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Abstract

We work on a general nilpotent Lie group

G=90%0..09,

where r>1 and %) = @/_y is the descending central series of 4. A composition theorem and

an L? boundedness theorem for convolution operators f —f % A are proved. The composition
theorem holds for symbols a = 4" satisfying the estimates

|D*a(&)]< Cm(&)g(E) ™,

where m is a weight and

where

2

1
r 2
g(&) = |1+ (2 |é,,-2>

=k+1

The class of weights admissible for the calculus is considerably larger than those of the existing
calculi. For the L?-boundedness it is sufficient that

|D"a(&)| < Coug(£) .
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This goes in the direction of Howe’s conjecture and improves the results of Howe and
Manchon. It is very likely that our methods could also be used to extend the calculus of Melin
to general homogeneous groups.

© 2003 Elsevier Inc. All rights reserved.

1. Introduction

Although the idea is in a way present in Strichartz [8], it seems that it was Howe [4]
who first argued convincingly for the possibility of a symbolic calculus for
convolution operators on nilpotent Lie groups as a convenient replacement for the
highly efficient operational calculus provided by the Fourier transform in the abelian
case. The essence of such a calculus would be to describe the product

a#b = (a¥ *b¥)", a,beCr(%9*),

on a (connected simply connected) nilpotent Lie group ¢, where f* and /" denote
the abelian Fourier transforms on the Lie algebra (identified with %) and its dual,
and its continuity in terms of, e.g., asymptotic expansions controlled by suitable
norms similar to those used in the theory of pseudodifferential operators. In
addition, such a calculus should also provide some sufficient conditions for L2-
boundedness of convolution operators f'—f % A on ¥ in terms of their symbols
a = A". This idea gets much support from the remarkable relationship between the
convolution structure of the Heisenberg group and the Weyl calculus for
pseudodifferential operators, as explained in, e.g., Howe [3]. What Howe actually
proves is the boundedness theorem for convolution operators whose symbols satisfy
the estimates

ID*a(é)|< C,(1+¢])) "™

with p>1 (cf. Howe [4]). Here || - || stands for a linear space norm on % and |«| is the
length of a multi-index a. He also makes a conjecture on relaxing the estimates by
requiring only certain derivatives to vanish in certain directions so that the theorem
could apply not only to pseudolocal operators.

With the Weyl calculus as developed and clarified by Hormander [1,2], a certain
translation-invariant unitary operator was brought to focus and shown to be crucial
for the calculus. Let W = V'@ V'* be the phase space for symbols of pseudodiffer-
ential operators on the vector space V. The starting point for Héormander’s theory
is the observation that the Weyl product of symbols a,be C (W) can be written
down as

a#b(w) = B2 (a@b)(w,w),

where B is the natural symplectic bilinear form on W = W*.
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This has inspired Melin [6] to look for an analogue to the Hérmander operator in
the nilpotent group context and he came up with the following formula:

a#b(&) = U(a®b)(¢, <),
where

x—y2+xy7y—x;xy>7 X, yed.

U(F)" (x,) = F (

Melin shows that the unitary operator U can be imbedded in a one-parameter
unitary group U, with the infinitesimal generator I" which is a differential operator
on 9* x 4* with polynomial coefficients and he thoroughly investigates the
properties of I under the assumption that ¢ is a homogeneous stratified group. As a
result he obtains a composition formula for classes of symbols satisfying the
estimates

ID*a()|< Cy(1 + (€))7, (1.1)

where | - | is the homogeneous norm on ¥ and d(«) is a homogeneous length of a
multi-index «. He also proves an L*-boundedness theorem for symbols satisfying
(1.1) with m = 0.

Subsequently, Manchon [5] takes over Melin’s starting point and sets up to
investigate the operator I' and the unitary group U, in the context of a general
nilpotent group to come up with a composition formula for classes of symbols
satisfying the estimates

1D a(&)|< C,(1+ &[]y

with p>1 and Howe’s L?*-boundedness theorem. It has to be stressed that the
techniques of Howe, Manchon, and Melin are pairwise different.

What makes the whole matter difficult is that the Melin operator U unlike the
Hoérmander operator is not translation-invariant. However, it can be represented as
a composition,

Uf(x,2) = PRUS(LA)(E),  (E4)e% =9 D%,

of a translation-invariant operator P; on a quotient group 4’ = 4/%,, where %, is
the centre of %, and the Melin operator U’ on %', the central variable A playing the
role of a parameter. This is our substitute for the missing translation invariance. It
allows us to stay much closer to Hérmander’s approach and to completely bypass
the laborious investigation of the unitary group of Melin.

Let us announce briefly the results of the present paper. We work on a general
nilpotent Lie group

bG=9 DD DY,
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where r>1 and %0 = @)Y is the descending central series of %. The
composition theorem (Theorem 5.3) holds for symbols satisfying the estimates

|D*a(&)| < Cm(&)g (&), (1.2)
where m is a weight and

g(&)”" = g1(&)™ - g,(&)™,

where 1
1\ 2

r 2
gi (&) = 1+CZ ||é,-||2>

k1

The class of weights admissible for the calculus is considerably larger than those of
the existing calculi.
For the L>-boundedness (Theorem 6.2) it is sufficient that

[D*a(&)| < Cug (&)™

which goes in the direction of the above-mentioned Howe’s conjecture. It is very
likely that our methods could be used to improve the calculus of Melin and to extend
it to general homogeneous groups in a similar way.

2. Slowly varying metrics

Let X be an n-dimensional euclidean space. Denote by <-,-» and | -| the scalar
product and the corresponding euclidean norm. These are fixed throughout the
paper.

A slowly varying metric on X is, by definition, a family of norms {|| - ||,}.c y such
that for some C>1,

1
ol <l lLe<clf- 1 (2.1)

»?

if |[|x — y||, <1 (cf. [4, vol. 1]). The metric is said to be self-tempered, if it satisfies
ER
b <Ll =l (2.2)
Il=I,

Of course, (2.2) implies (2.1) with C = 2.
We are going to define some slowly varying metrics on X and X x X suitable for
our purposes. Suppose that

X = @ X,
k=1
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and let

Let

where d;y > 1.

Lemma 2.3. Let d>1. Then

Bl—

d+ 3]\ 2 x )]
(d ) <1y XA
+ (d -+ x])

for x,yeX.

Proof. In fact,
a—>b a—>b

1
1 +a\2 1+5
(1+b>:(1+a> ' sk T
(I+aPp(+b7  (1+ap

fora=b>=0. O

=

From Lemma 2.3, we infer the following estimate:

= S = 3)?
13 e 1 = il
(_ngxD <1+< AR )<1+gx(x—y),
gr\y g (x)2

where

(&
g.(y) = (; T (x)2> . x,peX.

We shall also apply the abbreviated notation

237

(2.5)
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where

R ] 2 o z,ueX. .
5@5‘<manxM““vxm) ueX (26)

Proposition 2.7. The family of norms (2.5) is a self-tempered metric since it satis-

fies

+1
{?%Q <1+g(x—). (2.8)

Proof. This is an immediate consequence of (2.4). O

We shall refer to any metric of this type as an H-metric on X. Note that every
H-metric g is determined by a vector d = (dy,d, ...,d;)eR’.
If g and h are two H-metrics, then

Gx(y) = (g®h)x(y) = gxl(yl) +hxz(y2)7 X7y6X x X, (2'9)

is also a self- tempered metric on X x X.
A strictly positive function m on X will be called a weight with respect to a slowly
varying metric g on X if it satisfies the condition

m(x +y) < Cm(x)(1 + g, (y)" (2.10)
for some C, M >0. The weights form a group under multiplication. If m; and m;
are g-weights, then m = max{m;,m,} is also a g-weight. A typical example of a
g-weight is
m(x) =1 +g.(x).
Observe also that, by Lemma 2.3,

m(x) = (1 + |x|)', seR,

is a weight for any H-metric. Other important examples are

1 il 1 ;
Qj(x) _ max{ + |xl,I| + xz.l}7

L+ [xyl" T4 [xyy
where

X = (Xl,xz) = (xllvxl% ooy X1r| X215 X22, ~~-,X2r) = (xsj)_lj{§r~ (2-11)
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These are G-weights, where G = g@g. It is important that Q(x) = 1 on the diagonal
in X x X, where x; = x».

Let m be a weight with respect to a slowly varying metric g on X. For fe C*(X)
let

m . Dk X
|1k (8) = sup g(nl(/)zg))

and
k
|f|l(nk>(g) = ; |f|?_l,')(g),
J=
where D stands for the Fréchet derivative, and

g\(Dkf(x)) - ?ll)p X gx(Dkf(x)(yl’yza 7yk))
g ()<

Let
S™(X,g) ={aeC¥(X):|aly(g)< oo, all keN}.

S™(X,g) is a Fréchet space with the family of seminorms | - [i(g). Thus, f e C* (X)
belongs to S™(X, g) if and only if it satisfies the estimates

|D*f (x)| < Com(x)g(x) 7,
where o = (o1, 02, ..., 0,) €N, and
9(x)" = 91(x)" g2(x)™ -+ g, (x)"
Let also

SR(X,g)={feS"(X,g): suppfcKcX}.

Apart from the Fréchet topology in the spaces S™ it is convenient to introduce a
weak topology of the C*-convergence on Fréchet bounded subsets. By the Ascoli
theorem, this is equivalent to the pointwise convergence of bounded sequences in S™.
Following Manchon [5], we call a mapping 7 : S™ — S™ double-continuous, if it is
both Fréchet continuous and weakly continuous. The following lemma implies that
CZ(X) is weakly dense in S™(X,g).

Lemma 2.12. Let g be an H-metric on X. There exists a countable subset U of X and a
SJamily ¢, of CF -functions on X supported in the balls

Q,={xeX: g,(x—u)<1}

such that ¢, e S'(X,g) uniformly in ue U (and g), and

Z o,(x)=1 xeX.

ueU
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Proof. For every 1<j<r, let I'; be a discrete subgroup of X; and y; a [0, 1]-valued
C-function supported in the ball {x;eX;: |x;|<r~1/2} such that

Z vixj—wy) =1, xjeX;.

wiel)

Let'=IyxI,x - x1T,and
v(x) =1 vix), xex.
j=1

Then

Z Y(ix—w)=1, xeX.

wel

For xe X let x# = ﬁ The mapping x— x* is injective since gx does not depend

on the variables x; for 1<j<k. Let
U={ueX:u’el}

and

o) =0(1). uev.

U is no longer a subgroup. It is not hard to see though that the functions ¢,,, where
ue U, have all the required properties. [

Lemma 2.13. Let g be an H-metric on X. Let
d(x,y) =1+g.(x—-y), xyeX.
Then
d(x,y)<d(y, %), d(x,y)<d(x,2)d(z.y)
for x,y,ze X.

Proof. By (2.8),

d(x,y) = 1+g(x =) <1 +g,(x — »)(1 +g,(x — »)<d(y,x)’,
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which proves the first inequality. The other one is proved in a similar way:
d(x,y) =1+g.(x—y)<l+g(x—2)+g(z—»)

Sd(x,2) + 8.z -y (1 +g(x —2)) =d(x,2)d(z,y). O

Corollary 2.14. There exists a constant Cy such that for every H-metric g

Z d(u,x)"'< Gy, Z d(x,u) "' <Cy

ueU ueU

uniformly in xe X

Proof. By definition of U and g,

S dw) N =Y (1 "

uelU utel

el

which implies the first estimate. The other one follows by Lemma 2.13. O

For the general theory of slowly varying metrics and its applications to the
theory of pseudodifferential calculus the reader is referred to Hérmander [2, vols. |
and III].

3. The Melin operator U

Let ¢ be a nilpotent Lie algebra with a fixed scalar product. The dual vector space

%* will be identified with ¢ by means of the scalar product. We shall also regard ¢
as a Lie group with the Campbell-Hausdorff multiplication

X1oXy = X1 + X + (X1, X2),

where
r(oe1, x2) =3[x1, Xa] + 5([x1, [x1, x2] + [x2, [x2, x1]])
+ a5(bx2, [, e, i) = e, [xa, fers xa]]) + -+

is the (finite) sum of terms of order at least 2 in the Campbell-Hausdorff series for 4.
Let

G=9 DD DY,
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where r>1 and 9% is the desending central series of %. Note that
—1
y[<Clyl™,  IxI<I<yl. (3.1)

For a function f'e C (¥4 x 9) let

// T £V (x)e O g
GxG ’

where X = (x1,x2), y= (11,)2)€% x %, and § =222 We shall refer to U as the
Melin operator on %. The motivation behind this definition is that

() = Uf®4)(ny), ye%. (3.2)

Example 3.3. Let ¥ = R?> x R be the Heisenberg Lie algebra with the commu-
tator

[(X, Z)7 ()/, S)] = (07 {x7y})a
where {x,y} = x1y2 — xpy;. Then
(X, Z)O(y,S) = (x+y,t+s+%{x,y})

and, for FeCP (9 x ) and A+ u>0,

F(& Aln, 1) // Siem E(xY | AyY ,u)e 5 {Yy}dxdy

_ 1 U ;“—i_:u —i{u,v}
4n2//F<f+ u, An+ 1/ > v,u)e du dv.

Therefore, for f,ge C¥ (%) and 1>0,

e Vit o

fhg(,2)

Note that for 4 = 1 we obtain the Weyl formula for the symbol of the composition of
two pseudodifferential operators

a#b(é):4—7112 / / a(é +u)b(& + 0)e™™ dudv, EeR%.

We return to the general theory. Let 4’ = % (r—1)- The commutator

g, X {4/3 (xl,xg) - [X],Xz]lag/,
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where / stands for the orthogonal projection onto %', makes 4’ into a Lie algebra
isomorphic to %/%9, with x—x' playing the role of the canonical quotient

homomorphism. The group multiplication in ¥’ is

x19' X2 = x| 4 X2 4 r(x1, x2)".
Fory= (y1,02)€¥9 x %, 2= ()1,)1)€% x%,, and 1 = L

Uf(y,2) = / / et £)e 09T o=I0.D gy gy
X

// TN £ (x| 1) I g0 gy
g// 'g//

/ / ODU(f(, )Y (e TP dx,

where U’ is the Melin operator for ¢4’. Thus,
Uf(y7 /“) = P)OU/f(7 /“)(y)7 (34)

where P is an integral operator on C.°(%') defined by
Pif(y) // eIV Y (x)e D gy (3.5)
/X(g/

As explained in the Introduction, formulas (3.4) and (3.5) are of utmost importance
for our argument.

Let g be an H-metric on 4 and G = g@®g. In what follows, we shall employ the
following standard partition of unity on ¥ x ¥ for G:
Pu(X) = @, (x1) @y, (x2), X =(x1,02)€9 X Y,
where u= (u;,uy)eU x U (see Lemma 2.12). Note that the functions @, are
supported in Q, = Q,, x Q,, and belong uniformly to S'(% x 4, G).

4. The estimate for P;
Let ' = %,_y). Let Ae%, x 4,. Let g', g* be H-metrics on %' such that
=1+, yed, (4.1)
for 1<j<r—1and k=1,2. Let

G=g'og.
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Let {@y},cyxy be the standard partition of unity of 4’ x % for G with the
corresponding covering ,. Moreover, let

d(u,y) =1+ Gy(u—y)
and ¢(1) = Q,(4). Let m be a G-weight.

Lemma 4.2. For every N, there exist C and k such that

NN
P W< C (G)d(y) ™
uniformly in €%, x 4, and ue¥ x 4G, if feSW Y x G',G;) is supported in Q.
Proof. We may assume that /1 = %7& 0 since otherwise P, = I, and there is nothing

to prove.
Let fe C* (9" x ¥') be supported in Q,. There exist C and k such that

Pso< [ [ 1 Wl =1l
= 1 ill o < CIA MG, (43)

where f5(y) = f(g" (1) 'y1,9*(u2)"'y2) and || - |l 4('xs) stands for the Fourier
algebra norm. The last inequality is achieved by the Sobolev Lemma.

1<j<r—1

With the notation of (2.11) applied to x = (x1,x2) = (xy), and y =

I1<j<r=-1

1, 0m) = (J’si)s:l,z )

i(ys'_usj) ) _ i(ys‘_us’) ) A}’/
4gﬁ(us) Pif(y) —Pz(igﬁ(us)’ f) (¥) + P, (gs(us) (D)f> (¥)

=P,f;(y) + Pif}(y), (4.4)

r(x) = <§| Ds./r(X)>

is a polynomial vanishing at 0 and depending continuously on a parameter u = ‘/—‘

where

P

ranging over a compact set. Thus, the mappings
So, (@ x G G)af =f]eSh (9 x ¥, G),
SH, (9 x G .G)af >f]eSy (¥ x¥,G)

are uniformly continuous in A so, by induction using (4.4) and (4.3), we get our
estimate. [
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Proposition 4.5. If'N is sufficiently large, then for every J. there exists a unique double-
continuous extension of P, to a mapping

P S™ (9 x 4 ,G)— S (4 x 4 G).
If, moreover, f € S™ (9" x 4', %), then
P,f eS1™ (4 x 4. G)

uniformly in A.
Proof. By Lemma 4.2,

P W] < Culouf [ (G 3)
and

m(y)”'[P2(@uf)(y)| < Cm(w) " d(y,w))" [P;(@uf)(y)]
< Gl 17 d(u,y)

so that

S 1P@) ) <Ca() m) TS du, ),

ueUxU ue UxU

uniformly in A. This estimate is valid for f/ in a bounded subset of S™ (%' x 4’ G)
without any restriction on the support, which implies that for every ye %',

7-Y PAdS))

defines a weakly continuous linear form on S™(%’ x ¢’, G). Consequently, P, admits
a (unique) weakly continuous extension to the whole of S™(4’ x ¢’, %), and

P YW =] D PiP)(Y)
ue UxU

< Gl q() N my(y).

The estimates for the derivatives of P,f follow from the fact that P, commutes
with translations, and hence with differentiations. [

Remark 4.6. The estimates of this section are uniform in 4, G, m, and f if G satisfies
(4.1), m is a G-weight satisfying (2.10) uniformly, and € S™(%, G) uniformly.
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5. Continuity of U

We fix a metric g with d=(1,1,...,1). Let G =g®g. Recall that the Melin
operator U has been defined for fe C° (9 x 9).

Proposition 5.1. Let m be a G-weight. For NeN sufficiently large, there exists a
double-continuous extension of the Melin operator to

U :S™% x9%,G)>S2™% x 4,G).

Proof. Suppose that 4 = %) and proceed by induction. If r = 1,% is abelian and

U = ] so the assertion is obvious. Assume that our theorem is true for ¥’ = 4,_;
and U=U". For Ze%, and feS™(¥% x9,G), let fi(y)=1(y,4),(g,),(z) =

8y, (2,0),G; = g, ®g,,, and my(y) = O(y,0)" m(y, ).
Now 4,G;,m;, and f; are as in Remark 4.6, so by the induction hypothesis

Uf, e SQN,"”-(@’ x 4’ G,) uniformly in 2. Now Proposition 4.5, where we replace m;
with OVm;, yields

PUS et @ mig « 4 )

uniformly in 4. The same holds true for the derivatives (%)"PiU’f;( which is checked
directly. Since

" ()oY (y)< oy, 1)",

where N = max{N’, N} we get by (3.4) the desired estimate: for every k; €N, there
exists kr €N such that

U2 ™G)<CIfIR(G), feS™%x%.G). O

Let
¢u,v(x) = (pu(xl )(pu(xz)

be the standard partition of unity on 4 x ¢ for G.
Corollary 5.2. Let feS' (% x 9,G). Let
Jup(y) = U(@uef ) (3, 2)-

Then, for every sufficiently large N, there exists a norm | - |1 in S'(%,g) such that for
every u,ve U

I ol Lagery <If1'd (1, 0) ™.

Proof. If

mum()’) = d(”ayl)_Nd(vaz)_MVv
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then, of course,

Dy f €S™ (9 x9G,G)

uniformly so, by Proposition 5.1,
U(D,,.f)eS2 ™ (4 x 4, G)
uniformly in (u,v)e U x U. By using Lemma 2.13 and Q(y,y) = 1, we get
1D} fue IS ks (v, ) = |1, 7) N d(p,0) "

< |flrd(u,o) Ny, o)™, Jul<k.

For Fyu(y) = fup(g(v)y) (see (2.6)) we have Hfu,vHA(éf) = ||Fu.,v||A(r4) and

D)1= A1 2 ™1+ ¥ = 51) ™

< ISl du, o) ™ (14 0% =)L el <k,

since, by (2.4),

g0) _ g0)
gi(g(v)y) ~gi(g(v)v)

(1+d(g(v)o, g(v)y) <1+ o7 — .

If N and k are large enough, our assertion follows by the Sobolev inequality. [
Theorem 5.3. Let my,m, be g-weights on 4. Then
G (%) x CF(9)>(a,b)—(a¥ *b¥)" €S (9)
extends uniquely to a double-continuous mapping
S™(9,8) x S™(9,8) > S"™ (9, g).

Proof. By (3.2), it is sufficient to apply Proposition 5.1 with G=g®g and
m=m m,. [

6. L2-boundedness

Our L*-boundedness result relies on the following Cotlar’s Lemma. For the proof
see, e.g., Hormander [2, vol. III].
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Lemma 6.1. Let Ay be bounded linear operators on a Hilbert space. If

o0
* 4 1(1/2 * (1172

Do AE AN+ 442 P <M,

k=1

then the series ;- Ay is strongly convergent to a bounded operator A whose norm

does not exceed M.

Theorem 6.2. Let acS'(%,g). The linear operator f — Af = f % a” defined initially
on the dense subspace C* (%) of L*(9) extends to a bounded mapping of L*(%). There

exists a norm | - |* in SY(%,g) such that

147 |2y <1l 1 Nl o)y fECE ().
Proof. Let

Af =f*k(p,0)", fel*(%).
Since ¢, € C (%), the operators A, are bounded. Moreover, by (3.2),
AYAS () = @®a),, kf, AAXf() = (a®a),, *f,

so that, by Corollary 5.2,

1A Al + [[A4uAX < | /1 d(u,0) 7,
where N can be taken as large, as we wish, and | - |" is a norm in S'(%, g) depending

only on N.
On the other hand,

a=Y ¢,
u

where the series is weakly convergent in S!(%,g) so that

Af =) _Af, [eCr(9).

Thus, the sequence of operators A4, satisfies the hypothesis of Cotlar’s Lemma, and
therefore the series ), A, is strongly convergent to the bounded extension of our

operator 4 whose norm is bounded by C0|a|1 (see Corollary 2.14). [

As a corollary we are now going to give a boundedness theorem for certain
“variable-coefficient”” pseudodifferential operators (cf. Stein [7]).
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Let k be a tempered distribution on ¥ x % whose partial Fourier transform
an8) = [ kxe O dy
g

is a smooth function on % x * satisfying the estimates
5 L
0" DPa(x, &)< Cup(1 +1¢]) 2,

where 0* stand for left-invariant derivatives on % with respect to a certain basis
of the Lie algebra. Then k is locally integrable on % x %\{0}, for every
xX€Y, y—k(x,y) is smooth on %\{0}, and for every meN

|k(xvy)|<cm|yrm7 y#O (63)

The kernel k defines a linear operator
Tf () = [ Ky 30 ) dy = [ e k()
which maps C* (%) into L] .(%).

Corollary 6.4. The mapping T} satisfies

/x|<1 | Tif (z20)| dx<C/(1+|x|)n+1 (6.5)

for feC® and ze%. Thus, it extends to a bounded operator from L*(%) to L*(%).

Proof. The argument that follows is an adaptation of that of Stein [7]. First let us
remark that once (6.5) has been proven, the boundedness of 7} follows by
integrating both sides with respect to z.

Let us assume for the moment that & is compactly supported with respect to the
x-variable. For 1€ %™, let

a; (&) = k(4,¢) = / a(x, &)e ™ dx.
Then

[D*a; ()< Ca(L+ )" (1 + &) 2,
which can be easily seen by integration by parts and using the compactness
of the support of a with respect to the x-variable. The compactness of the

support allows to use the abelian derivatives rather than the left-invariant ones.
Thus, by Theorem 6.2, the norms of the operators 7,f = f % a; are bounded by
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C(1+ 1)~ and so
Tif (x) = / T,f (x)e' < d).

is also bounded.
We return to the general case. Let 1 : 9 — [0, 1] be a smooth cut-off function equal
to 1 for |x|<3 and vanishing for |x|>2. Let

f=uf+ 0 =nf=f+LeC(9).

Then, by the first part of the proof,

/ i () dx = / I Tfi () dx
[x|<1

[x|<1

|f(x) dx<3m1C /'f( x)[” dx (6.6)

<C1|\f1||2=C1/ dx
? (1+ x|

|x|<2
and, by (6.3) and (3.1),

L0 dy
(1+1y) 00

Lf(»)| dy |/ dy
<C3/(1+| |)”“<C4</< +|y|)”“>

T (x)] < cz/

By integration,

()12 £ ) dy
Axlngkfz(xﬂ dx<C5/( L4 |y Dn+l (6.7)

so that, by putting (6.6) and (6.7) together, we get (6.5) for z =0
Finally, by applying the particular case of (6.5) to k.(x,y) = k(zx,y) which
satisfies the estimates of k£ uniformly in z, we get

/ ITif (z)[ dx = / T £ dx
[x|<1

[x|<1

0 d
s C/u PN

which is exactly (6.5). O
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