p-1)(X)*) 

In Section 3 we established the equivalence between L*(M; @,,) and the 
standard Hilbert space H. We now check what the above left and right 
actions are for the L*-space. When L’(M; @,J and H are identified 
(Theorem 3.3), x&, = (. x& I r,,) = j,(x) (see Remark 6.1) in L*(M; #J 
(CM,) is identified with x&, E H so that we may write 

j*(Y) = YC,. 
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For this [ = j,(y) = y&,, the left and right actions of an x E M are computed 
by 

x*i=x.j,(Y) 

= j,(w) (Remark 6.1) 

= xyuyr, = xi. 

i.x= j2(y).x 

=.i2(y~-&)) (Remark 6.2) 

= Ya i.‘*(x) (0 

= yLl;fx& 

= yJx”J~, (see (4) in Section 2) 

= Jx*Jy<, = Jx*J{. 

Because Md, = j,(M) is dense in H = L *(M; #0), the preceding computations 
remain valid for an arbitrary [E H. Thus, the left action of M on L *(M: $(,) 
is the usual action as operators, while the right action corresponds to the 
action of the cornmutant M’ = JMJ as operators. 

Remark 6.3. The above facts suggest that the map J on (a dense 
subspace in) L*(M; $,,) should be defined by 

J(x . j,(l)) = j?(l). s*. 

or equivalently, 

Also the closure of the set of all x . j,(l) . x* = jz(xami ?(.x*)) gives rise to 
the natural cone L*(M; $&+. In other words, the quadruple 
(M, L*(M; &,), J, L*(M; #,J+) is a standard form, where the action of M on 
L*(M; d,,) should be understood as the left action. 

Before going further we note that the right action of M is not consistent 
with the inclusion 

LP(M; d”) G LP’(M; ~,J P> P’ 

(see Remark 3.2). In fact, for p = co, p’ = 2. x. y E M, 

j,(x) . y = Jy*Jx<,, = xly*<,,. 

Unless l,, is a trace vector, these two vectors are different. 
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Remark 6.4. The right and left actions are dual to the each other, which 
will be made precise shortly. By checking how the duality theorem [6, 
Theorem 4.5.11 was applied to prove Theorem 4.3, one knows that, for 
l/p + l/q = 1, the duality between j,(x) E Lp(M; $,,j and j,(y) E Lq(M; #,,) 
is realized by the bilinear form 

(jp(xh j,(Y)> = Co-i/p(Y) 40)Cx) = 40(xoz(Y)>Iz= -i/p. 

For simplicity, let us assume that x, y, z E M are smooth for ul. Then we 
have 

(j~7(~>9 j,(Y) ’ z> = (jp(x>y jq(Ya-i/q(z))) 

= ~O(xO-i,,(VO~i/q(z>)> 

= $O(xa-i/p(Y) u-i(z>) 

= $O(zxu-i/p(Y>) (relative KMS condition) 

= (.#4~ &(Y>> 

= (z * .&(X>~ &(Y>). 

It is possible to justify the above comutations for arbitrary x, y, z E M by 
using the multiple KMS condition [ 11. 

II. NON-COMMUTATIVE STEIN-WEISS INTERPOLATION THEOREM 

1. Another Imbeddings of M into M, 

In Section 3, we considered the “left” injection: x+x& (see (5)). In this 
section we investigate some another imbeddings of M into M, so that we 
will obtain different complex interpolation spaces from those considered in 
Part I. 

In Part II we fix two distinguished faithful normal states #,,, v/O on a von 
Neumann algebra M. For each 0 < r < 1, we consider the imbedding of M 
into M, defined by 

xEM-+u~~~(x)~,EM,. (14) 

DEFINITION 7.1. Keeping the imbedding (14) in mind (and fixing tiO, w0 
throughout), we denote the pair consisting of M(+ u’!!~~(M)#~ = M” GM,) 
and M, by (M”, M,). 
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Thus (M, M,) = (Mm,, M,) in Section 3 is now (M”, M,). As in Section 3. 
we sometimes write 

Il~~YX) 4011”,1 = II-XII _ IV 
1,x,1: = llu:;;w hIi,? 

so that II 112, II II Fo in Section 3 are I/ II’&. 11 ii:, respectively. In what follows, 
we never consider a power of 11 /Imc) I/ 11, so that the above notations will 
never make confusion. Since #0 and w0 are states, one obtains 

II-d: = lleqw doll, < l/XII * = ll~“_:“,:‘W O”llY 9 

that is, II II, G II II”, on the subspace Mq of M, . Therefore, the pair (M”. M:+: ) 
is compatible and satisfies 

-q-fn, M,) = M,, M” n M, = M”. II llr = II II,. (15) 

For the two extreme values v = 0, 1, we have 

u(y+J(x) cjo = x(9, (same as (5) in Section 3), 

U”“““(X) q$) = v/()x (Theorem 2.5). 

which are the “left” and “right” injections, respectively. 

DEFINITION 7.2. For each 1 < p < co, the complex interpolation space 
C, ,,p(MO, M,) (resp. C,, ,,,,,(M’, M,)) equipped with the complex inter 
polation norm is denoted by LP(M; dO)L (resp. LP(M; I+v,),) and we call it the 
left Lp’-space with respect to #O (resp. the right LP-space with respect to vi/(,). 
(Thus, LP(M; #O)L is exactly LP(M; do) defined in Section 3. However. the 
notation LP(M; #,,), will be mainly used in Part II.) 

Therefore, all left and right LP-spaces are subspaces of the predual M:, 
The right LP-spaces are assentially the left L”-spaces of the commutant M’. 
More precisely. we have 

PROPOSITION 7.3. Let (M, H, J, Ph) be a standard form, and ty{, be the 
state on M’ = JMJ defined by 

v;(x’) = wO(Jx’ *J). x’ E M’ 

Then the right Lp-space LP(M; v/~)~ is isometrically isomorphic to the left L”- 
space LP(M’; I&), of the commutant M’. 

Its proof is straightforward and we will not use this result later so that full 
details are left to the reader. 
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To use Theorem 1.8 in Section 1, we prepare the following result: 

LEMMA 7.4. The unit ball of M” (with respect to 11 II”,) is closed in M, 
(recalE (15)). 

Before proving it, we prepare the next lemma on the harmonic measure 
(Poisson integral) for the strip 0 < Re z < 1, which will be used in later 
sections and in the Appendix. 

LEMMA 7.5 [36]. For z = a + $3 (0 < a < 1, /I E F?), and t E R, we set 

Pj(z, t) = (4) sin(rca){cosh z(t -/3) - (-1)-j cos rro}-‘, j=o, 1. 

Zf f (z) is a bounded and continuous function on 0 < Re z < 1, analytic in the 
interior, then we have the integral expression 

f(z) = lrn f (it) P,(z, t) dt + In, f (1 + it) P,(z, t) dt, O<Rez< 1. 
-co -cc 

Proof of Lemma 7.4. Assume that IJx,I(, ,< 1 (x, E M) and 

Due to the u-weak compactness of the unit ball of M (by passing to a 
suitable subsequence) we may and do assume {x,} tends to some x E M in 
the u-weak topology. To complete the proof, it sufftces to show 
Q = a?y!+;(x)#,,. Th us, it suffices to show that 

pl h(Y~Y&)) = $o(Y~~lyW 

for each y E M. 
By the relative KMS condition (Theorem 2.5) and the above lemma, we 

have 

+ !‘” lyo(uyo WY) P,(rl> t> dt. 
. --cc 

The integrands are estimated by 

I hl(YU, ~““ow)l G Ilh3llI II Yllm IlXnllm G II Yllco, 

IWO~~:“~u~~,~Y~l~lIWoll*II~nllooIIYlloo~IIYllm~ 
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Also, for each fixed t E IR, as n -+ 00 we have 

h(Y~~“““(X,)> -+ hbP”(X>h 
wo(e@%J.Y> + %(4”““(X)Y>~ 

because C$‘O@O is u-weakly continuous. We now recall 

I 

.x 

P,,(q, t) dt = 1 - v. 
- cc 
. 3; 
1 P,(v, t) dt = r. .’ -1‘ 

(16) 

Lebesgue’s dominated convergence theorem applied to these two finite 
measures implies 

= )I &,(yu~“““(x)) I’,(% t) dt + j-x y&“@“(x)y) P,(Q t) dt 
. -* i’ 

= &j( yu?fyx>>. Q.E.D. 

8. Haagerup’s LP-Spaces 

As mentioned in the Introduction, there are several theories of non- 
commutative Lp-spaces. In this section, we briefly recall Haagerup’s 
pioneering theory of LP-spaces [ 171. His Lp-spaces are equivalent to other 
Lp-spaces described in [4, 9, 19, 21, 401. Also, when an algebra is semi- 
finite, they reduce to the classical LP-spaces [ 13, 26, 29. 331, based on 
theory of traces. 

Fixing &, as usual and its associated modular automorphism group 
ur = a$~, we consider the crossed product R = M x ,,R 1391. (Actually. R 
and Haagerup’s L”-spaces described shortly do not depend on a choice of 4,) 
due to 139. Theorem 8.1 I.) The crossed product R admits the distinguished 
faithful semi-finite normal trace r (so that R is semi-finite) and the dual 
action Bs, s E R = Fi (scaling automophisms) on R satisfying r 0 8, = e ‘r. 
s E I-?. For each semi-finite normal weight 4 on M, we denote its dual weight 
on R by 8, ( 12, 15, 16, 391. Let h, be the Radon-Nikodym derivative dJ/ds 
of 4 relative to r. Proving that h, is r-measureble 129, 33 1, if and only if 
b E Mi , Haagerup 1171 defined his LP-space, 1 < p < co, by 

L” = (k; r-measurable operator (affiliated with R) satisfying 

6,(k) = exp(--s/p&, s E R.} 

= (k; closed operator affiliated with R whose polar decomposition 

k=ulkl satisfies uEM, lkl=h, ‘lp for some (unique) 0 E M,; 1. 
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To avoid confusion (by keeping M throughout) we shall denote the above 
Haagerup’s L”-space simply by Lp in the rest of the paper. (This notation is 
legitimate because his LP-space does not depend on a choice of #O as pointed 
out earlier.) Elements in Lp are added and multiplied freely by using the 
concept of strong sums and products [33]. 

The original algebra M (imbedded into R) is exactly the fixed point 
subalgebra Re of R under the dual action t9,, s E R. Since all r-measurable 
O-invariant operators are bounded, one obtains L”O = M as expected. Besices 
L m, L ’ and L* are of special importance. At first, L ’ is order isomorphic to 
the predual M, via 

k=uIkl=uhm+u~ (]k]=hO and #EM:), 

and the positive linear form 

tr:k=uh,EL’ -+ W)(l) = $(u> 

possesses the “tracial” property 

WI k2) = tr(k, W, k, E Lp, k, E Lq, l/p + l/q = 1. 

The positive functional tr is used to define a Banach space norm on Lp. 
Namely, we set 

II 41, = tr(l klp)“p (=d(l)“” if k = uhL’P), (17) 

and the duality between Lp and Lq (l/p + l/q = 1) is realized by the bilinear 
form 

(k,, k2) --f tr@, k,) = (k, k2). 

Second, L2 is a Hilbert space under the inner product 

(k3 k2) --f (k, I k,) = trW3 

Furthermore (M, L 2, J = *, L2 + ) is a standard form. Here, L: is the 
“natural” cone consisting of all positive (as an operator) elements in L2 and 
M is understood to act on L* as left multiplications. 

Because of the universality of a standard form 12, 141, we may identify 
CM, L 2, *, L:) with (M, H, J, P’) used in Section 2. Then the unique 
implementing vector for 4 = h, E M, g L’ in the natural cone L: = PQ is 
exactly h, . I’* Also modular bjects in Section 2 are easily described as , 

(Q4 ; W,), = h:,h,-:“, tE IR, 

o;~‘“‘~(x) = h:,xh,$ tE IR,xE:M. 
(18) 
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In many parts in Part II (exceptions are Theorem 11, 1 and Section 13) we 
identify (M, L2, *, L:) = (M, H, J, PQ) and M, = L ‘. It is thus convenient 
for us to describe (Mv, M,) introduced in Section 7 in terms of Haagerup’s 
L%paces Lp, 1 < p < co. To do so, we denote hdo, h,,) simply by h,,, k,,. 
respectively. 

At first, the imbedding (14) is 

xEM-,k;lxh;-“EL’ 

(recall (18)) so that we have 

(19) 

Therefore, LP(M; #,J,, = LP(M; $J (rev. L”(M; ty,Jx) is exactly 
C,,,(Mh,, L’) (resp. C,,,(k,M,L’)), h w ere Mh,(resp. k,M) is equipped with 
the norm 

(rev. llko~ll~~ = II-%>. 

llxhollo, = II-4, 

9. Certain Complex Interpolation Spaces 

We consider the pair (Mn, M,), 0 < v ,< 1, described in Section 7, and 
characterize the complex interpolation spaces C,(M”, M,), 0 < 0 < 1. in 
terms of Haagerup’s LP-spaces Lp, 1 < p < 03. 

For each 0 < 7 < 1 we imbed Lp, 1 < p < co, into L’ via 

il: a E Lp -+ kilYagb’ pq) y E L ’ (20) 

with the corresponding conjugate exponent q so that 

We also write 

11 ip”(a)ll, = /I k;‘4ahb’ m’)i4//,, = I/ a /I,, (21) 

(unless confusion occurs), where 11 a lip is defined by (17). 
The rest of the section will be devoted to the proof of the following 

characterization of C,(Mq, M,): 

THEOREM 9.1. For each 0 < q ,< 1 and 1 < p < 00, the complex inter- 
polation space C,, ,,p(Mv, M,) of the pair defined in Definition 7.1 is (with 
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equal norms) exactly i:(Lp) (zM, z L’) with the norm (21). Or more 
precisely, when L’ and M, are identified, iJ(Lp) is exactly the complex inter- 
polation space Ce(k~/qMh~-v’/q, L ‘), where kz/“Mhh’- q’/q is equipped with 
the norm 11 II”, defined by (19). 

Remark 9.2. When q = 0 and q = 1, C,,p(Mv, M,) reduces to Lp(M; $JL 
ion 3) and Lp(M; w&, respectively. Thus Theorem 9.1 

L”(M; &-JL = LPh;lq, Lp(M; I,& = k;lqLp 

with norms given by 

IlahYqlIp = I141p~ llk~‘q4/, = Ilallp~ (21)’ 
respectively. Especially, when v = 0 and p = 2, the theorem reduces to 
Theorem 3.3. 

Proof of Theorem 9.1. Thanks to Lemma 7.4 and the known reflexivity 
of Lp (=iz(Lp)), one can use Theorem 1.8. The proof we shall give is a 
generalized version of that of Theorem 3.3. We will thus sketch arguments. 
However, for the reader’s convenience, we repeat the definitions of 
F’(kzMhA-“, L’) (Detintion 1.4) and F,,(kzMhA-“, L’) (Lemma 1.3) in the 
present set up. Namely, we set 

F’(k;Mh;-“, L’) 

= {f: 0 < Re z < 1 -+ L ’ satisfying 

(i) bounded and continuous, analytic in the interior, 

(ii) f(it) = kif’(it) h:-” E kzMh:-“, t E I?, 

(iii) Ill fill = Max(wter, IIf’Wl, = suptEP Ilf(it)ll2, 
wh Il.01 + it>lld < ~0 1, 

and 

F,(k;Mh;-v, L’) 

= ~g:O~Rez~l-L1oftheformg(z)=k~g’(z)h~~”, 

g’(z) = exp@z”) 2 exp(~,z)x,,~>O;~,EIR;x,EM 
n=1 

We begin with checking condition (a) in Theorem 1.8. Choose and fix 
a=ulal=uhi’p E Lp, which is identified with 

i”(a) = kz/4uhi/Phy pV)/S = ki/4ahr -VI/4 
P 
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(see (20)) and we set 

.e> = 9(l) 
Ilp~;k~(l-Z)uh~hbl~“)(l -9, O<Rez< 1. 

One then easily computes 

f&t) E k;Mh;-“, ll.LG~)ll~ = ll4p. 

f;, E F’(k;Mh;p”, L’), illLlll = Il4. 
f,,( l/p) = k,:%h;‘~ r)“y. 

Second. we check (b). However, we check it after replacing 0 = l/p by 
1 - 0 = l/q. Obviously we have 

,+$fh;-~ s j”(Lq) = k;‘PLqh” n’ “. 

and, for each g(z) = kig’(z) h:-” in F,(M”, M,). we will prove 

II g(llq)llo G III gIlI. (22) 

To do so, we take an arbitrary a E Lp and the correspondingf,(z) as in the 
first half of the proof. We then consider the bounded and continuous 
function 

H(z) = tr(f,(z) g’( 1 - F)*) 

on 0 < Re z Q 1, which is analytic in the interior. As in the proof of 
Theorem 3.3, one computes 

lWz)l G IMP Ill gIlI. 

In particular, with z = l/p, we have 

ltr(L(llP) g’(llq)*)l 

= I tr(k “‘quh;’ -0)1’4~‘(1/~)“)/ 

= ItMk,“%‘(lls> %,-“)““>*)I < ll4, III glll. 

Thus, the duality between Lp and L* implies 

IlK’Wllq) h ;l-“)‘q)*lIq = Ilko”‘“g’(l/q) h;‘-v)“9/l, < 111 g/II. 

Since k;‘“g’( l/q) h, (‘-t))‘4 in Lq is identified with 

i,“(k;‘“g’( l/q) h h’-n)‘q) = k;g’(l/q) h;-” = g(l/q), 

the above inequality is precisely (22). Q.E.D. 
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We recall that Araki [2] introduced a one-parameter family {P” = P;,}, 
0 ,< a < f, of positive cones in a standard Hilbert space. (Namely, P” is the 
closure of AaM+ &, in the standard Hilbert space, where $,, = w10 and A is 
the corresponding modular operator.) We know (Theorem 3.3) that 
LW; h) = ww do>, is a standard Hilbert space so that the cones are 
inside of L*(M; Q,Jt = L*hi’* ( see Remark 9.2). Let LP, denote the positive 
part of the Haagerup’s Lp-space. When 2 < p < co, 

LP h’/q=LP h’/q-1/2h~/*=Lp+h~l/*)--/ph1/2 
+ 0 + 0 0 3 5 - l/P > 0, 

corresponds to LP, hr’2)-“p in L*. It is easily checked that 

(L”, hi’/*)-l/P)- = {k E ,5*; h;/*)pl/Pk > ()), (23) 

where the closure is taken in L*. (For full details, see [20].) On the other 
hand, when 1 < p < 2, we formally compute 

LP /,‘/4=LP h(l/*)-l/Phi/* 
+ 0 + 0 0 (note i - l/p < 0) 

(although hh”*)- ‘lp is not r-measurable and this product does not generally 
make sense either). However, for a “smooth” part in L% , the computation is 
justified and the closure of “L$ hh1’2)-1’p” is characterized by 

{k E L*; kh;‘P-(“2) > 0). (24) 

According to [20, Proposition 2.21, (23) and (24) are exactly P”, a = 1/2p, 
realized in L*. Thus, we state 

Remark 9.3. Let P,. , 1/2p 1 < p < co, be the cones realized in the standard 
Hilbert space L*(M; $o) = L*(M; #o)L. Then 

LyM; $do) + = (Pi? n LP(M; #o)) if 1 < p < 2, 

= Pi? f-7 LP(M; Cjo) if 2<p<co, 

gives us a reasonable definition of a positive part of our LP-space. Here, the 
closure is taken with respect to ]] ]lp and LP(M; #o) c L*(M; qdo) (if p > 2) or 
L*(M; 4,) E Lp(M; #o) (if p < 2) as explained in Remark 3.2. Full details 
and closely related’subjects are found in [4, 20, 21, 231. Later we shall treat 
the cones from a different viewpoint (Remark 12.4). 

10. Technical Lemmas 

We collect some technical lemmas which will be used in the next section. 
Especially we try to extend a:@~ (k$ . hi” on Lm) to a strongly continuous 
one-parameter group of isometries on Lp, 1 < p < co. 



LP-SPACES 61 

LEMMA 10.1. For each k E Lp, 1 < p < CO, we have 

/Iki%‘fllp = llkll,, tE R. 

ProoJ The space Lp is isometrically isomorphic to LP(M; 4,,) via 

ii : k - khi” (E LP(M; 40) G M, = L ’ ) 

(see (19)). Furthermore, ij is compatible with kf,’ . hi if in the sense that 

ktij(k) hii’ = ij(kvkh; i’). 

Thus, thanks to Theorem 1.2, it s&ices to check the equality for the two 
extreme values p = 1, co. However this is obvious because CJ)U@~ is an 
isometry. Q.E.D. 

LEMMA 10.2. For each k E Lp, 1 < p < CO, the map: t E -’ --+ 
ki;khOm” E Lp is norm-continuous. 

Proof: Case 1 (p = 2). The space L* being a standard Hilbert space, 
the result is obvious because of 

ktkh,” = A&$,,k. 

Case 2 (1 < p ( 2). Obviously the subspace L’hi,“-“,” is dense in Lp. 
Thus, thanks to Lemma 10.1, we may and do assume that k is of the form 

k = k, h;lP-(I/*), k, EL’. 

Then the result follows from Case 1 and Holder’s inequality. 

Case 3 (2 < p < co). Due to Lemma 10.1 and the uniform convexity of 
Lp (Clarkson’s inequality), it suffices to check the weak continuity. 
However, this follows immediatedly from Case 2 with 4, and I,Y,, 
interchanged. Q.E.D. 

Keeping the above two lemmas in mind, one can prove the next result by 
using the triangle inequality for /I lip. 

COROLLARY 10.3. If a map: t E R --t k(t) E Lp is norm-continuous, then 
so is the map: t E iFi + ktk(t) hOi’ E Lp (1 < p < DX). 

For each k E L”, we can “regularize” k as 

k, = (n/7r)“’ jr exp(-nt*) ktkh, ” dt. n = 1, 2,... . 
7 
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Lemmas 10.1, 10.2 then assert that ]] k& < ]]k]], and lim,,, ]I k, - kllp = 0. 
Therefore we obtain the next two results. Actually, the second result is 
stronger than the first, however, we state both of them for later reference. 

LEMMA 10.4. The set of all analytic elements in Lp for kt . h,“, that is, 

(k E Lp; a map: t E IR + k:khiit E Lp extends to an entire function} 

is dense in Lp(l <p ( co). 

LEMMA 10.5. Let N be the u-weakly dense subspace in M of all analytic 
x E Mfor a:O*O. Then N&, (sLP(M, &,) c M*) is dense in LP(M; #,,). 

To prove Lemma 10.5, one has to notice that N$,, is dense is M#,, with 
respect to the ]] ]lp- norm and that M@, is dense in Lp(M, tiO) (Remark 3.2). 

I 1. Non-commutative Stein- Weiss Interpolation Theorem 

In this section, we prove a non-commutative analogue of the classical 
Stein-Weiss interpolation theorem [35] which is our main result in Part II. 
Comments on the theorem will be collected in the next section. 

We defined the left LP-space LP(M; &JL and the right LP-space 
L”(M; w,JR is Section 7. We now characterize complex interpolation spaces 
between them. We feel that the following “Haagerup’s Lp-space-free”’ 
statement is preferable. 

THEOREM 11.1 (Non-commutative Stein-Weiss interpolation theorem). 
For O<v<l and 1 < p < co, the complex interpolation space 
C,(L*(M; #,JL, Lp(M, w,,)~) is (with equal norms) the complex interpolation 
space C,,p(M”, M,). Here the pair (M”, M,) was defined in Definition 7.2. 

Relation between the theorem and the classical Stein-Weiss interpolation 
theorem will be explained in the next section. Every space involved in the 
theorem is a subspace of M, . In the rest of the section, we identify L I = M, 
so that #,, = h, and q$, = k,. Due to Theorem 9.1, Theorem 11.1 follows from 
the following result to the proof of which the rest of the section will be 
devoted. 

THEOREM 11.2. The complex interpolation space C,,(LPhAjq, kAlqLp) 
(=C,(Lp(M; &JL, L”(M: v&)-see Remark 9.2) is (with equal norms) 
iz(LP) = ke/qLPhr -*j/Q ((20)) equipped with the norm (21). Here, the norms 
of LPhi’q and kAIqLP are defined by (21)‘. 

Our strategy is to construct a natural isometric surjective mapping from 
F(LPhiIq, LPhAlq) onto F(LphArq, ki’“L”) which (passing to respective 
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quotient spaces) induces the surjective isometry from L”hA” onto C,, = 
C,(L h 3 o p ‘lq k’lqLp). Then we will be able to compute C, by using the explicit 
form of the above surjective isometry. 

We use the following simplified terminologies only in the rest of the 
section: 

C = C(LPh;IY, @‘LP) = ,,,;jq + k:, “L” 

with the norm I/ III, 

F, = F(LPh;‘“, LPh;IY) 

= {f(z) = f(z)‘hA’“: 0 < Re z < 1 --t LPhA“’ satisfying 

(i) f’(z) is a bounded and continuous L”-valued 
function, analytic in the interior, 

(iii) lim 1-*a Ilf’(z)ll,-0.1 

with the norm 

lllfllll = Max(sup llf’G~>ll,, SUP lIf’(l + it)ll,) IEL IE’ 

(=su~~l/f’(z)ll,; 0 < Re z < 111, 

F2 = F(LPhAi9, kAiqLp) 

= ( g(z): 0 < Re z < 1 + Z satisfying 

(i) bounded and continuous, analytic in 
the interior (with respect to // llZ), 

(ii) g(it) = g,,(it)hilq E LPhAlq, t E R, 
g(1 + it) = k;‘“gr(l + it) E k:,‘YL”, t E IFi. 

(iii) For j = 0, 1, gj(j + it) is I/ &-continuous in ‘,E IF*. and 
lim 1+ *cc II gj(j + it)ll, = O’ i 

with the norm 

Ill gIlI = Max(sup II g&N,, SUP II g,Cl + ~~)ll,,). IEn! fENl 

Also, we will use letters S, f ‘, g, g,, g, in the way that they appear in the 
above definitions. 

Let us start proving the theorem. The first step is to construct a linear 
mapping from F, to F,. Using the harmonic measure (Pi(z, t)li- ,),, in 
Lemma 7.5. for each 

f(z) = f’(z) h:‘q E F, , 
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we set 

($)(z) ,lm k;‘“f’(it) h,“‘4h;‘qPO(~, t) dt, -00 
+r ki’qk2’qf’( 1 + it) h;i”qP,(~, t) dt, if O<Rez( 1, 

-cc 
= ktlqf’(it) h;‘t/qh~/q if z = it, 

= k;‘qk;/“f t (1 + it) h, it/q if z = 1 + it, 

so that (XI)(Z) belongs to Z. (Corollary 10.3 guarantees that the above two 
vector valued integrals make sense.) 

Remark 11.3. Intuitively (when f(z) is “smooth” enough), we have 

@f)(z) = k;‘qf’(z) hb’ -‘)lq = k;‘“f(z) h~“~. 

However, from this form it is difficult to observe (7$)(z) E Z. 

Lemma 10.1 implies 

Ill 7m = lllfllll - (25) 

(although we have not yet known if n~f is in FJ. 
To show f E F,, we at first notice 

Ilw&>IIz G lllfllll~ fE F,. (26) 

(This follows from the above integral expression and the fact that on the 
boundaries of the strip )I IIz is majorized by I/ II,.) We also have 

LEMMA 11.4. For each f E (F,),, described in Lemma 1.3, If belongs to 

F,. 

ProoJ: Due to the linearity of rc, we may and do assume 

f(z) =f ‘(z) h;“, 

f’(z) = exp@z2 + pz)h, A>O,,uEIR,hELP. 

Furthermore, due to Lemma 10.5 and (26) (and the completeness of F,), we 
may assume that h = xhiIP with an x E N described in Lemma 10.5. For this 
smooth f’(z), easy computation (see Remark 11.3) shows 

(nf >(z) = exp(Az2 + PZ) c??Qq(x) h 0’ 

From this, conditions (i)-(iii) in F, are easily checked. For example, since 
z + reQq(x) E M is uniformly (=a-weakly) analytic, (i) is fulfilled. Q.E.D. 
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LEMMA 11.5. The map 71 is an isometry from F, to F2. 

ProojI Since the uniform limit of continuous (resp. analytic) functions is 
continuous (resp. analytic), Lemma 11.4 and (26) (together with Lemma 1.3) 
show that nf, f E F,, satisfies (i) in F,. Also, Lemma 10.1 and Corollary 
10.3 guarantee that nfsatisfies (ii) and (iii). Finally, because of (25), 7~ is an 
isometry. Q.E.D. 

The second step is to show the surjectivity of rr. In fact. we construct its 
inverse mapping. Namely, for each g(z) in Fz, we set 

(n’g)(z) = I’= k;i”4g,(it) h2’ghi’qP,(z, t) dt 
. -?r 

+ y k; if’qg,( 1 + it) ht’4h:,‘4P,(z, t) dt if O<Rez< 1. 
I’ x. 

if z = it, 

= k; “‘Yg,(l + it) ht/Yhl/rl if z=l+if 

so that (n’g)(z) E LPhi’q. Again we have 

III n’glll I = III glll2. 

1l(~‘g)(z)l/, ,< Ill gIlI?. 

Also, as a counterpart of Lemma 11.4, we have 

LEMMA 11.6. For each g E (F]),) (Lemma 1.3), 7r’g belongs to F,. 

Proof: As before we may assume 

g(z) = exp(Lz2 + ,uz)k, A > 0:p E 1::. 

k = x,, hii” = kiiYx, , x0. x, E L” (27) 

so that we have 

gdit) = exp(A(it)’ + p(it))x”, 

g,( 1 + it) = exp(A( 1 + it)’ + jf( 1 + it))x, 
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Therefore, one computes (r/g)(z) = f’(z) hi” with 

f’(z) =i’“, exp(A(it)* + I) k,“‘qx,h~‘qPO(z, t) dt 

exp(A( 1 + it)’ + ,B( 1 + it)) knitx, h:‘qPl(~, t) dt 
if O<Rez< 1, 

= exp(l(it)2 + (it)) kilqx, ht’q if z = it, 

= exp(A( 1 + it)’ + p( 1 + it)) k;i”qx, h:‘q if z = 1 + it. 

For each h E Lq such that &hk;’ is entire (those h’s form a dense subspace 
in Lq due to Lemma 10.4), the mapping 

is entire. In fact, 

z - (f’(z), h) 

H(it) = (f’(it), h) = exp(A(it)2 + ,u(it)) tr(k;i”qxOh~‘qh) 

= exp(A(it)’ + ,u(it)) tr(x, h:‘qhk,i”q) 

so that it extends to an entire function. Furthermore, for z = 1 + it, we have 

H(l + it) = exp(i(l + it)’ + ~(1 + it)) tr(x,h~‘+i”‘qhk,“+““q) 

= exp(A( 1 + it)’ + ~(1 + it)) tr(x, ht’qhk;i”q) (because of (27)) 

= exp(A( 1 + it)’ + ,u( 1 + it)) tr(k;if’qx, h:‘9h) 

= (f’(1 + it), h). 

Since Ilf’(z)& < 111 gl&, the above computations show that f’(z) is II lip 
(= weakly) entire and rc’g satisfies (i) in F,. Also (iii) follows from 
Lemma 10.1. Q.E.D. 

Thus, the same arguments as in the proof of Lemma 11.5 show 

LEMMA 11.7. The map z’ is an isometry from F, to F,. 

Obviously, kt19 . h;“19 in the definition of z and k;“19 . h:lq in that of 7~’ 
cancel out with the each other so that II’ 0 7c (resp. 7c 0 rr’) is the identity 
mapping of F, (resp. F,). More strongly, we have 

LEMMA 11.8. The map 7c is a surjective isometry from F, onto F,. 
Furthermore, for each 0 < @ < 1 and f E F,, f(e) = 0 if and only if 
@?f )(@) = 0. 
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Prooj We just prove that f(e) = 0 implies (r@)(e) = 0. Similar 
arguments imply this implification for x’, which together with 7~’ 0 71 = Id 
will yield the other direction. 

Take and fix an f(z) =f’(z) hi/4 E F, and assume that 

f(0) = 0, that is, f’(0) = 0 in L”. 

For each x E M such that hixk;” is entire, easy computation shows 

((nf)(z))(x> = tr(f’(z) h~‘q~2~(x)) 

so that f’(0) = 0 implies ($)(0) = 0. Q.E.D. 

End of the proof of Theorem 11.2. Having obtained the above lemma, 
(by passing to the quotient spaces) rr induces the surjective isometry ?I, from 
LPhAfq onto C,. For a smooth h E Lp for kt . hi”, we consider 

f(z) = exp(z2 - r’) hhijq E F,, 

(f(v) = hh;“). 

We then have 

n,Wi’“) = q(f(vN 
= e?f )(?l) 
= exp(z2 - r’) k;‘4hh;“q/,,, (recall Remark 11.3) 

= k”/qhh’l - n)/q 
0 0 

so that 

k-J/qhh;l -rl)/Y E C,, 
0 

/I k;‘qhh;‘~“)‘qI~c, = l(hh;‘qIl, = I/ hII,, 

the map rc, being isometric. Thus the density of smooth h’s (Lemma 10.4) 
shows that 

C = k;hLPh”-V’IY 

/I k;‘qhhl,1-2”q,,cv = /I h;,,, h E Lp. 

In other words, C, is exactly iz(Lp). Q.E.D. 

12. Remarks 

To understand Theorem 11.1 better, we specialize ourselves to the abelian 
von Neumann algebra M= Loc(F?; dt) (acting standardly on the Hilbert 
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space L*(IR; dt)) with the predual M, = L’(F?; dt). We fix strictly positive 
functions h,(t) and k,(t) in L’(F?; dt) so that 

#o(.) = j”, . h,(t) dt, wo(*) = j_: * ko(t) dt, 

give rise to faithful normal linear functionals on M. Then, for each 
0 < q < 1, cr’?~;(~)q$,, (in (14)) is computed by 

f(t) E L”O(iR; dt) + k,(t)“-‘“‘f(t) h,(t)“‘“%,(t) 

=f(t) h,(t)“-~‘k,(ty E L’(IR; dt). 

Therefore, easy computation (or Theorem 9.1) shows that the complex 
interpolation space C,,JM”, M,) considered in Theorem 9.1 is 
Lp(R; dt) ho (‘-““qk~‘q. A function 

f(t) = g(t) ho(t)(‘-~)‘qko(t)“‘q 

belongs to this space if and only if 

yrn ~f(t)~Pho(t)-P(‘~q)‘qko(t)~P”‘q dj I” < co. 

In other words, we have 

Cllp(M”, M,) = Lp(IR; l~,(t)-~(’ -“)‘qkO(t)-P”‘q dt). 

Also, considering the two special values q = 0, 1, we know 

LP(M; $o)L = Lp(IR; l~~(t)-~‘/~ dt), 

Lp(M; I//~)~ = Lp(IR; ko(t)pP’q dt). 

Therefore, introducing 

we(t) = h,(t) -p/q, WI(C) = k,(t) -p/q, 

we conclude that 

C,(L”(IR; we(t) dt), LP(R; wl(t) dt)) = Lp(IR; wo(t)‘~qw,(t)v dt). 

This is known as the Stein-Weiss interpolation theorem [35]. 
We now return to a general von Neumann algebra M and give some 

comments. 

Remark 12.1. As an analogue of a general form of the classical Stein- 
Weiss interpolation theorem, we believe that one can also characterize 
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C,(LP(M; &JL, Lp’(M, v/,,)~) with different @,,, v/” and different p,p’. 
However, the case p = p’ seems to be more interesting as subsequent 
remarks in the section show. 

Remark 12.2. One might equally be interested in characterizing inter- 
polation spaces between two left (or two right) LP-spaces. It is likely that a 
reasonable result is available only when do and v,, commute in the sense of 
[ 37, Sect. 15 1. We thus believe that this is an ill-posed question. We would 
like to remind the reader that Pusz and Woronowicz [ 301 obtained a certain 
interesting object (purification) by “interpolating” left and right sesquilinear 
forms (instead of two left sesquilinear forms; see Remark 12.5). 

Remark 12.3. When v = i and Q0 = w,, in Theorem 11.1, one obtains the 
“averages” C,,,(LP(M; #o)L, LP(M; #JR) = ij”(L’) = h~:‘2qL2h~‘2q between 
left and right Lp-spaces. These are exactly Terp’s Lp-spaces 140) constructed 
by using the “symmetric” injection: x+ (d0)X. (in her case, do can be a 
weight.) In fact, if rt is the GNS representation induced by Q, (and co is the 
corresponding cyclic and separating vector and A(x) = n(x)& = n(x) /1(l)). 
the injection M 4 Ml/2 c M, for r) = 4 is given by 

and one computes 

Ca ilZCx> 4i3)(z*Y) = 40(z*Yo-i/2(x)) 

= (n(z *y> fi g)%x> la I (0) 

= MY) J$x*) Jr, I $z) 5,) 

= v@*)J~(Y) /A(z)). 4’,ZEM. 

which is exactly (d,,)Jz*y) (see 140, p. 491). 

Remark 12.4. When p = 2 and v0 = do, we have a one-parameter family 
C,(L’(M; dJL, L2(M; &JR), 0 < q < 1, of Hilbert spaces. All of them are 
standard Hilbert spaces. In fact, the proof of Theorem 11.1 shows that 

TC, : kh;‘2 E L’(M; &,), = L2(M; &,) = LZhAi2 
--t k;:‘kh;’ V) I? E ,-, 

gives a surjective isometry, and the isomorphism between L2(M; 4,) and LL 
is given by 

i; : k E L2 + khif2 E L*(M: @,,) 

(see (19)). Therefore, 

(28) 
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is an isomorphism. We also recall that when we constructed C,(M”, M,) we 
considered the injection 

XEM+o~i~(x)~o=h~xh~-~EL’=M*. 

Considering h~xh~-” as an element in C,,#P,M*), we now write 

jy : x E M-+ h;lxhi-q E cl,*pP, iv,), 

and Theorem 11.1 asserts 

The image jz(M+) = hzM+ h:-” corresponds (by (28)) to 

(n,o j~)-1(h;lM+h~-~)=h~‘2~+hb’-~“2=d~~~+h~’2 

in the standard Hilbert space L2 so that the closure of j;(M+) in the 
standard Hilbert space C, is PI: (recall Remark 9.3). Thus, Theorem 11.1 
asserts that the cones PI”, 0 < v < 1, are obtained by “interpolating” the 
two extreme cones Pi, (ii L2(M; #&) and Pi: (in L2(M; &JR). A more 
precise meaning of the above “interpolating” seems to deserve further 
investigation. 

Remark 12.5. Finally we consider the case p = 2, #,, # yo. As in the 
previous remark, we write 

j;: x E M+ k;xh;-” E C,(L2(M; $,JL, L*(M; y&J 

= kV/2L2hi’-Q)/Z = ifl(Lz) 
0 (see (19)). 

Since j;(x) = k~xh~~” = i;(kz’2xhb’-“‘)‘2 ), the norm of j:(x) is given by (see 

(21))Y 
)I kz’2xhk1 -q)12 II2 = tr(l ki’2xhi’ pq)‘2 I’) 

= tr(kzxhAPVx*). 

Thus, the Hilbert space C, may be regarded as the completion of M 
equipped with the quadratic form 

x E M+ tr(kzxhi-“x*) E [0, oo) (=I14~~ox~oI12)~ (29) 

In particular, with v = 0, 1, L 2(M; #o)L and L2(M; vO)R are the completions 
of M with respect to 

x E M+ tr(h,x*x) = $o(x*x), WY 

x E M+ tr(k,xx*) = wo(xx*), (29)” 
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respectively. The reader may notice that (29)’ and (29)” are left and right 
forms considered by Pusz and Woronowicz (30,3 1,431, and also that (29) 
is a form appearing typically in the Wigner-Yanase-Dyson-Lieb concavity 
13, 27, 31, 34, 431. Namely, this concavity states that 

a tr(h;,xhh;“x*) + /3 tr(h;lzxh~;qx*) < tr(h;lxhi; “x*). (30) 

We know (Theorem 11.1) that the form (29) (or more precisely, its 
associated quadratic norm) can be obtained as the complex interpolation 
form between (29)’ and (29)“. Also, for the “boundary” forms (29)’ and 
(29)“, (30) is obviously valid (with the equality). Hence, the Wigner- 
Yanase-Dyson-Lieb concavity may be interpreted as “concave dependence 
of interpolated norms on boundary datas.” This viewpoint is being taken by 
Uhlmann [43] and he showed that the above described concave dependence 
for a certain quadratic interpolation functor (IQ, in [3]), which is actually 
the complex interpolation functor C, as the above discussion shows. Further 
analysis (including certain generalizations and simplifications) will appear 
elsewhere [ 25 1. 

13. Proof of Uniqueness Theorem 

This section is devoted to the proof of Theorem 4.4 so that we return to 
terminologies used in Part I. Of course, the result follows from Theorem 9.1 
(with q = 0) and the fact that Haagerup’s Lp does not depend on a choice of 
4”. However, “Lp-free” (i.e., “crossed product-free”) proof is much more 
desirable. We give such a proof in this section. Our proof is based on 
complex interpolation theory itself (and relative modular theory in 
Section 2). The proof involves arguments used repeatedly in Section 11. 

Easy computations suggest that an obvious candidate of a “nice” map 
(satisfying properties similar to those in Proposition 11.8) from &‘(M”(l, M,) 
onto F(M’l, M,) (see the beginning of Section 3) is 

(7Zf)(Z)=f'(Z)(D~";D~,)~i~~l 

=f(zm%; ml)-;,.- I)' 

f(z) =f'(z) $0 E F(Mrn". M,) 

(and f’(z) is “smooth” enough). Notice that this is similar to the map which 
was used to construct the right action a . x in Section 6. However, the above 
rcfdoes not belong to F(Mml, M,) unfortunately because t + (04,; D@,), fails 
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to be I( (I,-continuous generally. This diffkulty is removed if one uses the 
duality (Theorem 4.3). 

Proof of Theorem 4.4. Because of the Theorems 4.3 and 3.3, and (1 l), it 
suffices to construct an isometric isomorphism from C,(H@~, M,) onto 
C&PI, M,). Here, H is a standard Hilbert space, and in the first (resp. 
second) interpolation, H is being imbedded into the predual M, via 

(resp. [- (e [ ) r,)) with the unique implementing vector lo for & (resp. cl for 
4,) in the natural cone Ph. For each f(z) in F(Hmo, M,) with 

fW = (a t;(it> I &>, CO4 E H, 

we set 

(nf>(z> = jm (a C(it) I A;!;$l) P,(z, 0 dt -cc 

+ ja f(l + it)(Dh ; D&,&f’&, t> dt, if O<Rez< 1, 
-cc 

= (a C(it> I ~~~~o~,) if z = it, 

= f(l + fowl ; @a;* if z = 1 + it 

((nf)(z) E M,). The following observation is crucial in our proof: We notice 
that (recall (4)), 

= JPh; Dh),,zJL 3 

and that J(D&,; D#1)1,2J is a unitary operator in the commutant JMJ= M’. 
For z = it, x E M, we thus have 

(WW))(x) = (x&t) I JPh ; Dv~L,~ JG) 
= @JPh; %)~2JW I 6). 

Therefore, (Irf)(it) certainly belongs to H@l and 

11klfWW~ = II JW, ; %>rS JWh 
= II &t)L 
= II fWllH Qo * 
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Also, we obviously have 
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ll(~f>(l + it>ll, = llf(l + it>ll, 
so that \\lrrf /// = I(/ f 111, Next, for 

we try to compute (Q)(z). For z = 1 + if, we have 

((nf)(l + it))(x) = exp(A( 1 + if)’ + A 1 + it))((Q, ; D&),*2xi I 5,,) 

= exp(k( 1 + it)2 + b( 1 + it))(xi / A~;~,,&). 

Since To belongs to D(di’,i,l), this function extends to a bounded continuous 
function 

exp(h2 + iuz)(xi 1 A’,,;~“&) 

on 0 < Re z < 1, which is analytic in the interior. Furthermore, for z = it. it 
gives rise to 

exp@(if)’ + iu(it))(xC / d~~~,d~‘l~,~,J = exp(A(ir)2 + ,u(it))(xi I A’,‘;;,,{,) 

= ((nf)(it))(x). 

Therefore, nJ f E F,,(H@o, MY), is an M,-valued bounded and continuous 
function on 0 < Re z < 1, which is analytic in the interior. Actually. nf 
belongs to F(W’l, M,) as checked easily. Thus. arguments in the proof of 
Lemma 11.5 show that the map rr sends F(EPO, M,) into F(H’l, M,) 
isometrically. 

To prove that f (t9) = 0 implies (nf )(0) = 0. we choose an x in M such that 

extends to an entire function x(z). (Such x’s are known to form a o-weakly 
dense subspace in M because of the usual regularization method.) For this x 
and any f E F(H@o, M,), we compute 

((MM1 + it)>(x) = (f(l + it>)(W, ; 4,hx). 

By the uniqueness of analytic continuation, we have 

((nf >(z>>(x) = f (z>(x(-i(z - 1 Y2)). 

Thus, f (8) = 0 implies ((nf )(e))(x) = 0, that is, (nf )(Q) = 0 as we desired. 
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If one changes roles of &, and #i (also &, and <i), one obtains the inverse 
isometric mapping because of the chain rule 

v%; w AtW ; WJ, = (@h; Wo),(~4il; %>, = 1. 
Therefore we conclude that 7c is a surjective isometry from F(H@o, M,) onto 
F(Hml, M,) satisfying 

f(e) = 0 if and only if ($)(0) = 0. 

Passing to the quotient spaces, we obtain the surjective isometry from 
C&PO, M,) onto C,(Hml, M,), 0 < B < 1. Q.E.D. 

APPENDIX: UNIFORM CONVEXITY OF COMPLEX INTERPOLATION SPACES 

Calderon showed in [ 71 that all complex interpolation spaces C,(X,, , X,), 
0 < 13 < 1, are reflexive if at least one of X0 and X, is. This result remains 
valid if one replaces the reflexivity by the uniform convexisty. (The 
corresponding result is known for a certain real interpolation method [5 1.) 
Further analysis can be found in [ 111. 

THEOREM A. Let X = (X,, , X,) be a compatible couple of Banach spaces. 
If at least one of X,, and X, is uniformly convex, then so is the complex inter- 
polation space C,(X), 0 ( e ( 1. 

We need the harmonic measure {Pj(z, t)}j=o, , for the strip 0 < Rez < 1 
(see Lemma 7.5). We state the following powerful inequalities: 

LEMMA A.1 [6, Lemma 4.3.21. For each f in F(X), we have 

(9 l4lf(~)lI, G lrn 1% IlfWloJX% t> dt -m 

log Ilf(l + iWVA 4 & 

Because of (16), P,(B, t)(dt/(l - 0)) is a probability measure on iR (for 
each 0). By L’(X,), we denote the Banach space consisting of all X,-valued 
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square integrable functions on R with respect to the above probability 
measure (for a fixed 19). The following result is known (5, p. 7 1 ]: 

LEMMA A.2. If X, is unformly convex, then so is L’(X,,). 

We denote the modulus of convexity of L’(X,,) by 6(.). Namely. for a 
small E > 0. we set 

S(E) = inf{ 1 - ]](i)(x + y)i]; x, y E L’(X,), lI~~ll.II.4~ 1~ll~~-vll>~i 

(If X, is uniformly convex, then 8(c) is strictly positive due to the above 
lemma.) We notice that in our situation (Theorem 4.3). X,, was a Hilbert 
space, for which Lemma A.2 is obvious. 

Proof of Theorem A. We may and do assume that X, is uniformly 
convex [6, Theorem 4.2.1(a)]. We first fix a number a > 2. 

Choose and fix a small e > 0 throughout. Let x, y be elements in C,,(X). 
0 ( 0 < 1, such that ]/x/I0 < 1, ]] y]], < 1, and /Ix -y/l0 > c. 

We then take v > 0 such that 0 < v < (a/2)’ - 1. By the definition of the 
interpolation norm, there exist two Z(X)-valued functions j- and g in F(X) 
satisfying 

.Y = f(e), IllfIll < 1 + v- 
Y = g(e), III .!llI G 1 + 7. 

Using Lemma A. 1 (i), we estimate 

log & < log I/x - J$ 

< j.* log IIf - g(it)ll,p,(e. t) dr + e log{2( 1 + r/)1 
. 7 

because of (16) and 

Il.01 + if> - Al + if)lll < IllfIll + Ill glll < 2(1 + r7). 

Therefore. we have 

c{2(1 +q))ngexpJ‘: log IIf - g(iN,p,W t) dt. 
-cc 

The measure P,(B, t)(dt/(l - 0)) being probability, we then estimate 
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< I (Jensen’s inequality) 

(Cauchy-Schwarz inequality). 

In the auxiary Banach space L’(X,), we consider the two elements 

fW r;(t) = -, s(t) 
1+11 

G(t) = -. 
I+rl 

Then the above estimate shows that 

IIF- GII > &[&{2(1+ q)}-e]l'(l-e) 

=& l/cl-tv-e/cl-eyl + r)-l/b9) 

> El/(l-e)2-e/cl-e)(a/2)-e/cl~e) 
/ (recall 0 < rl < (~42)~ - 1) 

= (Ea-e)l/(l-e)e 

Also, F and G belong to the unit ball of L*(X,). It follows from Lemma A.2 
that 

Il(;)(F+ G)ll < 1 - ,((~a~~)"(~~~)). 

Thus, Lemma A. 1 (ii) implies 

(f(l + it) + g(l + it>> II I 
):2 - dt t (l-e)/2 UT4 + g(W) o Po(@ t) l _ B \ 



Letting q 1 0, we obtain 

11(+)(x + JJ)ll@ < { 1 - ,((&a-e)““-e)}‘V 

Since the right-hand side is a positive number strictly less than 1 and 
depends only on E and a (not x, y), C,(X) is uniformly convex as desired. 

Q.E.D. 

LP-SPACES 77 

ACKNOWLEDGMENTS 

The author would like to express his most sincere gratitude to Professor M. Takesaki for 
constant encouragement and enthusiasm on the present materials; especially, a starting point 
of the work in Part II was his question to the author. The author also thanks Professors 
M. Cwikel and S. Reisner for a result in the Appendix, and Professors U. Haagerup and 
S. Krantz for fruitful correspondence I18 1 and stimulating discussions. 

REFERENCES 

I. H. ARAKI. Multiple time analysis of a quantum statistical state satisfying the KMS 
boundary condition, Publ. Res. Instr. Math. Sci. A-4 (1968), 361-371. 

2. H. ARAKI, Some properties of modular conjugation operator of van Neumann algebras 
and a non-kcommutative Radon-Nikodym theorem with a chain rule. Pacific J. Math. 50 
(1974), 309-354. 

3. H. ARAKI. Relative entropy of states of van Neumann algebras. Publ. Res. Inst. Math. 
Sci. 11 (1975-1976), 809-833. 

4. H. ARAKI AND T. MASUDA. Positive cones and L”-spaces for von Neumann algebras. 
Publ. Res. Inst. Math. Sci. 18 (1982), 339-411. 

5. B. BEAUZAMY, Espaces d’interpolations reels: Topologie et geometrie. Lecture Notes in 
Math., No. 666, Springer-Verlag, Berlin, 1978. 

6. J. BERG AND J. L~FSTRGM, “Interpolation Spaces: An Introduction.” Springer-Verlap. 
Berlin, 1976. 

7. A. P. CALDER~N. Intermediate spaces and interpolation. the complex method, Studiu 
Marh. 24 (1964), 113-190. 

8. A. CONNES, Une classifications des facteurs de type 111, Ann. Sci. gcole .Yorm. Sup. (4) 6 
(1973). 1133252. 

9. A. CONNES, Spatial theory of van Neumann algebras. J. Funct. dnal. 35 ( 1980). 
1533164. 

IO. A. CONNES AND M. TAKESAKI. Flow of weights on factors of type III. TGhoku Math. J. 

29 (1977), 473-575. 
1 I. M. CWIKEL AND S. REISNER. Interpolation of uniformly convex Banach spaces. Proc. 

Amer. Mafh. Sot. 84 (1982). 555-559. 
12. T. DIGERNES. “Duality for Weights on Covariant Systems and Its Applications.” Thesis. 

UCLA, 1975. 
13. J. DIXMIER. Formes lineares sur un anneau d’operateurs. Bull. Sot. Ma/h. France 81 

(1953), 9-39. 

14. U. HAAGERIJP. The standard form of van Neumann algebras. Math Stand. 37 ( 1975 1. 
271-283. 

15. U. HAAGERUP. Operator valued weights in von Neumann algebras. I. 1. Funcr. Anul 32 
(1979), 175-206. 

16. U. HAAGERUP, On the dual weights for crossed products on van Neumann algebras. II. 
Moth. Stand. 43 (1978). 119-140. 



78 HIDEKI KOSAKI 

17. U. HAAGERUP, L%paces associated with an arbitrary von Neumann algebra, Colloques 
lnternationaux CNRS, No. 274, pp. 175-184. 

18. U. HAAGERUP, Letters to the author. 
19. M. HILSUM, Les espaces Lp dune algebre de von Neumann (theorie spatiale), J. Funct. 

Anal. 40 (1980), 151-169. 
20. H. KOSAKI, Positive cones associated with a von Neumann algebra, Math. Stand. 48 

(1980), 295-307. 
21. H. KOSAKI, Positive cones and L%paces associated with a von Neumann algebra, /. 

Operafor Theory 6 (1981), 13-23. 
22. H. KOSAKI, Canonical L’Spaces Associated with an Arbitrary Abstract von Neumann 

Algebra,” Thesis, UCLA, 1980. 
23. H. KOSAKI, T-theorem for LP-associated with a von Neumann algebra, J. Operator 

Theory 7 (1982), 267-277. 
24. H. KOSAKI, Applications of uniform convexity of non-commutative L%paces, Trans. 

Amer. Math. Sot., in press. 
25. H. KOSAKI, Wigner-Yanase-Dyson-Lieb concavity and interpolation theory, Comm. 

Math. Phys. 87 (1982), 315-329. 
26. R. KUNZE, Q Fourier transforms on locally compact unimodular groups, Trans. Amer. 

Math. Sot. 89 (1958), 519-540. 
27. E. LIEB, Convex trace functions and the Wigner-Yanase-Dyson conjecture, Aduan. in 

Math. 11 (1973), 267-288. 
28. C. A. MCCARTHY, C,, Israel J. Math. 5 (1967), 249-271. 
29. E. NELSON, Notes on non-commutative integration, J. Funct. Anal. 15 (1974), 103-l 16. 
30. W. Pusz AND S. WORONOWICZ, Functional calculus for sesquilinear forms and the 

purification map, Rep. Math. Phys. 8 (1975), 159-170. 
31. W. Pusz, AND S. WORONOWICZ, Form convex functions and the WYDL and other 

inequalities, Lett. Math. Phys. 2 (1978), 505-5 12. 
32. M. REED AND B. SIMON, “Methods of Modern Mathematical Physics. II,” Academic 

Press, New York, 1975. 
33. I. SEGAL, A non-commutative extension of abstract integration, Ann. of Math. 37 (1953), 

401-457. 
34. B. SIMON, Trace ideals and their applications, Math. Sot., Lecture Note Series, No. 35, 

London Cambridge Univ. Press, London, 1979. 
35. E. STEIN AND G. WEISS, Interpolation of operators with changes of measures, Trans. 

Amer. Math. Sot. 87 (1958), 159-172. 
36. E. STEIN AND G. WEISS, “Introduction to Fourier Analysis on Euclidean Spaces,” Prin- 

ceton Univ. Press, Princeton, N. J., 1971. 
37. M. TAKESAKI, Tomita’s theory of modular Hilbert algebras and its applications, Lecture 

Notes in Math., No. 128, Springer-Verlag, Berlin, 1970. 
38. M. TAKESAKI, Conditional expectations in von Neumann algebras, J. Funct. Anal. 9 

(1972), 306-321. 
39. M. TAKESAKI, Duality for crossed products and structure of von Neumann algebras of 

type Ill, Acfa Math. 131 (1973), 249-310. 
40. M. TERP, Interpolation spaces between a von Neumann algebra and its predual, J. 

Operator Theory 8 (1982), 327-360. 
41. F. TREVES, “Topological Vector Spaces, Distributions, and Kernels,” Academic Press, 

New York, 1967. 
42. H. TRIEBEL, “Interpolation Theory, Function Spaces, Differential Operators,” Vol. 18, 

North-Holland Mathematical Library, Amsterdam, 1978. 
43. A. UHLMANN, Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in an 

interpolation theory, Comm. Math. Phys. 54 (1977), 21-32. 


