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Non-commutative L”-spaces, 1 < p < oo, associated with a von Neumann
algebra are considered. The paper consists of two parts. In part 1. by making use of
the complex interpolation method, non-commutative L”-spaces are defined as inter-
polation spaces between the von Neumann algebra in question and its predual.
Also, all expected properties (such as duality and uniform convexity) are proved in
the frame of interpolaton theory and relative modular theory. In part II, these L’-
spaces are compared with Haagerup’s L”-spaces. Based on this comparison, a non-
commutative analogue of the classical Stein-Weiss interpolation theorem is
obtained.
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0. INTRODUCTION

This paper is devoted to a new construction of non-commutative L7
spaces, 1 < p < oo, from a von Neumann algebra (which is not necessarily
semi-finite). The construction is based on the complex interpolation method
(due to Calderon [7]). All expected properties are proved by complex inter-
polation theory and (relative) modular theory (Tomita—Takesaki theory
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[37]). Also, a non-commutative analogue of the classical Stein—Weiss inter-
polation theorem is obtained.

Certain applications of the theory of operator algebras to other fields are
carried out through theory of non-commutative L”-spaces. Thus, starting
from a pair (M, ¢,) consisting of a semi-finite von Neumann algebra M and
a trace ¢, on it, many authors studied non-commutative L’-spaces,
{13, 26,29, 33]. After the development of the Tomita—Takesaki theory,
Haagerup [17] generalized them to the case when ¢, is a weight (so that M
need not be semi-finite; see also [4, 9, 19, 21, 22, 40]). His L”-spaces are
based on crossed products [39]. Roughly speaking, crossed product
technique is “Fourier analysis” for von Neumann algebras. Instead of using
it, we will employ the complex interpolation method which is a product of
deep classical analysis (including Fourier analysis). This complex inter-
polation method itself is quite an abstract method, however, when it is
applied to a von Neumann algebra it is not abstract at all and actually
fitting. Namely, it provides us a nice interpretation of “relative KMS
functions.” It may be said (see Remark 3.5) that the study of non-
commutative L”-spaces is the study of the behavior of these functions inside
of the strip.

We now describe the origanization of the paper. It consists of two parts.
Part I is devoted to non-commutative L”-spaces L?(M; ¢,), 1 < p < oo, for a
distinguished faithful normal state ¢, on a given von Neumann algebra M.
After some preliminaries (Sections 1, 2), in Section 3 we imbed M into its
predual M, via

X = X, (*)

and L?(M;¢,), 1 < p< oo, is defined as the complex interpolation space
Co_1,p(M, M), 0 < 6 < 1. Also we show the equivalence between L*(M, ¢,)
and a (standard) Hilbert space. Based on this fact, in Section 4 we prove
certain properties of our L”-spaces. Among other results, we prove the
uniform convexity of the L”-spaces, 1 < p < oo (Theorem 4.2) which gives
rise to the affirmative answer to Dixmier’s question in [13]. Actually we give
two proofs. The one in Section 4 is based on quite a general result [11] on
the complex interpolation method, whose proof is presented in the Appendix
for the reader’s convenience. The other is based on the Clarkson and
McCarthy inequalities in Section 5. In Section 4 we also state the uniqueness
theorem (Theorem 4.5) of the L”-spaces. However, its proof is based on
arguments used repeatedly in Part II so that it will be proved in Section 13
(the last section in PartII). In Section 6, we consider an M-bimodule
structure of the LP-spaces.

Part II deals with a non-commutative analogue of the classical
Stein—Weiss interpolation theorem. Fixing two faithful normal states v, ¢,
in Section 7 we consider a one-parameter family of imbeddings of M into
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M., parametrized by 0 {7 1. When #=0 (resp. 7= 1), this reduces to
the “left” injection (x) (resp. the “right” injection x - w,x) so that we obtain
the left L?-space L?(M; @,) = L?(M; ¢,), (resp. right L”-space L?(M; w,),).
In Section 9, we investigate relations between these spaces and Haagerup's
L7-spaces (Section 8). After preparing some technical lemmas in Section 10.
in Section 11 we prove the main result (Theorem 11.1) of Part Il which
characterizes the complex interpolation spaces between the left and right L”
spaces. This characterization can be considered as a non-commutative
analogue of the classical Stein—Weiss interpolation theorem. (see the
beginning of Section 12) In Section 12, we collect some remarks and related
topics on this theorem.

I. NON-COMMUTATIVE L”-SPACES

1. The Complex Interpolation Method

In this section we briefly recall the complex interpolation method due to
Calderon. It will be helpful to make the present article readable to operator
algebraists who (like the author) have little knowledge of interpolation
theory, and partly to fix our notations. Full details of the materials until
Lemma 1.3 can be found in [6, 7, 32, 42]. However. Theorem 1.5 seems to be
new.

Let X = (X,, X,) be a pair of two compatible Banach spaces with norms
Iy, =1 llo and || {[x, =l Il respectively. Namely, there should exist a larger
space X so that both of X, and X, can be considered as subspaces. (In usual
applications of interpolation theory to function spaces. the space X is
sometimes unspecified. In our case it will be the predual of a given von
Neumann algebra.) Then the algebraic sum Z(=X(X) = X{(X,. X)) = X, + X,
(in X) is a Banach space under the norm

[ xlly = inf{flxgllo + 113,12 = xy + x5, € X

due to the completeness of X, and X,. One then defines a space of certain
Y(X)-valued functions on the strip 0 < Rez < 1 as
F (=F(X)=F(X,. X))
={f:0< Rezg 12 satisfying
(i) bounded and continuous, and analytic
in the interior (with respect to || ||;).
(i) fU+inpeX,telr j=0.1,
(iii) for j=0,1, the map: r€ - f(j+ it) € X;
is || ||-continuous, and lim, .., || f(j + i)l = O}.

SROSHI R



32 HIDEKI KOSAKI

It foliows from the Phragmén—Lindel6f theorem that the space F is a Banach
space under the norm

I AN = Max(sup I/ G)o sup I/CL+ )],

DerFINITION 1.1 [6,7]. For each 0< @< 1, the complex interpolation
space Cy (=Co(X) = Cy(X,, X)) is the set of all f(), f € F, equipped with
the complex interpolation norm

1xllg (= xllc,) = inf{{ll £1Il; S € F, f(6) = x}.

We remark that || ||, and || ||, majorize || ||z on X, and X,, respectively.
Therefore, the Phragmén—Lindel6f theorem implies
I/ Olz < S

In particular, Cy,(X) is continuously included in X(X). Also, being the
quotient space F/K, (equipped with the quotient space norm), Cy(X) is a
Banach space. Here, K, is the closed subspace consisting of all fE€F
satisfying f(#) = 0.

We now state two results which will be repeatedly used later. The first
theorem is considered as an abstract version of the classical Riesz—Thorin
interpolation theorem, while the second density result is a consequence of
Fourier analysis.

THEOREM 1.2 [6, Theorem 4.1.2|. Let X=(X,,X,) and Y= (Y,,Y,)
be two pairs of compatible Banach spaces, and T be a linear operator from
Z(X) to 2(Y). If T maps X, (resp. X,) into Y, (resp. Y,) with

||Tx0‘|y0<M0||x0on9 X, € X,

(resp. | Tx,|ly, KM, ||x,{lx, x, € X,,) then T maps Cy(X) into Co(Y) for
each 0 < 9 < 1 with

| Tx”cﬂ(y) <My~ MY ”x“('(,(xp x € Co(X).

(In other words, Cy is an exact interpolation functor of exponent 6 [6].)

LemMa 1.3 |6, Lemma 4.2.3]. Let Fy(X) be the set of all X,MNX,-
valued functions of the form

N
f(2)=exp(Az’) X exp(d,2)x,,
n=1

A>0; NEN,; A4y, AL AvERY X, x5, Xy, Xy € Xy X, Then
Fy(X) is dense in F(X).
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So far we have been employing the standard definitions of the complex
interpolation method found in [6, 7]. We now replace condition (iii) in F(X)
by a slightly weaker condition so that we will obtain a slightly larger F
space. (Some discussions concerning them can be found in [42, Sect. 1.9].)
We will consider the complex interpolation space constructed from this new
F-space which is apparently larger than the space C,(X). We will show that
this apparently larger space actually coincides with C,(X) with equal norms
under mild assumptions. This fact will turn out to be our powerful tool later.

DeFINITION 1.4, Let F’ (=F'(X) = F'(X,, X,)) be the set of all functions
S 0 Rez 1- X satisfying conditions (i) and (ii) in F(X). and

(i) 1SN (=Max(sup,cp. || /@Dl sup,e [/ (1 +in)]})) < 0.

The complex interpolation space and its complex interpolation norm
constructed (in the same way as explained in Definition 1.1) by using F'(X)
instead of F(X) are denoted by C,(X) and || |l},. respectively.

As before, Cy(X) equipped with || ||5 is a Banach space continuously
included in X'(X). Since (iil)’ is weaker than (iii), one obviously has

Cy(X) € Ch(X), Ixllg <lixlly. X € Cy(X) (h

for each 0 < # < 1. The next result is an abstract version of some arguments
in {18, 40| combined.

THEOREM 1.5. Assume that the unit balls in X, and X, are closed in
Z(X). Let Y (=Z(X) as a linear space) be a reflexive Banach space. and
0<h< 1.

If we have
CoX)c Y CuX).
Ixlp<lixly.  xev. )
[xlly < llxllos x € Cy(X),

then Cy(X)= Cy(X) =Y with all equal norms. In particular, when at least
one of X, and X, is reflexive (so that C,(X) is reflexive |7]), the C,(X) =
Co(X) with equal norms.

Without any assumption, it is known that Cy(X)= C,(X) with equivalent
norms (see |42, Sect. 1.9]). However, the above result tells more. As far as
our application is concerned, the interpolation space Cj constructed in
Definition 1.4 is more natural than that in Definition 1.1 (see Remark 3.5).
However, we cannot disregard the space C,, the reason being that F,(X) (in
Lemma 1.3) is not dense in F'(X).
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To prove the theorem, we need the following “smoothing lemma” due to
Haagerup [18].

LeMMA 1.6. Assume that the unit balls of X, and X, are closed in Z(X).
For any f' in F'(X), there exists a sequence {f)} of Z(X)-valued functions
on 0 < Re z < 1 such that each [} satisfies conditions (i), (ii), and

(iii)" for j=0,1, the map: t ER - f1(j + it) € X, is || ||-cotinuous,
@) LIS

and, furthermore, for each 0 < 6 < 1 the sequence {f(6)}, satisfies
W) lim,_, £3(0)— /(O] =O.

Proof. For each n= 1, 2,..., we set

fi(z)=(n/m)"? JOO exp(—nt®) f'(z — it) dt, OKRezg 1,

as a X(X)-valued Bochner integral. (Reall that f'(z) satisfies (i).) The unit
balls of X, and X, being closed in Z(X), each f/ satisfies (ii). Also, (i) and
(iv) are easily checked for [/ because {(n/z)"? exp(—nt?)}, is an approx-
imate unit in L'(R; dr). Easy computations show that

i@ = £ = [ Jexplon(e iz — 2))')
—exp(—nt*)] f'(z' —it) dt (Rez=Rez')

SHO ~ 'O = /) [ exp(—n) S (O— it) — £(6)) .

The first (resp. second) equality guarantees that each f, satisfies (iii)’
(resp. (v)). Q.E.D.

COROLLARY 1.7. Assume that the unit balls of X, and X, are closed in
Z(X) and that s > r > 0. The closure (with respect to || ||;) of the ball (C,), =
{(x€ Cqsllxllo<st in Z(X) is larger than the ball (Cj),={x€ Cj;
[ x1l6 < r}.

Proof. Choose and fix an x € C,, with || x||; < r. We then pick up an
f' € F'(X) such that

x=f'0, NSI<s
Applying the previous lemma to f', we obtain {f/}. We then set

f(2) =exp((z* — 6% — 1)/n) f(2), n=1,2,..,0KRez 1.
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Since |exp((z> — 8* —~ 1)/n)| > 0 as Im z - + o0, each f, belongs to F(X) so
that the sequence {f,(€)}, is in Cy,(X). The above exponential factor is
always majorized by 1 in modulus so that one estimates

1O <1 £l
Al
I/ (due to v)

S.

V/

AN/ AN/

Finally, f,(8) = exp(—1/n) f(8) and exp(—1/n) tends to 1 as n~ oo so that
(v) implies

lim || £,(6) = x|y = lim | /,(6)~/"®); =0.  QEQ.

Proof of Theorem 1.5. At first we prove Y = Cj with equal norms. We
choose and fix an x € Cj, with | x|y =r. Because of Corollary 1.7, for any
s > r, there exists a sequence {x,} in (C,), (S Y, due to (2)) satisfying

lim ||x, —x]j; =0. (3)

Since Y is reflexive, Alaoglu’s theorem asserts that {x,} admits a o(Y, Y*)-
accumulation point y € Y, || y||, < s. Passing to a suitable subsequence, we
may and do assume that {x,} tends to y in the a(¥, Y*)-topology. Since
Y < Cy < X continuously (because of (2)), {x,} tends to y in the o(Z, Z*)-
topology as well. Thus (3) implies x =y, that is, x € Y and || x|, <s. The
arbitrariness of s > r shows that

Ixlly < r=llx[l5.

Second, we prove C,= Cj with equal norms. Again, we start from an
x € Cy, || x|y =r. For each s =& + r > r, we repeat the arguments in the first
half and obtain a sequence {x,} in (Cy), (a suitable subsequence of which)
converges to y € (Cy), =Y, in the g(Cy, C,*)-topology and x = y (i.e.. x is
the single o(Cy, C;*)-accumulation point of {x,}). Thus, {x,} tends to x in
the o(Cy, Cy*)-topology. In other words, (Cj), is included in the
a(Cy, Cy*)-closure of (C,).. However, (C,), being convex, the Hahn-
Banach theorem implies

(C(,J)r = (CB)S:£+r s

where the closure is taken with respect to the norm || ||;. Then Lemma 17.2,
[41] yields

(Clﬂ)r = (Ce)r+ 2¢°
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We thus conclude
ChCp,  xlly<r+2 (e>0),
that is,
xlle <7 =1lx[g Q.E.D.

Finally, we combine Theorem 1.5 and Lemma 1.3 to obtain the next
result.

THEOREM 1.8. As before we assume that the unit balls of X, and X, are
closed in Z(X). Let Y be a reflexive Banach space satisfying X,N X, C Y
2(X) (as a linear space). Then Co(X)=7Y = Cy(X) with all equal norms
provided that the following two conditions are fulfilled:

(@) for each y in Y there exists an f € F'(X) such that

fO=y, W= 1xly
(b) each g€ Fy(X) (described in Lemma 1.3) satisfies

I &@lly < Il 1l
Proof. Condition (a) immediately implies
YeCyx),  lxle<liyly. yeY

One then considers the evaluation map e,: g € F(X)— g(#) € Z(X), which is
obviously continuous (see the paragraph after Definition 1.1). Condition (b),
the density of Fy(X) in F(X) (Lemma 1.3), and the completeness of Y imply

ghey (€Cy(X) € X(X) continuously), g € F(X),

I g@lly <l £lll
that is,
Co(X)cY,
1y < inf{ll| glll; & € F(X), g(6) = x}
=llxllgs  x € Co(X).
Thus the theorem follows from Theorem 1.5. Q.E.D.

2. Relative Modular Theory

In this section we collect some basic notations and results on relative
modular operators [8, 10, 12]. Although these operators are usually defined
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and studied for faithful normal positive functionals (or rather weights) on
von Neumann algebras, we will have to deal with these associated with non-
faithful functionals as well. However, almost all known properties remain
valid for non-faithful ones under the natural modification concerning the
supports of functionals in question. Full details are found in [22, Chap. I].

Let M be a (o-finite) von Neumann algebra. We fix an arbitrary ¢ and a
faithful ¢, in the positive part M, of the predual M,. We take a standard
for ¢ and ¢, respectively, that is, ¢, = (- &,| &) and 6 ={- {{&). Let p (resp.
p’) be the projection onto the closure of M'E (resp. ME) so that
p=Jp'J € M is the support projection of ¢. Here, of course M’ (=/MJ) is
the commutant of M being considered to act on the Hilbert space H. These
are fixed throughout the section.

We now consider the four operators

aé, € MEy - a*é € ME,.
&y € pM&, — c*E € MpC,

bée Mpé— b*E, € pME,.
d¢ € pMpé— d*§ € pMpc.

They are (weli-defined) densely defined closable {conjugate linear} operators
form H to H, from pH to p’H, from p'H to pH, and from pp'H to pp’'H,
respectively. The first operator is exactly the usual S-operator determined by
the pair (M, ¢,), |37]. Also the last operator is the S-operator determined by
the faithful ¢ on the reduced von Neumann algebra pMp, which is
isomorphic to p’pMp acting standardly on pp’'H.

DErFINITION 2.1. The absolute value parts of the polar decompositions of
the closures of the above four operators are denoted by 4%, 4,5, 4,7,
4%, respectively. The positive self-adjoint operator 4, is called the relative

modular operator (of ¢ relative to ¢,).

Remark 2.2. Obviously, AOO, AMO, 44,4, 4, are non-singular positive
self-adjoint operators on H, pH, p’H, and pp’'H, respectively. However, in
what follows, we will regard 4,, .4, ,,4, as operators on H whose

supports are pH, p’H, and pp’'H, respectively.

We note that the phase parts of the polar decompositions considered in
Definition 2.1 are all J. In fact, this follows from the fact that £ and &, are in
P* (see |2, Theorem 1]) Using the 2 X 2-matrix argument [8], one can easily
prove
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Jd,o J =4,
A,poéo:éo’ A¢é=és
JA s xEy=x*E  JAEXE=x*E,, x€EM, 4)

M¢, is a core for 4,5 (as well as 4,7),
dgo,=4o, i §=0y.

Also, the 2 X 2-matrix argument shows

LemmA 2.3. (i) Force M, t€R,

it it _ it g—it
AM)OCA% —Ad,cAu,wEM.

(i) FordeM,(€R,

A4sdd,,l =45d4," € M.

DEFINITION 2.4 [8,10]. For t € R, we set

(D¢; Do), = 4 Z.po 4 ,;0“,
the Radon—Nikodym cocycle (of ¢ relative to ¢,). More generally, for c € M,
te R, we set

O?d’o(c) = AZQOCA;()H = (D¢; D¢0)lot(c)’

Here,0,=A4d ’;,fo is the modular automorphism on M determined by (M, ¢,)
[37].

Due to the previous lemma, (Dg; Dg,),, t € R, is a partial isometry in M
with the initial (resp. final) projection a,(p) (resp. p), and ¢¢®° maps M into
itself. The following relations are easily checked:

(D¢; Déy), .. = (D¢ Dgy), 0,((Dg; D)), Ls€R,
(D§; Dgo),0,(x)(Dg; Dgo)f = 0f(x)(=4gx4,"),  xEM.

We now state a “predual version” of the relative KMS condition [8, 10].
Certainly the next result is known, however, we present its proof for the sake
of completeness and because of the fact that this result will play an
important role throughout.

THEOREM 2.5. For each x€EM, the map: tER->a?*(x)d,
(=o(- 6?%9(x))) € M, extends to a bounded and continuous (M-valued)
Sunction f(z) on —1 < Im z 0, analytic in the interior. Here, the continuity
and analyticity are understood with respect to the predual norm.
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Furthermore, for z=—i +t, t € R, we have
fl=it ) =900%(x)  (=p(o?°(x)) - )).

Proof. We set

i 1
g(z) (Aa) éO‘CO)EM*’ _3<Imz<oe
MY=(. &l A +tzv*x\c M 1 <Imzg 1t
\«)— U nwitd LY A= ie LRSI S 0 AR 7.

Because of x¢, € D(4,;) and x*¢ € D(4,],) (see (4)), g(z) and h(z) are
bounded and continuous functions, analytlc in the interior. For re& [,
Yy € M, we compute

(8)(¥) = (¥45,,x& 1 &)
= (1o x45,'8018) (458 =¢)
= (y07°%(x) &y | &) = (57°°(x) Bp)( ).
(h(—i + 0)(y) = (¥E1 45 ,x*)
=(¥1dg,,x*457)  (4,78=20)
= (¥¢| (dgx455)*¢)
= (9] (d5,,x45/9%¢)  (Lemma 2.3(i))
= (07°(x) [ &) = (907 (x))( ).
(h(=3i + 0)(3) = (yélAL@i*“x*é)
(g VE| 4G ,,x*E)
= (Jy*¢&, | Ao a,x*é) (due to (4))
= Iy, x*E] ¥*E,)
= (JA} JAY, x& | y*E)  (due to (4))
= (40,450,580 | ¥*&0) (due to (4))
= (p4" x| &)
= (g(—2i + 1))
It thus follows from Morera’s theorem that
Sl =ga) i
=h(z) if —I

enjoys the properties stated in the theorem. Q.E.D.
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Remark 2.6. Keeping the above result in mind, we may and do write
a?%(x)@,, 02(x)d,, and (Dg; Dg,).9,, for —1 <Imz <0, as elements in
M, (although 62%(x), 6?°(x), and (Dg¢; Dg,), make no sense as elements in
M). Of course we then have

0% (X) 6y = 907 *%(x),
0%, (X) §o = 8,07°(x),
(Dg; Dgy) ;8o = 9(D9: Dgy),»
for each t € R.

3. Non-commutative L?-Spaces

We define LP-spaces, 1 < p < o0, associated with a given von Neumann
algebra by using the complex interpolation method explained in Section 1.
We then show that the L*-space is a (standard) Hilbert space.

From now on, let ¢, be a distinguished faithful normal state on a (o-finite)
von Neumann algebra M. We will define our L”-spaces, 1 < p < oo, as
complex interpolation spaces between the algebra M (=“L “-space”) and its
predual M, (=“L'-space”). Since we are dealing with a “non-commutative
probability measure” ¢,, the L*™-space M must be included in the L'-space
M,.. In other words, we have to imbed M into M.

As the above motivation suggests, we now imbed M into M, via

and keep this imbedding throughout Part I. Shortly we will observe that this
imbedding is fitting to the (relative) KMS condition which has been playing
important roles in the recent development of the theory of operator algebras
(see Remark 3.5). Also, another possibility of natural imbeddings will be
studied in Part II.

Thus, M is a subspace of M,, and we obtain the pair (M, M,). An
element x = x¢, in M has the two norms

Ix]l o =11 %80l 0 » the uniform norm of M,
Ixl =1 xgoll; . the predual norm of M, .

Of course, the imbedding does depend on a choice of ¢,. When there is
possibility of confusion (Section 13), we write

[xgollse  (=llxlleo)s
Ixlle (Ellxgolly)-
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Also, in such a case, we denote the pair (M, M,) by (M°, M), that is.
M?® = Mg, is the imbedded image of M under (5).
The subspace M is dense in M, , and we have

lxlli = llxgoll, <l xlloo [ Bolly = lx]l.. = llxgll. (6)

so that the pair (M, M,) is compatible. Because M is included in M., the
general construction of complex interpolation spaces explained in Section |
is somewhat simplified. In fact, we have

Z(Mv M*):M“K’
MNM, =M, (Mn
=11

DeriNiTION 3.1. The complex interpolation space C, ., ,(M;M,)
(=C,,,(M?,M,)), 1<p<oo, is denoted by L°(M:.¢,), the non-
commutative LP”-space associated with M (with respect to ¢,). For each
a € L"(M; ¢,), the complex interpolation norm |/a|l,..,, is denoted by [laf,.
the L”-norm of a (L'(M; ¢,) =M, and L*(M; é,) = M).

Remark 3.2. Non-commutative L°-spaces L*(M; ¢,), 1 < p < oo, will be
referred to as “left” LP-spaces in Part I because we considered the “left”
injection defined by (5). Since T(M, M) =M, (7)), L?(M;0,), | < p < o0,
are realized inside of M, . Furthermore, as a consequence of (6), we have,
for l < p’' < p<oo,

M (=M¢,) S L*(M:9,) < L (M:0,) = M,
[xlle 2 Mxll, > lixl, 2 xh. xeM

(see |6, Theorem 4.2.1(a), (b)]). We also note that M is dense in each
LM ¢y), 1 < p< oo, due to |6, Theorem 4.1.2], while the intersection of
L?"-spaces considered in [17] with different p’s consists of zero alone.

The rest of the section will be devoted to prove the equivalence between
the L’-space and a standard Hilbert space. This fact will be crucially used in
the next section. As in Section 2, let (M, H, J, P") be a standard form and ¢,

be the unique (unit) cyclic and separating vector in P? satisfying ¢,=
(- & 1¢) = w, . We then imbed M into H and H into M., via

x - x&,,

£ (- L[ &)

respectively. If one combines these two, one obtains

x o x8,— (- xEy | &) = x9,.
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which is exactly the imbedding (5). We clearly have
[Xllo 2 10k = lIxEoll 2 Xl = 1%l = (- XG0 | €)1+ (®)

THEOREM 3.3. The non-commurative L*-space L*(M; ¢,) is the standard
Hilbert space H with equal norms. Here, H is being imbedded into M, via
E- (- &)

Proof. The unit ball of M is cl
proved easily. However, a more general fact will be proved Ilater,
Lemma 7.4.) The Hilbert space H being reflexive and satisfying M =
MNM,cHcM, =X(M,M,), we have to check just conditions (a), (b)
in Theorem 1.8.

We begin with (a). Choose and fix an element { in H with the polar
decomposition {=u|{| in the sense of [2,14]; (v € M,|{|E P"). We
consider the M,-valued function on the strip 0 { Re z < 1 defined by

Siz)= ¢(1)(1/2)—ZV(D¢§ D) _ ;.95

where ¢ =, = (- [{] I |¢]). Obviously, f; is a bounded and continuous M-
valued function, which is analytic in the interior (see Theorem 2.5). Also, for
z=it, t € R, we compute

~ond inw YOAL AL N __ AL in non a
OdCU 1) L \iVEy Ve g ) = VL g « (Thlb Laill bC

£i(i6) = 6P~ T'u(Dg; Dgy) 0 € M(=Mp),
| iD= 61 | u(Dg; Dy) ..
= 41
= 1200y = 11¢l

while, for z =14 it, t € R, we compute
S(1+it)=¢(1) =2 "u(Dg; Dgy) _,, o
=¢(1)"VP~"yg(D¢; Dg,),  (Theorem 2, 5),
11 + i)l = (1)~ *||ug(Dg; Do),

= (1)~ |1 ll,
=) =],
Thus f; belongs to F'(M, M,.) (Definition 1.4) with
Al = 1€ €))

Also we have

[i3)= (&)
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which is exactly { imbedded into M,.. In fact, for any x € M, one computes

(fin)x) = 6(1)? = (U(Dg: D), 8)(x)
= (1)~ "(xu(Dg: D) &, | &)
=o()" P (xu dg, &1 €)

so that (f,(3))(x) is computed by

(f((%))(x) = (xu A;ﬁ,éo | éo)
:(xu‘ll’éo) (0:(()‘(1)
= (xC] &)

To check (b), we take an arbitrary element g in Fy(M. M, ) (Lemma 1.3).
Namely, g(z) is of the form g(z) = g'(z) ¢,.,

N
g'(z)=exp(Az®) N exp(4,z)x,. (10)
n=1
A>0;4,€ R x, €M (not imbedded into M, ). For each { € H, we consider
fi(z) as in the first half of the proof, and set
H@) = (f)(g'(1-9*). 0<Rez<I

(fi(z)EM,, g'(1-2)*€M). We have already known that f, is an M-
valued bounded and continuous function, which is analytic in the interior.
Using (10), we compute

Hiz) = exp(A(1 = 2)") Y exp(,(1 - 2)(4(2))c))

so that the numerical function H(z) is bounded and continuous, analytic in
the interior. To estimate its bound, we will use the Phragmén-Lindelof
theorem by considering its boundary values. For z=1+1i r€ ¥, we
estimate

H(1 +it) = (f(1 +in)(g'(it)*),
H(L+in| < |+ il Il g (i) * ..
= AL+ i)l Il & GOl
=[S (L+ i), | 8" )8 l...
=1L+l || gGnll.
<A gl
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For each z =it, t € R, we have

H(it) = (f(i)(g'(1 + it)*).
Since f, € F'(M, M), f,(it) is of the form
Sity=f'(it)o,, /() EM (not imbedded into M),
we estimate
[H(it) = (/" (ir) $o)( &' (1 + it)*)|
=|go(g' (1 +ir)*f'(it))
=0o(/"(I)*g (L +in))  (Bo(x*) = §4(x))
= (g (1 + ir) o) (/" (i)*)|
<l g (X +it) @olly IS (1) * |l
= g+, /"0l
<l &l -
We thus have
[HE < gl =1 N gl

for each 0 < Re z < 1 (due to (9)). In particular, with z =1, we have
|H@) = (/)& @) < Il I gl
We recall that f(3) = (- {| &,) so that
(@' D))= (&'@D)*¢| &) = (] &' (1))

that is,
11 &' @ EN <Nl i glll-

Since this is valid for each { € H, we have
e’ ol <l glll-
However, since g'(3)¢, € H is identified with
(- ()& 1) =8'()8 = 8(2);

we have
[ e@llu <l glll (QE.D.)

We close the section by stating the next remarks.
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Remark 3.4. Theorem 1.8 actually shows that
C, (M, M) (=L2(M; $)) = C{/z(M’ My)=H (=(- H|{)).

For C,, 0 < @ < 1, many nice properties are known [6, 7|, as we shall see in
the next section. For example, the reiteration theorem [6. Theorem 4.6.1|
implies

LP(M; 6) = Cy, (M, L*(M. 4,)), 2<p< oo,

(1
LP(M;60) = Cypp ((L*(M: 60, M), 1< p<2.

In both interpolations, the “boundary” space L’(M; ¢,) is reflexive. Thus a
result of Calderon [7] implies that all LP(M; ¢,), 1 < p < oo, are reflexive
Banach spaces. In particular, Theorem 1.5 implies that one actually has

LP(M; 6y) = C,,,(M, M) = C{,,(M, M)

so that we can use either C, or Cj to deal with the L”-spaces.

Remark 3.5. Usually, the complex interpolation method is used to
identify some concrete function spaces with complex interpolation spaces
between another such spaces. Therefore, the complex interpolation spaces
themselves are regarded as quite abstract spaces. However, the reader might
observe that, when the complex interpolation method is applied to (M, M..).
it is not abstract at all and actually fitting. For example, in the proof of
H=L*M,¢,) (=C,,=C},), we saw that any {=ul{| (u € M,|{| € P*,
6 =w,,) with {{ll,, =¢(1) =1 admits a “representing” function

S(z2)=u(D9: Dgy) .9,
in F'(M, M) (but not in F(M, M,.)) satisfying

S5 =L (=L &)

Furthermore, this f; attains the norm |[{||,, =[{]l{,, = |{]l,,,. (This situation
remains valid for any 0 <8=1/p <1 as we will see in Part Il.) We note
that this f; is exaly a “relative KMS function,” operator algebraists’ favorite
object. We thus come to the conclusion: The complex interpolation method
C, gives us a nice interpretation of relative KMS functions. The study of
their behavior inside of the strip is exactly the study of non-commutative L”-
states L"(M;¢,) = C{,,(M, M), 1 < p < .

4. Properties of Non-commutative L”-spaces

We exhibit some properties of our L”-spaces. Having established
Theorem 3.3, many of them are direct consequences of complex interpolation
theory [6. 7].
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We begin with the following standard result:

ProPOSITION 4.1. Let a be an automorphism of M satisfying ¢, - a = 9,.
Then, for each 1< p < oo, a induces the (surjective) isometry a = a, on
L?(M, ¢,). Also, let ¢ be a normal projection of norm 1 from M onto its von
Neumann subalgebra N satisfying ¢,0 =0, (see [38]). Then, for each
1< p< o, & induces the projection e=¢, from L"(M;¢,) onto
LP(N; 6y = oln)

Proof. Due to the invariance ¢, o a = ¢,, the map: x¢, — a(x)¢, induces
the surjective isometry «, from M, = Z(M, M) onto itself, which sends M
into itself isometrically. Thus the result follows from Theorem 1.2.

The second assertion can be proved by similar arguments. Q.E.D.

Theorem 4.2.1(a) [6] and (11) in Remark 3.4 show

L?(M; ¢,) = Cy,(M, L*(M, ¢,)), (2<p <o),
LP(M; ¢9) = Cy)p_(L*(M; 8,), My) (1< p<2) (12)
= C2(1—1/p)(M*’L2(M; 9o))-

The next result is the affirmative answer to Dixmier’s question in [13}, for
which we will give an alternative proof in Section 5.

THEOREM 4.2, For each 1< p < oo, LP(M; ¢,) is a uniformly convex
Banach space.

Proof. Being a Hilbert space, L*(M;¢,) is uniformly convex. Thus the
result follows from (12) and Theorem A in the Appendix. Q.E.D.

THEOREM 4.3. If I/p+1/g=1 and 1< p < o, then L*(M; ¢,) is the
dual Banach space of LY(M; ¢,). Thus L¥(M; ¢,) is also uniformly smooth.

Proof. Due to the reflexivity obtained in Remark 3.4 (or rather the
previous theorem), we may and do assume 2 < p < 0. Since M = (M,)*
and L*(M; ¢,)* = L*(M; ¢,), the result, follows from (12) and the duality
theorem |6, Theorem 4.5.1] together with the reflexivity of L*(M; ¢,).

Q.E.D.

We finally state the following uniqueness theorem which will be proved in
the last section (in Part II) by using the method employed in Part II.

THEOREM 4.4. The space L”(M; ¢,), 1 < p < oo, does not depend on a
choice of ¢, in the sense that, for another faithful ¢, € M, L"(M; ¢,) is
isometrically isomorphic to L*(M; ¢,).
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We remark that the corresponding result for Haagerup’s L”-spaces |17,
Sect. 8] follows from a certain universality of a crossed product and the dual
action on it [{39]. On the other hand, our proof in Section 13 is based on
relative modular theory (Section 2) and complex interpolation theory.

5. L?-Norm Inequalities

Using the abstract Riesz—Thorin theorem (Theorem 1.2), we obtain certain
L?-norm inequalities. For each 1< p, p’< oo, we consider the direct
product L?(M; ¢,) X L?(M; ¢,) equipped with the norm

(@, D)l = (lally + 11217
As usual ||(a, b)||,,, should be understood as
Max(|jal|,, [1]],).

Throughout the section, this Banach space will be denoted by bﬁ Having
defined our L”-spaces as complex interpolation spaces, we immediately have
the next useful result by (6, Theorem 5.1.6|.

LemMMA 5.1. For 1< p, p', q, ¢ < 0 and 0 < 8 < 1. The space E! is
exactly the complex interpolation space Co(E%', E?') with equal norms. Here.
r and r' are determined by

1 1—6 6 1 1-6 8
STt Tt
r p qr p q

PROPOSITION 5.2. For, a,b € LP(M; ¢,), 2 < p< .
(la+bl2+lla—=bI" < /2 (lali} +[1b12)'".

In particular, with the classical Holder's inequality, the following Clarkson’s
inequality holds:

(la+ bl +lla— B < 2'~ " (lal; + 5],

Proof. The first inequality means that the map T:(a.b)€E E; —
(a + b,a — b) € E? has the norm less than /2. For the two extreme values,
this is certainly the case. In fact, for p = 2, oo, one computes

(la+ 613+ la—bl)"* =2 (lall? +IbII})"*  (Theorem 3.3),
Max(||a + bl @ — bll,) <llallo + 151
<V2 (lalZ +bl12) "2

580/36/1 4
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Since the previous lemma shows
E£=C9(E£,E§), E;:Cg(Ego,Eg), 0=2/p,

the result follows from Theorem 1.2. Q.E.D.

ProposiTioN 5.3. For a,b€ L?(M;¢,), 1< p<2, with 1/p+ 1/g=1,
the following McCarthy’s inequality (28, 34] holds:

(la+blF +lla—biD" <2 (all} + [15115)"”.
Proof. Lemma 5.1 shows
E’;:CB(E:,Eg), EZ=C9(ETO’E§)’ 0=2/q.

On the other hand, the inequality is easily checked for the two extreme
values p =2, 0. Thus, the map T: Ef— E} considered in the proof of the
preceding theorem has the norm less than

(2°)'-4(21/2)2/a = 21/, Q.E.D.

Remark 5.4. The uniform convexity established in Theorem 4.2 is also a
consequence of the above two inequalities. Certain strengthenings of
Clarkson’s inequality and applications of the uniform convexity will be
obtained in [24].

We close the section by stating the next inequalities, which are reversed
Clarkson—McCarthy inequalities. After replacing a,b by a+b, a—0b,
respectively, they can be proved by the same arguments as in the above two
propositions.

PROPOSITION 5.5. For a,b€ L°(M;¢,), 1 < p< 2,
(la+ b2+ la—bl2)""" > /2 (|a|? + DI =27 (lallb + || b]15) .
For a,b € L*(M; ¢,), 2< p< 0, with 1/p+ 1/g=1,

(la+ bl +lla—bl3)" >2"(lall; + [|5117)"".

6. Bimodule Structure

In this section, we shall let M act on L?-spaces from the left and the right
so that the L”-spaces turn out to be M-bimodules. A left action is easier
because we imbedded M into M, via the “left” action (5) which is consistent
with the natural left actions of M on M and M.
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We begin with a left action. W temporarily denote the natural left action
of M on M, by T. Namely, for a pair (x,¢)E M X M,., we set

T(x, ¢) = x¢(=¢(- x))-
When ¢ = yg, € Mg,, we obviously have
x(¥8,) = (x3)9,-

In other words, the restriction of T to M X M (=M X M,) is exactly the
usual left multiplication in M. Furthermore, we have

[xoll, <l xle o1l

, (13)
18l = X9 lloe < Mxllec 1| Wlle = x Tl 1} V0ol -

Thus, a bilinear version of Theorem 1.2 |6, Theorem 4.1.1] implies that, for
each 1< p< oo, T induces the bilinear map T, from M X L?(M; ¢,) to
L”(M; ¢,). In what follows, we will write x - a instead of T ,(x, a). Of course
we have

Ix - all, <lxll. lall,

due to (13).

Remark 6.1.  Let j, denote the inclusion map from M into L°(M;¢,)
(€M), that is, j,(y)= yg, considered as an element in L’(M:¢,). If
a=j,(y), y €M, one obviously has

x-a=x-j(y)=j,(xy)

from the construction. Clearly, this M-left action gives an M-left module
structure on LP(M; ¢,).

W,¢/ now try to define a right action of x € M. To avoid certain technical
difficulties, we assume smoothness of this x for the modular automorphism
group g, = o?%. More precisely, let x be an element in M such that the map:
t€ R - o,(x) € M extends to an entire function. We, however, remark that a
right action of an arbitrary x € M can be constructed by the method used in
Sections 11 and 13.

For this smooth x € M and f € F(M, M,.), we set

(m S N2)=f(2) 0 i, 1y(x)s O<Rezg 1
For z =it, t € R, f(it) is of the form

Sy = f"(it) 6, € Moy,
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and one computes
(e S)() = (f'(it) $o) 0 (%)
=f'(in)o(x) ¢,  (KMS condition),

which belongs to M(=Mg,) and | || ,-continuous on ¢ € R due to the norm
(=weak) analyticity of ¢,(x). Furthermore, for z =0, we have

(7./)(0) = 1"(0) xg,,

which is the imbedded image of the product f/(0)x in M under (5). Also, for
z=1+4it t € R, one computes

(2 )1 +it)=f(1 +it) 0,(x),
(XD =S(1)x,

the second of which means that x is acting on f(1) € M, from the right. The
above considerations show that 7z, f belongs to F(M, M) and

Nz f< el AN S € F(M, My).

Also, f(6) =0 implies (7, f)(#) =0, 0 < 8 < 1. Thus, passing to the quotient
spaces, we have the induced map

ni:a € LP(M; ¢,) - ni(a) € L*(M; ¢,),
and we rather write
a - x =n(a).

The fact (a-x)- y=a- (xy) (@€ LP(M;¢,); x, y E M) is proved from the
automorphism property o,(xy) =0,(x)a,(y).

Remark 6.2. For a (smooth) x€EM and a=j(y), yEM (see
Remark 6.1), we have

a-x=j,(9) - x=j,(30_,(x)).

(Notice that yo_;,,(x)@o = (¥86)0 ;1,5 1(x).)

In Section 3 we established the equivalence between L*(M;¢,) and the
standard Hilbert space H. We now check what the above left and right
actions are for the L®-space. When L2*(M;¢,) and H are identified
(Theorem 3.3), x¢,= (- x&,| &) = j,(x) (see Remark 6.1) in L*(M;g,)
(€M,) is identified with x&; € H so that we may write

J(¥)= Y-
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For this { = j,(y) = y&,, the left and right actions of an x € M are computed
by
x-L=x-j(»)
= j,(xy) (Remark 6.1)
= xp&y = xC,
C-x=jy(y) - x
= Jo(yo_;,(x)) (Remark 6.2)
= y0_;;5(x) &
=y4;?xg,
= yJx*JE, (see (4) in Section 2)
= Jx*Jy&, = Ix*JL.
Because Mg, = j,(M) is dense in H = L*(M; ¢,), the preceding computations
remain valid for an arbitrary { € H. Thus, the left action of M on L*(M: ¢,)

is the usual action as operators, while the right action corresponds to the
action of the commutant M’ = JMJ as operators.

Remark 6.3. The above facts suggest that the map J on (a dense
subspace in) L%(M; ¢,) should be defined by

J(x - jo(1) = jp(1) - X7,
or equivalently,
Jjao(x) = jo (o ;2 (x*)).

Also the closure of the set of all x - j,(1) - x* = j,(xo_,,(x*)) gives rise to
the natural cone L’(M;¢,),. In other words, the quadruple
(M, L*(M; ¢,). J, L*(M; ¢,),) is a standard form, where the action of M on
L*(M: ¢,) should be understood as the left action.

Before going further we note that the right action of M is not consistent
with the inclusion

LP(M: ¢,) < L" (M, 90) pz=p
(see Remark 3.2). In fact, for p=oco, p'=2. x. yE M,

() = xp&,.
Jax) -y =Jy*Ixg, = xJy*E,.

Unless &, is a trace vector, these two vectors are different.
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Remark 6.4. The right and left actions are dual to the each other, which
will be made precise shortly. By checking how the duality theorem |6,
Theorem 4.5.1] was applied to prove Theorem 4.3, one knows that, for
1/p + 1/q = 1, the duality between j (x) € L”(M; ¢,) and j,(y) € LY (M; ¢,)
is realized by the bilinear form

Up(x)s Jo()) = (0_3/p(¥) $o)(X) = So(xT (YN = —i/p-

For simplicity, let us assume that x, y,z € M are smooth for g,. Then we
have
<jp(x)’ jq(y) : Z> = <jp(x)9 jq(yo—i/q(z))>
= ¢0(xo-i/p(yofi/q(z)))
= @o(x0_;,(¥) o_,z))
= Po(zx0_ () (relative KMS condition)
= (Jp(zx), Jo(¥))
= (2 + jp(X)s Jo(¥))-

It is possible to justify the above comutations for arbitrary x, y,z € M by
using the multiple KMS condition [1].

II. NON-COMMUTATIVE STEIN—WEISS INTERPOLATION THEOREM

7. Another Imbeddings of M into M,

In Section 3, we considered the “left” injection: x - x¢, (see (5)). In this
section we investigate some another imbeddings of M into M, so that we
will obtain different complex interpolation spaces from those considered in
Part 1.

In Part II we fix two distinguished faithful normal states ¢,, v, on a von
Neumann algebra M. For each 0 < # < 1, we consider the imbedding of M
into M, defined by

XE M- g%P%x) g, EM,. (14)

—in

DEerFINITION 7.1. Keeping the imbedding (14) in mind (and fixing ¢,, ¥,
throughout), we denote the pair consisting of M(— g*?%o(M)p, = M" = M)
and M, by (M", M,).
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Thus (M, M) = (M*®, M) in Section 3 is now (M, M.). As in Section 3.
we sometimes write
lo2050(x) oll7. = 11Xl »
[ X117 = lo2%50(x) @l
so that || |%, || [|?° in Section 3 are || |%. || |IY, respectively. In what follows,

we never consider a power of || ||., || ||, so that the above notations will
never make confusion. Since ¢, and y, are states, one obtains

[x]17 = lla205e0e) doll, < xll,. = 10250(x) 017 -

that is, || ||, < |% on the subspace M" of M, . Therefore, the pair (M", M..)
is compatible and satisfies
Z(MW’M*):M*, Man*:Mn~ H HL:H “1' (15)

For the two extreme values # =0, 1, we have

a8o%(x) ¢, = X0, (same as (5) in Section 3),

G99%(x) 6y = Wy X (Theorem 2.5).

which are the “left” and “right” injections, respectively.

DEerINITION 7.2. For each 1 < p < o0, the complex interpolation space
Cy_yp(M°, M) (resp. Cy_,,,(M', M,)) equipped with the complex inter-
polation norm is denoted by L*(M; ¢,), (resp. L?(M; w,);) and we call it the
left L7-space with respect to ¢, (resp. the right LP-space with respect to ).
(Thus, L?(M; ¢,), is exactly L?(M; ¢,) defined in Section 3. However, the
notation LP(M; ¢,), will be mainly used in Part I1.)

Therefore, all left and right L?-spaces are subspaces of the predual M., .
The right L?-spaces are assentially the left L”-spaces of the commutant M’.
More precisely. we have

ProprosITION 7.3. Let (M, H,J, P*) be a standard form. and w; be the
state on M’ = JMJ defined by

wi(x") = wo(Jx'*J), x'eM.

Then the right L"-space L*(M; y,), is isometrically isomorphic to the left L"-
space L?(M'; w{), of the commutant M'.

Its proof is straightforward and we will not use this result later so that full
details are left to the reader.
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To use Theorem 1.8 in Section 1, we prepare the following result:

LEMMA 7.4. The unit ball of M™ (with respect to | ||7.) is closed in M.,
(recall (15)).

Before proving it, we prepare the next lemma on the harmonic measure
(Poisson integral) for the strip O < Rez < 1, which will be used in later
sections and in the Appendix.

LEMMA 7.5 [36]. Forz=a+if (0<a<1,ER), and t ER, we set

Pz, )= (3) sin(ma){cosh n(t — B) — (=1)/ cos ma}~',  j=0, 1.

If f(z) is a bounded and continuous function on 0 < Re z < 1, analytic in the
interior, then we have the integral expression

f(z)=f f(it)Po(z,:)dtJrf f +it)P(z,£)dt, O<Rez<l.

Proof of Lemma 7.4. Assume that ||x,||, <1 (x, € M) and

lim [|o%f(x,) ¢ — 4]/, =0 for pEM,.
n-— a0

Due to the o-weak compactness of the unit ball of M (by passing to a
suitable subsequence) we may and do assume {x,} tends to some x € M in
the o-weak topology. To complete the proof, it suffices to show
¢ = 0%9?9(x)¢,. Thus, it suffices to show that

lim go(ya®7(x,)) = go(yo27(x))

for each y € M.
By the relative KMS condition (Theorem 2.5) and the above lemma, we
have

8o(30%5e)) = [ 905 () Pl 1)

+| wootx,)y) P 1) de.

The integrands are estimated by

| @o(yo?o® (e, <N Golli ll Yoo 1%l < I ¥lloos
[wo(a?** )P <HWoll i 1 %ulloo | Pl < T2 M-
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Also, for each fixed t € R, as n— oo we have

Bo(yo22?(x,)) = Po( Yo **(x)),
Wo(07°*(x,) ¥) = Wol07"(x) ),

because o?*? is g-weakly continuous. We now recall

| P t)dt=1—1,

) (16)

A OC

| Pnoyde=n.

-0

Lebesgue’s dominated convergence theorem applied to these two finite
measures implies

lim go(yo27p(x,)
= |7 | Bo( oo (x)) Po(n, ) dt + ‘j

(o7 (x) y) Pi(n. 1) dt

= 9,(yoU5(x)). Q.E.D.
8. Haagerup’s L”-Spaces

As mentioned in the Introduction, there are several theories of non-
commutative L”-spaces. In this section, we briefly recall Haagerup’s
pioneering theory of L”-spaces [17]. His LP-spaces are equivalent to other
L”-spaces described in [4,9, 19, 21, 40]. Also, when an algebra is semi-
finite, they reduce to the classical L”-spaces [13, 26, 29, 33]. based on
theory of traces.

Fixing ¢, as usual and its associated modular automorphism group
o,=0?, we consider the crossed product R =M X = [39]. (Actually, R
and Haagerup’s L?-spaces described shortly do not depend on a choice of ¢,
due to |39, Theorem 8.1].) The crossed product R admits the distinguished
faithful semi-finite normal trace tr (so that R is semi-finite) and the dual
action 6, s € R =R (scaling automophisms) on R satisfying 70 6, =e 'r,
s € 7. For each semi-finite normal weight ¢ on M, we denote its dual weight
on R by q? [12, 15, 16, 39]. Let A, be the Radon-Nikodym derivative dé/dr
of ¢ relative to 7. Proving that s, is r-measureble [29, 33|, if and only if
0 € M3, Haagerup [17] defined his L”-space, 1 < p < o, by

L7 = lk; -measurable operator (affiliated with R) satisfying
0,(k) = exp(—s/p)k, s € 1.}

= lk; closed operator affiliated with R whose polar decomposition
k = u | k| satisfies u € M, |k|= h,/? for some (unique) ¢ € M, }.



56 HIDEK! KOSAKI

To avoid confusion (by keeping M throughout) we shall denote the above
Haagerup’s L?-space simply by L? in the rest of the paper. (This notation is
legitimate because his L”-space does not depend on a choice of ¢, as pointed
out earlier.) Elements in L” are added and multiplied freely by using the
concept of strong sums and products [33].

The original algebra M (imbedded into R) is exactly the fixed point
subalgebra R? of R under the dual action 6,, s € R. Since all r-measurable
f-invariant operators are bounded, one obtains L® = M as expected. Besices
L®™, L' and L? are of special importance. At first, L' is order isomorphic to
the predual M, via

k=ulk|=uh,— up (k| =h, and ¢ € M),
and the positive linear form
trik=uh, € L' - (up)(1) = ¢(u)
possesses the “tracial” property
tr(k, k,) =tr(k, k), k€L’ k, €L 1/p+1/g=1.

The positive functional tr is used to define a Banach space norm on L”.
Namely, we set

lkll, = te(kI)? (=¢(1)' if k=uh,"”), (17)

and the duality between L” and L7 (1/p + 1/g = 1) is realized by the bilinear
form

(kys ky) = tr(k ky) = Cky, ky).

Second, L? is a Hilbert space under the inner product

(kys ky) = (ko [ ko) = tr(k k).

Furthermore (M,L% J=*L%) is a standard form. Here, L% is the
“natural” cone consisting of all positive (as an operator) elements in L* and
M is understood to act on L? as left multiplications.

Because of the universality of a standard form |2, 14], we may identify
(M,L* *,L°) with (M, H,J,P%) used in Section?2. Then the unique
implementing vector for ¢ =h, € M, = L" in the natural cone L = P" is
exactly h ;,/ 2, Also, modular bjects in Section 2 are easily described as

(D¢, Dy), = hg by tER,

] : (18)
071 (x)=hy xh,", tER,xEM.
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In many parts in Part II (exceptions are Theorem 11, 1 and Section 13) we
identify (M, L? *,L%)= M, H,J, P*) and M, =L". It is thus convenient
for us to describe (M", M) introduced in Section 7 in terms of Haagerup's
L”-spaces L”, 1< p< 0. To do so, we denote k, , h, simply by &, k.
respectively.

At first, the imbedding (14) is

XEM-—kixhy "EL'
(recall (18)) so that we have
M =kIMh} ",
[k xhg "7, = X1l (19)
lxl17 =1 kg xhg "]}, -

Therefore, LP(M;¢,), =L"(M;¢,) (resp. L7°(M:;y,),) is exactly
C,,,(Mhy, L") (resp. C,,,(kyM, L")), where Mh(resp. k,M) is equipped with
the norm

lxho |l = Il xIl.
(resp. [ kox o, = {lxlo)-

9. Certain Complex Interpolation Spaces

We consider the pair (M", M,), 0 < n< 1, described in Section 7, and
characterize the complex interpolation spaces Co(M", M), 0 <8< 1. in
terms of Haagerup’s L”-spaces L?, 1 < p < 0.

For each 0 < n < 1 we imbed L?, 1 < p< oo, into L' via

itta€L"— kg, "€ L’ (20)
with the corresponding conjugate exponent g so that
iMLP) = kJOLPh{ e,
We also write
liy@)l, = 1k ahy' ="}, = al, (21)

(unless confusion occurs), where | a||, is defined by (17).
The rest of the section will be devoted to the proof of the following
characterization of C,(M", M,.):

THEOREM 9.1. For each 0 n< 1 and 1 < p < o, the complex inter-
polation space C,_,,(M", M) of the pair defined in Definition 7.1 is (with
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equal norms) exactly i}(L”) (SMy=L") with the norm (21). Or more
precisely, when L' and M, are identified, i)(L”) is exactly the complex inter-
polation space C,(k3*Mh{'~™/%, L"), where k?"Mh{'~"'% is equipped with
the norm || ||, defined by (19).

Remark 9.2. When n=0and n=1, C,,,(M", M) reduces to L?(M; ¢,),
(=L*(M; ¢,) in Section 3) and L?(M; y,),, respectively. Thus Theorem 9.1
shows that

LP(M; ¢o), = L7hy",  LP(M; y,)g = ky'L?
with norms given by
lakll,=llall,,  [Iko"al, = llali,, 2y

respectively. Especially, when #=0 and p=2, the theorem reduces to
Theorem 3.3.

Proof of Theorem 9.1. Thanks to Lemma 7.4 and the known reflexivity
of L” (=iJ(L")), one can use Theorem 1.8. The proof we shall give is a
generalized version of that of Theorem 3.3. We will thus sketch arguments.
However, for the reader’s convenience, we repeat the definitions of
F'(kIMhy~", L") (Defintion 1.4) and Fy(kjMh}~", L") (Lemma 1.3) in the
present set up. Namely, we set

F'(kgMhy~", L")
={f:0<Rez 1> L" satisfying
(i) bounded and continuous, analytic in the interior,
(i) fE)=kIf'(it)hy "E kMR tER,

(iii) I/l =Max(sup,cr | £ Gl = sup,erll SE5
sup,er | S(1 +it)l];) < o},

and
Fo(knMhi=", L")
=1g:0Rez 1~ L" of the form g(z) =kJg'(z) hy ",
g'(z) = exp(Az?) ﬁ exp(A,z) x,, A > 0,4, ER;x, EM, .

n=1

We begin with checking condition (a) in Theorem 1.8. Choose and fix
a=ula|=uh,” € L*, which is identified with

; — /Ay plopd—mia _ [ n/a (1 —n)/q
ir(a) = kg "uh " hy = kg'%ahy
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(see (20)), and we set
f(Z) — ¢(1)1/pfzkg(l—z)uh;hglfn)(l—z)’ 0 < Rez < 1.
One then easily computes
fai) € kiMhy™",  |LSON7 = all,.
Je€EF'(kgMhy" LY. (I/l1=al,.
SAV/p) =Ky ahy! "

Second, we check (b). However, we check it after replacing 8 =1/p by
1 — 8= 1/q. Obviously we have

kg M)~ < i7(L) = kLR,
and, for each g(z) = kJg'(z) hy " in Fy(M", M), we will prove
I &1/l <l glll (22)

To do so, we take an arbitrary a € L? and the corresponding f,(z) as in the
first half of the proof. We then consider the bounded and continuous
function

H(z) =tr(f,(z) g'(1 - 2)*)

on 0 Rez I, which is analytic in the interior. As in the proof of
Theorem 3.3, one computes

[H(z) < |lall, I gli

In particular, with z = 1/p, we have

lr(fu(1/p) &' (1/g)*)]
= [tr(k"ahy' """ g’ (1/q)*)]

=|tr(a(ks g (1/q) hy' ="' ) *) < llall, Il gll-
Thus, the duality between L? and L9 implies
itk 8" (1/q) ' =) * ||, = kg™ g’ (1/q) k' =, <l gl
Since k7%g'(1/q) h' "™/ in LY is identified with
i(kg g (1/q) h' ="' = kg g'(1/q) hy ™" = g(1/q),

the above inequality is precisely (22). Q.E.D.
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We recall that Araki [2] introduced a one-parameter family {P* =P§ },
0 < a < 4, of positive cones in a standard Hilbert space. (Namely, P is the
closure of 4°M , &, in the standard Hilbert space, where ¢, = w, and 4 is
the corresponding modular operator.) We know (Theorem 3.3) that
L*(M; ¢,) = L*(M; ¢,), is a standard Hilbert space so that the cones are
inside of L*(M; ¢,), = L*hy* (see Remark 9.2). Let L. denote the positive
part of the Haagerup’s L?-space. When 2 £ p € o0,

Li hé/q :Li h(l)/q—l/lh(I]/Z =L h((]l/Z)—l/ph(l)/Z, % —1/p>0
corresponds to L% h§/» V7 in L% 1t is easily checked that
(L2 BP9y = k€ LY hVD -7k > 04, (23)

where the closure is taken in L* (For full details, see [20].) On the other
hand, when 1 < p < 2, we formally compute

L% /"= L% AP~ 1Ppy? (note 4 — 1/p < 0)

(although A{"/?~'7 is not r-measurable and this product does not generally
make sense either). However, for a “smooth” part in L% , the computation is
justified and the closure of “L? h{'/»~"?” is characterized by

{k € L khiP~ > 0}, (24)

According to |20, Proposition 2.2], (23) and (24) are exactly P*, a = 1/2p,
realized in L2. Thus, we state

Remark 9.3. Let P” 7 1 £ p< oo, be the cones realized in the standard
Hilbert space L*(M; ¢0) L? (M ¢0)L Then

LP(M; o), = (PSP OLP(M; 4,))~ if 1<
=P/ ML (M; ¢,) if 2<p< oo,

gives us a reasonable definition of a positive part of our L”-space. Here, the
closure is taken with respect to || |, and L?(M; ¢,) € L*(M; ¢,) (if p > 2) or
L*(M; ¢,) = L*(M; ¢o) (if p<2) as explained in Remark 3.2. Full details
and closely related subjects are found in [4, 20, 21, 23]. Later we shall treat
the cones from a different viewpoint (Remark 12.4).

10. Technical Lemmas

We collect some technical lemmas which will be used in the next section.
Especially we try to extend o¥*® (ki - hy" on L®) to a strongly continuous
one-parameter group of isometries on L?, 1 € p < 0.
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LeEmMmA 10.1. For each k€ L”, 1 p < oo, we have

|kitkhy ], =kl tER

Proof. The space L” is isometrically isomorphic to L*(M; ¢,) via
ko khy®  (ELP(M:¢)SMy=L")
(see (19)). Furthermore, i) is compatible with k{/ - 4;* in the sense that

kiti%(k) hy * = i9(kikhy ).

p

Thus, thanks to Theorem 1.2, it suffices to check the equality for the two
extreme values p=1, 0. However this is obvious because gl® is an

isometry. Q.E.D.

‘LEMMA 10.2. For each k€ L’, 1<p<oo, the map: t€ - —
ki'khy " € L is norm-continuous.

Proof. Casel (p=2). The space L’ being a standard Hilbert space,
the result is obvious because of

kitkhy"=A" , k

woo T
Case2 (1< p<2). Obviously the subspace L*ay” """’ is dense in L”.
Thus, thanks to Lemma 10.1, we may and do assume that & is of the form
k=k hyP V> k,€L*
Then the result follows from Case 1 and Holder’s inequality.

Case3 (2 < p< o). Due to Lemma 10.1 and the uniform convexity of
L” (Clarkson’s inequality), it suffices to check the weak continuity.
However, this follows immediatedly from Case2 with ¢, and vy,
interchanged. Q.E.D.

Keeping the above two lemmas in mind, one can prove the next result by
using the triangle inequality for || [|,.

CoroLLary 10.3. If'a map: t € R - k(t) € L7 is norm-continuous, then
so is the map: t € R - ki'k(t) hy "€ L? (1< p < o).

For each k € L”, we can “regularize” k as

oo .
ky=(/m)"? [ exp(—nt*)kiikhy " dt. =12
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Lemmas 10.1, 10.2 then assert that ||k, ||, <| k||, and lim,, , ||k, — k||, = 0.
Therefore we obtain the next two results. Actually, the second result is
stronger than the first, however, we state both of them for later reference.

LEMMA 10.4. The set of all analytic elements in L? for k& - hy'", that is,
(k€L a map: t € R — ki'khy " € L” extends to an entire function)

is dense in LP(1< p < o).

LEmMMA 10.5. Let N be the o-weakly dense subspace in M of all analytic
x € M for a¥%. Then No, (SL”(M; ¢,) S M) is dense in L"(M; ¢,).

To prove Lemma 10.5, one has to notice that N¢, is dense is Mg, with
respect to the || || -norm and that Mg, is dense in L”(M; ¢,) (Remark 3.2).

11. Non-commutative Stein—Weiss Interpolation Theorem

In this section, we prove a non-commutative analogue of the classical
Stein—Weiss interpolation theorem [35] which is our main result in Part IL.
Comments on the theorem wiil be collected in the next section.

We defined the left LP-space LP(M;¢,), and the right L?-space
LP(M; w,)z is Section 7. We now characterize complex interpolation spaces
between them. We feel that the following “Haagerup’s LP-space-free”
statement is preferable.

THEOREM 11.1 (Non-commutative Stein—Weiss interpolation theorem).
For 0<n<l and 1< p<oo, the complex interpolation space
C,(LP(M; ¢,),, L*(M; w,)g) is (with equal norms) the complex interpolation
space C,,,(M", M,). Here the pair (M", M) was defined in Definition 17.2.

Relation between the theorem and the classical Stein—Weiss interpolation
theorem will be explained in the next section. Every space involved in the
theorem is a subspace of M. In the rest of the section, we identify L' = M,
so that ¢, = h, and ¢, = k,. Due to Theorem 9.1, Theorem 11.1 follows from
the following result to the proof of which the rest of the section will be
devoted.

THEOREM 11.2. The complex interpolation space C,(L’hy, ko ‘L")
(=C(LP(M; 9y),, L*(M:y,)g)—see Remark9.2) is (with equal norms)
iNLP)=k3LPh ~™9 ((20)) equipped with the norm (21). Here, the norms
of L°h)/% and k/°L” are defined by (21)'.

Our strategy is to construct a natural isometric surjective mapping from
F(LPhY?, L*hy") onto F(L’h}% ky/L”) which (passing to respective
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quotient spaces) induces the surjective isometry from L”hy¢ onto C, =
C,(L"hy?, kyL*). Then we will be able to compute C, by using the explicit
form of the above surjective isometry.

We use the following simplified terminologies only in the rest of the
section:

I =E(L Ry ky"L?) = Lhy/ + ki "L
with the norm || ||,

F,=F(L?hy", L?hg/*)
={f(z)=fzYhY" 0K Rez < 1— LPh)" satisfying

(i) f’(z) is a bounded and continuous L”-valued
function, analytic in the interior,

(i) lim,, o | S @, = 0.}
with the norm

I = MaX(fug 1Lf7 GOl sup /(1 +i)ll,)

(=sup{ll /" (z),: 0 < Rez < 1}),
F,= F(Lph(l,/q, k(],/qu)
= {g(z): 0 Rez £ 1 X satisfying
(i) bounded and continuous, analytic in

the interior (with respect to || ||5)

(ii) g@i)= g,(iHhy* € LPh)/, 1€ R,
gl +ir)=ky%, (1 +ir) € kyIL", 1 € I5.

(iii) For j=0,1, &(J + ir) is || || -continuous in ¢ € I, and
llm,H + o H g](.] + lt)”p = 0}

with the norm

Il gllii, = MaX(suﬁ | golit)l, sup | g (1 +it)],).

Also, we will use letters f, /', g, £,, &, in the way that they appear in the
above definitions.

Let us start proving the theorem. The first step is to construct a linear
mapping from F, to F,. Using the harmonic measure {P(z,t)};,_,, in
Lemma 7.5, for each

f@)=f" (D) he* EF,.

SRO/S6/T S
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we set

(@) =] K G b Y oP 2, 1) d,

© N .
+ j KK (1 + ity hy 9P (2, £y dt,  if O<Rez< I,
— o0

=ky/9f(it) hy Ry if z=it,
= ky kY (1 4 it) hy e if z=1+1ir,

so that (n/)(z) belongs to Z. (Corollary 10.3 guarantees that the above two
vector valued integrals make sense.)

Remark 11.3.  Intuitively (when f(z) is “smooth” enough), we have
()(@) = k5 f " (2) = = K ) by =
However, from this form it is difficult to observe (a/)(z) € X.

Lemma 10.1 implies

77l = L ) (25)

(although we have not yet known if zf is in F,).
To show f € F,, we at first notice

1@l <N AL fEF,. (26)

(This follows from the above integral expression and the fact that on the
boundaries of the strip || |; is majorized by | |,.) We also have

LEMMA 11.4. For each f € (F,), described in Lemma 1.3, nf belongs to
F,.
Proof. Due to the linearity of z, we may and do assume
f@@)=f"(z) ",
[(z) =exp(Az® + uz)h, A>OQueER hEL”

Furthermore, due to Lemma 10.5 and (26) (and the completeness of F,), we
may assume that & = xh{”” with an x € N described in Lemma 10.5. For this
smooth f’(z), easy computation (see Remark 11.3) shows

(1 Nz) = exp(Az” + uz) 029, (x) hy.

From this, conditions (i)-(iii) in F, are easily checked. For example, since
z - 6“0 (x) € M is uniformly (=o-weakly) analytic, (i) is fulfilled. Q.E.D.
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LEMMA 11.5. The map © is an isometry from F, to F,.

Proof. Since the uniform limit of continuous (resp. analytic) functions is
continuous (resp. analytic), Lemma 11.4 and (26) (together with Lemma 1.3)
show that nf, f € F,, satisfies (i) in F,. Also, Lemma 10.1 and Corollary
10.3 guarantee that #f satisfies (ii) and (iii). Finally, because of (25), 7 is an
isometry. Q.E.D.

The second step is to show the surjectivity of z. In fact, we construct its
inverse mapping. Namely, for each g(z) in F,, we set

(mg)z)=|  kg"gq(it) 'Ry P (2, 1) dt
| kg ag (1 4 i) h{RYP (2. dt i 0<Rez< L.
— ky ") hi Ry LR
= ko "g,(1+ ity hiy/*h'" if z=1+1i

so that (n'g)(z) € L?h}°. Again we have

iz glh =1l gl
'), <l g

5-
Also, as a counterpart of Lemma 11.4, we have

LEMMA 11.6. For each g € (F,), (Lemma 1.3), n'g belongs to F,.

Proof. As before we may assume
g(z)=exp(Az® +uz)k, A >0iu€ =,

k=xohy)=k\,, Xg, X, EL” 27)
0°t0 0 0

so that we have

go(it) = exp(A(it)? + u(it))x,.
g(1 +iry=exp(A(1 +it)* + u(1 +it))x,.
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Therefore, one computes (n'g)(z) = f'(z) hy/* with
fi(2)= j exp(A(it)? + u(it)) kg 9x, R/ 9Py (z, £) dt

+ j exp(A(1 + it): + (1 + if)) kg 'x, hi9P (2, 1) dt
- if 0<Rez<l,

=exp(A(it)* + (it)) ki x, hi/e if z=it,
=exp(A(1 + it)* + u(l + it)) kg “/9x, bV if z=1+it

For each h € L7 such that hjhk, " is entire (those A’s form a dense subspace
in L? due to Lemma 10.4), the mapping

2= (f"(2) )
is entire. In fact,
H(it) = (f'(it), hy = exp(A(it)* + p(ir)) tr(ky “9xo hi{/7R)
= exp(A(it)? + u(it)) tr(xo hg/Thky ')
so that it extends to an entire function. Furthermore, for z = 1 + i, we have

H(1 +it) = exp(A(1 + it)? + p(1 + it)) tr(x Al D gk s (1 +10/0)
=exp(A(1 +ir)* + u(1 + ir)) tr(x, h/%hk; /%) (because of (27))
=exp(A(1 + ir)* + u(1 + it)) tr(ky “/Ix, hiV'9h)
={(f'(1+ i), h).
Since || f'(z)ll, <l glll,» the above computations show that f'(z) is | |,

(=weakly) entire and 7n’'g satisfies (i) in F,. Also (iii) follows from
Lemma 10.1. Q.E.D.

Thus, the same arguments as in the proof of Lemma 11.5 show

LEMMA 11.7. The map n' is an isometry from F, to F,.

Obviously, k9. h5 4 in the definition of 7 and k; */? - A% in that of 7’
cancel out with the each other so that 7’ o m (resp. mo nn') is the identity
mapping of F, (resp. F,). More strongly, we have

LEMMA 11.8. The map m is a surjective isometry from F, onto F,.
Furthermore, for each 0<0<1 and fE€F,, f()=0 if and only if
(nf)(0) = 0.
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Proof. We just prove that f(0)=0 implies (7f)(f#)=0. Similar
arguments imply this implification for n’, which together with n’' o 1= Id
will yield the other direction.

Take and fix an f(z) = f'(z) h)? € F, and assume that

f(@)=0, that is, /’(6)=0 in L”.
For each x € M such that hA{xk, ® is entire, easy computation shows
() 2))x) = tr(f'(2) by "o £%0(x))
so that f'(8) = 0 implies (nf)(6) = 0. Q.E.D.

End of the proof of Theorem 11.2. Having obtained the above lemma,
(by passing to the quotient spaces) 7 induces the surjective isometry 7, from
LPhg/? onto C,,. For a smooth h € L” for ki - hy ", we consider

f)=exp(z’ —n*)hhY € F,,
(f(n) = hhy'*).
We then have
m,(hhy®)y =7, (f(n))
= (nf)(n)
=exp(z® —n?) ki/*hhy 7|, _, (recall Remark 11.3)

— kg/qhhgl-n)/q
so that
k(r):/qhhél-n)/q eEC._,
1k kb = | kb, = 1],

the map n, being isometric. Thus the density of smooth A’s (Lemma 10.4)
shows that

C :kg/quhBlfn)/q
n ]
|k3/hhg "% <kl hEL".
In other words, C, is exactly i/(L?). Q.E.D.

12. Remarks

To understand Theorem 11.1 better, we specialize ourselves to the abelian
von Neumann algebra M = L*(IR;dt) (acting standardly on the Hilbert
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space L?(R;dt)) with the predual M, = L'(R;dr). We fix strictly positive
functions A,(¢) and k() in L'(R; dt) so that

o) =] m0d  wO)=[ ko,

give rise to faithful normal linear functionals on M. Then, for each
0< 1< 1, 6%%%(-)dy, (in (14)) is computed by
J(©) € L=(Rs dt) > ko) ™™ f(t) ho(t) " ho(2)
= f(8) ()" Pky(t)" € L'(R; dt).
Therefore, easy computation (or Theorem 9.1) shows that the complex

interpolation  space C,,(M",M,) considered in Theorem9.1 is
LP(R; dt) h{' ~™"%k7/%. A function

S(6)= g(t) ho(1)' " ko ()"
belongs to this space if and only if

1/p

1/p

JOO |f(t)1ph0(t)‘p“*")/qko(t)f”"/q dt < .

e

In other words, we have
C,,,(M", M) = LP(R; ho(t) """ "9k y(£) =™ di).

Also, considering the two special values 7 =0, 1, we know

LP(M; ¢g), = LP(Rs ho(t) ™" db),

LP(M; wy)g = LP(R; ko(t) 79 dt).
Therefore, introducing

wolt) = ho() "%, wy (1) = ko(8) "7,
we conclude that
C,(L7(R; wo(t) dt), L*(R; w(¢) dt)) = LP(R; wo(t)' ~"w,(£)" dt).

This is known as the Stein-Weiss interpolation theorem [35].
We now return to a general von Neumann algebra M and give some
comments.

Remark 12.1. As an analogue of a general form of the classical Stein—
Weiss interpolation theorem, we believe that one can also characterize
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C,(L"(M; 9y),, L” (M, y,)z) with different ¢,, w, and different p,p".
However, the case p= p’ seems to be more interesting as subsequent
remarks in the section show.

Remark 12.2. One might equally be interested in characterizing inter-
polation spaces between two left (or two right) L?-spaces. It is likely that a
reasonable result is available only when ¢, and y, commute in the sense of
[37,Sect. 15]. We thus believe that this is an ill-posed question. We would
like to remind the reader that Pusz and Woronowicz |30| obtained a certain
interesting object (purification) by “interpolating™ left and right sesquilinear
forms (instead of two left sesquilinear forms; see Remark 12.5).

Remark 12.3.  When n =3 and ¢, = y, in Theorem 11.1, one obtains the
“averages” C,,,(L"(M; o)., L"(M; §,)g) = i) *(L?) = hy*"L*hy"*?  between
left and right L?-spaces. These are exactly Terp’s L”-spaces |40] constructed
by using the “symmetric” injection: x — (¢,),. (in her case, ¢, can be a
weight.) In fact, if 7 is the GNS representation induced by ¢, (and & is the
corresponding cyclic and separating vector and A(x) = n(x)¢, = n(x) A(1)).
the injection M & M'* < M, for n =1 is given by

X2 0_(x)0y,
and one computes
(0_32(x) 9o)(z*y) = go(z*ya _/5(x))
= (n(z*y) 457n(x) & | &)
= (n(y) Jn(x*) Iy | n(2) &)
= (Jr(x*)JA(y) | A(2)), WZEM,
which is exactly (9,).(z*y) (see {40, p. 49]).

Remark 12.4. When p=2 and y,=¢,, we have a one-parameter family
C,(L*(M; 8y),, L*(M; ¢y)x), 0< 1< 1, of Hilbert spaces. All of them are
standard Hilbert spaces. In fact, the proof of Theorem 11.1 shows that

n,: khy® € LXM; ¢o), = L*(M: 9,) = L*hy”
- kJ7kh " € C,

gives a surjective isometry, and the isomorphism between L>(M; ¢,) and L’
is given by
i: k€L khy* € L*(M: ¢,)

(see (19)). Therefore,

7,010 k€ L - kI/kh§' "2 € L (M; ¢,) (28)
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is an isomorphism. We also recall that when we constructed C,(M", M) we
considered the injection

XEM-o_, (x)po=h]xhy "EL'=M,.

—in
Considering hJxh, ™" as an element in C,,(M", M), we now write
JI:xEM- hixhy "€ C,,(M", My),
and Theorem 11.1 asserts
Coa(M", M) = C(L*(M: 65), . L*(M: w)y).
The image j3(M,)=hJM  hi~" corresponds (by (28)) to
(1,0 1) (R3M , hi™") = B "M B~ = 47°M Y

in the standard Hilbert space L® so that the closure of jJ(M,) in the
standard Hilbert space C, is P"/ ? (recall Remark 9.3). Thus, Theorem 11.1
asserts that the cones Pz/ 2, 0< ;7<1 are obtained by “interpolating” the
two extreme cones Py (m L? (M go).) and P (in L*(M;¢,)s). A more
precise meaning of the above “interpolating” seems to deserve further
investigation.

Remark 12.5. Finally we consider the case p=2, ¢,# w,. As in the
previous remark, we write

J3:x € M- kixhy™" € C (L*(M; ¢9)., L*(M; wy)z)
=kIPL*R{ " = i3(LY) (see (19)).
Since j7(x) = kJxhy "= iJ(ky’’xh{' ~™’?), the norm of j}(x) is given by (see

2D)

”kn/Z h(l n)/2“2 tr(jk"/z h(l n)/2|2)
= tr(kxhy ™ "x*).

Thus, the Hilbert space C, may be regarded as the completion of M
equipped with the quadratic form

X €M tr(kgxhy "x*) € [0,00)  (=[455,% ). (29)

Godg

In particular, with n =0, 1, L?(M; ¢,), and L*(M; y,), are the completions
of M with respect to

X € M- tr(hyx*x) = g, (x*x), (29)
X EM - trkyxx*) = yo(xx*), (29)”
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respectively. The reader may notice that (29)' and (29)” are left and right
forms considered by Pusz and Woronowicz [30, 31,43], and also that (29)
is a form appearing typically in the Wigner—Yanase—Dyson—Lieb concavity
13, 27, 31, 34, 43]. Namely, this concavity states that

ap, + B0, <9y, oy, + By, <y (0. B20:0;, v, € M)
imply
atr(hy xhy "x*) + ftr(hy xh, "x*) <tr(hy xhy | "x*). (30)

We know (Theorem 11.1) that the form (29) (or more precisely, its
associated quadratic norm) can be obtained as the complex interpolation
form between (29)' and (29)". Also, for the “boundary” forms (29)’ and
(29)”, (30) is obviously valid (with the equality). Hence, the Wigner-
Yanase-Dyson—Lieb concavity may be interpreted as “concave dependence
of interpolated norms on boundary datas.” This viewpoint is being taken by
Uhlmann [43] and he showed that the above described concave dependence
for a certain quadratic interpolation functor (IQ, in [3]), which is actually
the complex interpolation functor C, as the above discussion shows. Further
analysis (including certain generalizations and simplifications) will appear
elsewhere [25].

13. Proof of Uniqueness Theorem

This section is devoted to the proof of Theorem 4.4 so that we return to
terminologies used in Part I. Of course, the result follows from Theorem 9.1
(with # = 0) and the fact that Haagerup’s L? does not depend on a choice of
¢,. However, “L’-free” (i.e., “crossed product-free”) proof is much more
desirable. We give such a proof in this section. Our proof is based on
complex interpolation theory itself (and relative modular theory in
Section 2). The proof involves arguments used repeatedly in Section 11.

Easy computations suggest that an obvious candidate of a “nice” map
(satisfying properties similar to those in Proposition 11.8) from F(M®0, M,)
onto F(M®1, M) (see the beginning of Section 3) is

(nf)z) = f"(z)(Dgy; Dg,) .9,
=S(z)(Dgo; Do1) ;- 1y
f(@)=f"(z) 8, € F(M*. M)
(and f'(z) is “smooth” enough). Notice that this is similar to the map which

was used to construct the right action a - x in Section 6. However, the above
nf does not belong to F(M°®', M) unfortunately because t - (D¢, ; D¢, ), fails
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to be || ||-continuous generally. This difficulty is removed if one uses the
duality (Theorem 4.3).

Proof of Theorem 4.4. Because of the Theorems 4.3 and 3.3, and (11), it
suffices to construct an isometric isomorphism from C,(H®, M,) onto
Co(H®', M,). Here, H is a standard Hilbert space, and in the first (resp.
second) interpolation, H is being imbedded into the predual M, via

£ (- C1&)

(resp. {— (- £ £,)) with the unique implementing vector &, for ¢, (resp. &, for
¢,) in the natural cone P". For each f(z) in F(H®, M) with

S@)=(4i[c) L) €EH,

we set
@)= (Ui)|483,8) Pz de

o
+j f(1 + it)(Dé,; DY)} Pr(z, ) dr, if 0<Rez< 1,
-

= (- {(ir) | 4505.¢) if z=1it,
= f(1 + it)(D¢,; Dgo);}, if z=1+1t

((nf W(z) € M ). The following observation is crucial in our proof: We notice
that (recall (4)),

it/2 it/2 —it/2
A3 & =412 4510,

@199 0100

=J4y5 45108,

=J(Ddg,; D¢1)t/2‘]él ’

and that J(D¢,; D¢,),,J is a unitary operator in the commutant JMJ = M'.
For z = it, x € M, we thus have

((@ED)(x) = (x(i1) | J(Dgy; DB1), 2 E,)
= (xJ(Ddy; Dg,);f,JL(ir) | ).
Therefore, (nf)(it) certainly belongs to H*' and
1@ )@l 81 = 1Dy 5 Do) /f2 Il
=146l
=[S COln $o-
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Also, we obviously have

(&) + i), = A1+ in)l,
so that ||/ | = I /}. Next, for
f2)= (- 82)| &) € Fo(H®, M),
{(z) = exp(Az® + uz)C, A>0uE R (EH,

we try to compute (7f)(z). For z =1+ it, we have

((f )1+ i))(x) = exp(A(1 + it)? + u(1 + i) (D@, : Do), xC | &)
=exp(A(L +i0)* + u(1 +in)(xC| 412 &),

Since ¢, belongs to D(4,%, ), this function extends to a bounded continuous

function
exp(Az? + puz)(xg| A4 D7)

104

on 0 < Rez < 1, which is analytic in the interior. Furthermore, for z = it, it
gives rise to

exp(A(it)* + uin) (x| 4575, 455,60 = exp(Alin)® + u(i)(xC | 4575 &)
= ((m)(in)(x).
Therefore, nf, f € F(H®, M,), is an M,-valued bounded and continuous
function on 0 Rez < 1, which is analytic in the interior. Actually, nf
belongs to F(H®, M,) as checked easily. Thus, arguments in the proof of
Lemma 11.5 show that the map = sends F(H®,M,) into F(H*',M,)

isometrically.
To prove that f(#) = 0 implies (7/)(#) = 0. we choose an x in M such that

1€ R - (Dgy; Dg,),x = (D¢,: Dgy)* x€M

extends to an entire function x(z). (Such x’s are known to form a o-weakly
dense subspace in M because of the usual regularization method.) For this x
and any f € F(H®, M), we compute

(A + in))x) = (f(1 + i1))((Ddy: DY), X).
By the uniqueness of analytic continuation, we have
((#)(2)(x) = f(2)(x(—i(z — 1)/2)).

Thus, f(8) =0 implies ((nf)(#))(x) =0, that is, (/' )(#) =0 as we desired.
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If one changes roles of ¢, and ¢, (also &, and ¢,), one obtains the inverse
isometric mapping because of the chain rule

(Dgo; D$1){(D¢;; Do), = (D¢, ; Dg,) (D, D¢,), = 1.

Therefore we conclude that z is a surjective isometry from F(H®, M,) onto
F(H?', M,) satisfying

f(6)=0 if and only if (n)(6) = 0.

Passing to the quotient spaces, we obtain the surjective isometry from
Co(H?, M, ) onto Co(H*', M), 0<8< 1. Q.E.D.

APPENDIX: UNIFORM CONVEXITY OF COMPLEX INTERPOLATION SPACES

Calderon showed in [7] that all complex interpolation spaces Cy(X,, X,),
0 <0< 1, are reflexive if at least one of X, and X, is. This result remains
valid if one replaces the reflexivity by the uniform convexisty. (The
corresponding result is known for a certain real interpolation method [5].)
Further analysis can be found in [11].

THEOREM A. Let X = (X,, X,) be a compatible couple of Banach spaces.
If at least one of X, and X, is uniformly convex, then so is the complex inter-
polation space Coy(X), 0 <8< 1.

We need the harmonic measure {Pj(z,t)};_, , for the strip 0 <Rez <1
(see Lemma 7.5). We state the following powerful inequalities:

LEMMA A.l1 [6, Lemma 4.3.2]. For each f in F(X), we have

() log| /@< | logllfn)lPul6,0)dr
*fw log [|f(1 + ir)|, P,(8, t) dt,

© d 1-0
@) 1@< || 1ralpob.0 2|

2]

( ~00 d
[ sl e@0 G

Because of (16), Py(6, t)(dt/(1 — 6)) is a probability measure on R (for
each 6). By L*(X,), we denote the Banach space consisting of all X,-valued
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square integrable functions on R with respect to the above probability
measure (for a fixed 8). The following result is known |5, p. 71]:
Lemma A.2. If X, is uniformly convex, then so is L*(X,).

We denote the modulus of convexity of L*(X,) by d(-). Namely. for a
small ¢ > 0, we set

S(e)=inf{1 —||(D)x + s x yEL*(Xy),  lx[LIrlI<

Lilx =yl >et

(If X, is uniformly convex, then J(¢) is strictly positive due to the above
lemma.) We notice that in our situation (Theorem 4.3), X, was a Hilbert
space, for which Lemma A.2 is obvious.

Proof of Theorem A. We may and do assume that X, is uniformly
convex |6, Theorem 4.2.1(a}]. We first fix a number a > 2.

Choose and fix a small ¢ > O throughout. Let x, y be elements in C,(X).
0 <8< 1,such that [x]|, < 1, | vl < |, and [|x — y|l, > &

We then take # > 0 such that 0 < 7 < (@/2)% — 1. By the definition of the
interpolation norm, there exist two XZ(X)-valued functions f and g in F(X)
satisfying

x=f0). ISII<T+7
y=280. lell<t+
Using Lemma A.1(i), we estimate

log ¢ < log [ — ¥,

OO

<| oISy — glin)lloPy(6. 1) di + Blogi2(1 + )1

because of (16) and

1S+ i) — gL+ il <A+ gl < 2(1 + 7).

Therefore, we have

el2(1+m}=°< expjw log || f(it) — g(it)lo Po(6. 1) dt.

The measure Py(8, 1)(dt/(1 — 8)) being probability, we then estimate

IC{2(1 + n)}*f)]l/(l—f))

<exp | log /i)~ gliloPl6.) T
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*® di
SJ |.f(it) — g(i)]lo Po(6; ¢) I—_tg (Jensen’s inequality)

1/2

<" 10— saolpe.0 1%

(Cauchy—Schwarz inequality).

In the auxiary Banach space L*(X,), we consider the two elements

S _ g@)
FO=<0  GO=1 -

Then the above estimate shows that

|F— G| >ﬁ [ef2(1 + )} 0] V-®

— 61/(1—0)2’*9/(1—9)(1 + n)~l/(l—0)
> 81/(1—9)2~9/(1—0)(a/2)—9/(l—0) (recall 0 < n < (0/2)6 _ 1)

= (ea=?)/1-0),

Also, F and G belong to the unit ball of L?(X,). It follows from Lemma A.2
that

IGHF + Gl < T —8((ea ).

Thus, Lemma A.1(ii) implies

||(%)<x+y)||g<§fw (%) PO(H’t)ld
XUw () ngm(

‘ (7) o(e,t)—lif’—ag””’“

3 < )(f(1+i’)+g(1+i‘))’1P1(9,t)fg ’

(Cauchy—Schwarz inequality)
1-6
<jas+n (5 s

< (1 + ’7){1 _5((a676)1/(1—9))}1—0
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Letting # | O, we obtain
()0 + Pllg < {1 — ((ea™ )41

Since the right-hand side is a positive number strictly less than 1 and
depends only on ¢ and a (not x, y), Co(X) is uniformly convex as desired.
Q.E.D.
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