Article No. eujc.1999.0335 Available online at http://www.idealibrary.com on IDI *Europ. J. Combinatorics* (1999) **20**, 789–796

Strongly Closed Subgraphs in a Regular Thick Near Polygon

AKIRA HIRAKI

In this paper we show that a regular thick near polygon has a tower of regular thick near subpolygons as strongly closed subgraphs if the diameter *d* is greater than the numerical girth *g*.

c 1999 Academic Press

1. INTRODUCTION

Brouwer and Wilbrink [\[3](#page-7-0)] studied a regular thick near polygon of the numerical girth $g = 4$ and showed the existence of a tower of regular thick near sub-polygons.

On the other hand we gave a constructing method of strongly closed subgraphs in a distanceregular graph of arbitrary numerical girth [\[6](#page-7-1)].

The purpose of this paper is to apply this constructing method to regular thick near polygons of arbitrary numerical girth and to show the existence of a tower of regular thick near subpolygons as strongly closed subgraphs if the diameter *d* is larger than the numerical girth *g*.

First we recall our notation and terminology.

All graphs in this paper are undirected finite simple graphs. Let Γ be a connected graph with usual distance ∂_Γ. We identify Γ with the set of vertices. The *diameter* of Γ, denoted by d_{Γ} , is the maximal distance of two vertices in Γ . Let $u \in \Gamma$. We denote by $\Gamma_i(u)$ the set of vertices which are at distance *j* from *u*.

Let *x*, $y \in \Gamma$ with $\partial_{\Gamma}(x, y) = i$. Define

$$
C(x, y) := \Gamma_{i-1}(x) \cap \Gamma_1(y),
$$

\n
$$
A(x, y) := \Gamma_i(x) \cap \Gamma_1(y)
$$

\nand
$$
B(x, y) := \Gamma_{i+1}(x) \cap \Gamma_1(y).
$$

We say c_i *exists* if $c_i = |C(x, y)|$ does not depend on the choice of x and y under the condition $\partial_{\Gamma}(x, y) = i$. Similarly, we say a_i *exists*, or b_i *exists*.

A connected graph Γ with the diameter d_{Γ} is said to be *distance-regular* if c_i , a_i and b_{i-1} exist for all $1 \leq i \leq d_{\Gamma}$.

The reader is referred to [[1](#page-7-2)[, 2\]](#page-7-3) for more detailed descriptions of distance-regular graphs. Let Γ be a connected graph of the diameter $d_{\Gamma} = d \geq 2$.

For any $x, y \in \Gamma$ and $\emptyset \neq \Delta \subseteq \Gamma$, we define

$$
\Delta^{\perp} := \{ z \in \Gamma \mid \partial_{\Gamma}(x, z) \le 1 \text{ for any } x \in \Delta \}
$$

and

$$
S(x, y) := \{y\} \cup C(x, y) \cup A(x, y) = \{y\}^{\perp} - B(x, y).
$$

We identify Δ with the induced subgraph on it. A subgraph Δ is called a *clique* (resp. *coclique*) if any two vertices on it are adjacent (resp. non-adjacent).

For $v \in \Delta$, Δ is said to be *strongly closed with respect to* v if $S(v, v') \subseteq \Delta$ for any $v' \in \Delta$. Δ is called *strongly closed* if it is strongly closed with respect to v for all $v \in \Delta$.

Singular lines of Γ are the sets of the form $\{x, y\}^{\perp \perp}$ where (x, y) is an edge in Γ . In particular, a singular line of Γ is always a clique.

0195–6698/99/080789 + 08 \$30.00/0 c 1999 Academic Press

Let $(NP)_j$ be the following condition:

 $(NP)_j$: If $x \in \Gamma$ and *L* is a singular line with $\partial_{\Gamma}(x, L) := \min{\{\partial_{\Gamma}(x, z) \mid z \in L\}} = j$, then there is a unique vertex $y \in L$ such that $\partial_{\Gamma}(x, y) = j$.

We write $(NP)_{\leq m}$ holds if $(NP)_i$ holds for any $1 \leq i \leq m$.

Let *m* be an integer with $1 \le m \le d$.

 Γ is said to be *of order* (*s*, *t*; *t*₂, . . . , *t*_{*m*}) if the following conditions hold.

- (1) All singular lines have size $s + 1$ and all vertices lie on $t + 1$ singular lines.
- (2) $(NP)_{\leq m}$ holds.
- (3) For any $1 \le i \le m$ and $x, y \in \Gamma$ with $\partial_{\Gamma}(x, y) = i$, there are exactly $t_i + 1$ singular lines containing *y* at distance $i - 1$ from *x*, where $t_1 := 0$.

A graph Γ of order $(s, t; t_2, \ldots, t_d)$ with the diameter $d \geq 2$ is called (the collinearity graph of) *a regular near polygon.* A regular near polygon is called a *regular near* $2d$ -gon if $t_d = t$, a *regular near* (2*d* + 1)*-gon* otherwise. A regular near polygon is also called a *regular thick near polygon* if $s > 1$.

It is known that regular near polygons are distance-regular (see Section [3](#page-3-0)).

More detailed descriptions of a regular near polygon will be found in [[1,](#page-7-2) Section III.3] and [[2,](#page-7-3) Section 6.4].

The main results of this paper are the following.

THEOREM 1.1. Let r and m be positive integers with $r + 1 \le m$. Let Γ be a graph of order $(s, t; t_2, \ldots, t_{m+r})$ with $0 = t_1 = \cdots = t_r < t_{r+1}$. Suppose $s > 1$. Then $t_{r+1} < \cdots < t_{m-1} <$ t_m *. Moreover, for any integer q with r* + 1 $\leq q \leq m$ *and any pair of vertices* (u, v) *at distance q*, there exists a regular near 2q-gon of order $(s, t_q; t_2, \ldots, t_q)$ containing (u, v) as a strongly *closed subgraph in* Γ *.*

As a direct consequence of our theorem we have the following.

COROLLARY 1.2. Let Γ be a regular thick near polygon of order $(s, t; t_2, \ldots, t_d)$ with 0 = t_1 = · · · = t_r < t_{r+1} . If 2 $r + 1 \le d$, then t_{r+1} < · · · < t_{d-r} and for any integer q with *r* + 1 ≤ *q* ≤ *d* − *r* there exists a regular near 2*q*-gon of order $(s, t_q; t_2, ..., t_q)$ as a strongly *closed subgraph in* Γ .

Our results are generalizations of the result of Brouwer and Wilbrink [\[3](#page-7-0)] and an application of the result of [[6\]](#page-7-1).

In Section [2](#page-1-0), we recall the method and results introduced in the previous paper [\[6](#page-7-1)]. In Section [3,](#page-3-0) we collect several basic properties and show that regular near polygons are distanceregular. We prove our main theorem in Section [4.](#page-5-0)

2. STRONGLY CLOSED SUBGRAPHS

In this section, we recall a constructing method of strongly closed subgraphs and the results obtained in the previous paper [[6\]](#page-7-1). For the proofs and more detailed descriptions the reader is referred to [\[6](#page-7-1)].

Let Γ be a distance-regular graph of the diameter $d_{\Gamma} = d \geq 2$. Fix an integer *q* with $1 \leq q < d$.

A quadruple (w, *x*, *y*,*z*) of vertices is called a *root of size q* if

$$
\partial_{\Gamma}(w, x) = \partial_{\Gamma}(y, z) = q, \qquad \partial_{\Gamma}(w, y) \le 1, \qquad \partial_{\Gamma}(x, z) \le 1, \n\partial_{\Gamma}(w, z) \le q \qquad \text{and} \qquad \partial_{\Gamma}(x, y) \le q.
$$

A triple (x, y, z) of vertices with $\partial_{\Gamma}(x, z) = \partial_{\Gamma}(y, z) = q$ is called a *conron of size q* if there exist three sequences of vertices

 $(x_0, x_1, \ldots, x_m = x),$ $(y_0, y_1, \ldots, y_m = y)$ and $(z_0, z_1, \ldots, z_m = z)$

such that $\partial_{\Gamma}(x_0, y_0) \leq 1$, $(x_{i-1}, z_{i-1}, x_i, z_i)$ and $(y_{i-1}, z_{i-1}, y_i, z_i)$ are roots of size q for all $1 \leq i \leq m$.

The conditions $(SS)_{q}$, $(CR)_{q}$ and $(SC)_{q}$ are defined as follow:

- $(SS)_{q}$: $S(x, z) = S(y, z)$ for any triple of vertices (x, y, z) with $\partial_{\Gamma}(x, z) = \partial_{\Gamma}(y, z) = q$ and $\partial_{\Gamma}(x, y) \leq 1$.
- $(CR)_q$: $S(x, z) = S(y, z)$ for any conron (x, y, z) of size q.
- $(SC)_a$: For any given pair of vertices at distance *q*, there exists a strongly closed subgraph of the diameter *q* containing them.

We also write $(SS)_{< t}$ holds if $(SS)_i$ holds for any $1 \leq i < t$.

DEFINITION 2.1. Let Γ be a distance-regular graph and *q* be a fixed integer with *b*_{*q*−1} > *b*^{*q*} . Assume $(CR)_q$ holds. Let *u*, $v \in \Gamma$ with $\partial_{\Gamma}(u, v) = q$. For any *x*, *y* ∈ $\Gamma_q(u)$ define the relation $x \approx y$ iff (x, y, u) is a conron of size q. Then this is an equivalence relation on $\Gamma_q(u)$. (See [\[6](#page-7-1), Lemma 2.2(2)].) Let $\Psi(u, v)$ be the equivalence class containing v. Define

$$
\Delta(u, v) := \{x \in \Gamma \mid \partial_{\Gamma}(u, x) + \partial_{\Gamma}(x, z) = q \text{ for some } z \in \Psi(u, v)\}
$$

the subgraph induced on all vertices lying on shortest paths between *u* and vertices in $\Psi(u, v)$.

PROPOSITION 2.2 [6, Theorem 1.1]. Let Γ be a distance-regular graph and q be a fixed *integer with bq*−¹ > *b^q* . *Suppose the following conditions hold.*

- (i) $(SS)_{\leq q}$ *holds*,
- (ii) $(CR)_q$ *holds and* $\Delta(w, x) = \Delta(y, z)$ *if* (w, x, y, z) *is a root of size q.*

Then for any pair of vertices (u, v) *in* Γ *at distance q,* $\Delta(u, v)$ *is a strongly closed subgraph of the diameter q which is* $(c_q + a_q)$ *-regular. In particular,* $(SC)_q$ *holds.*

A *circuit* of length *m* is a sequence of distinct vertices $(x_0, x_1, \dots, x_{m-1})$ such that $(x_{i-1},$ x_i) is an edge of Γ for all $1 \le i \le m$, where $x_m = x_0$. A circuit of length *m* is called *reduced* if $m \geq 4$ and any proper subset of it does not form a circuit. A shortest reduced circuit is called a *minimal circuit*. The *numerical girth* of Γ , denoted by g , is the length of a minimal circuit.

PROPOSITION 2.3 [\[6](#page-7-1), Proposition 3.1(2)]. Let q be a positive integer. Let Γ be a distance*regular graph with the numerical girth* $g = 2r + 2$ *, the diameter* $d \geq q + r$ *. If the following conditions* (a) *and* (b) *hold, then* $(CR)_q$ *holds.*

- (a) Let $u, v, p, p' \in \Gamma$ with $\partial_{\Gamma}(u, p) = \partial_{\Gamma}(v, p) = q$, $\partial_{\Gamma}(u, v) \leq 1$ and $\partial_{\Gamma}(p, p') = r$. *Then* $\partial_{\Gamma}(u, p') = q + r$ *implies* $\partial_{\Gamma}(v, p') = q + r$.
- (b) Let (w, x, y, z) be a root of size q with $x \neq z$ and $(x = x_0, x_1, \ldots, x_r, z_r, \ldots, z_0 = z)$ *be a minimal circuit. Then* $\partial_{\Gamma}(w, x_r) = q + r$ *implies* $\partial_{\Gamma}(y, z_r) = q + r$.

LEMMA 2.4 [[6,](#page-7-1) Lemmas 2.4 and 2.6]. *Let* Γ *be a distance-regular graph with* $b_{q-1} > b_q$ *and* (*C R*)*^q holds. Then we have the following.*

- (1) *If* (w, x, y, z) *is a root of size q, then* $\Psi(y, z) \subseteq \Delta(w, x)$ *.*
- (2) If $(SS)_{ holds, then for any pair of vertices (u, v) at distance q, $\Delta(u, v)$ is strongly$ *closed with respect to u.*

LEMMA 2.5 [[6](#page-7-1), Lemma 4.4]. Let Γ be a distance-regular graph of the diameter d_{Γ} , and *h* be an integer with $h < d_{\Gamma}$. Assume $c_{h+1} > 1$, $b_{h-1} > b_h$ and $(SC)_h$ holds. If there exist *a vertex u and a path* (x_0, \ldots, x_h) *of length h such that* $\partial_{\Gamma}(x_0, x_h) = \partial_{\Gamma}(u, x_i) = h$ for all $0 \le i \le h$, then $a_h \le a_{h+1}$.

REMARK. For the results in this section Γ need not be a distance-regular graph. Suppose Γ is a graph such that c_i , a_i and b_i exist for all $0 \le i \le q$. Then the results are proved by the same manner as in [\[6](#page-7-1)].

Let Δ be a strongly closed subgraph of the diameter *q* in Γ . Then c_i and a_i of Δ exist for all $1 \leq i \leq q$ which are the same as those of Γ . Moreover, if Δ is a regular graph of valency k_{Δ} , then b_i of Δ exists with $b_i = k_{\Delta} - c_i - a_i$ for all $0 \le i \le q - 1$, and hence it is distance-regular.

3. SOME BASIC PROPERTIES

In this section we collect some basic properties and prove the following result.

PROPOSITION 3.1. Let Γ *be a graph of order* $(s, t; t_2, \ldots, t_m)$ *. Then* $(SS)_{\leq m}$ *holds. Moreover, c*_{*i*}, a_{i-1} *and* b_{i-1} *exist for all* $1 \leq i \leq m$ *which satisfy*

 $c_i = t_i + 1$, $a_{i-1} = (t_{i-1} + 1)(s - 1)$ and $b_{i-1} = s(t - t_{i-1})$,

where $t_0 = -1$ *and* $t_1 = 0$ *.*

In particular, regular near polygons are distance-regular.

Throughout this section Γ denotes a graph of the diameter $d_{\Gamma} = d \geq 2$.

LEMMA 3.2. *Suppose* $(NP)_h$ *holds. Then* $(SS)_h$ *holds.*

PROOF. Let (x, y, z) be a triple of vertices with $\partial_{\Gamma}(x, z) = \partial_{\Gamma}(y, z) = h$ and $\partial_{\Gamma}(x, y) \leq 1$. Suppose there exists $w \in S(y, z) - S(x, z)$ to derive a contradiction. Then we have $\partial_{\Gamma}(x, w) =$ $h + 1$, $\partial_{\Gamma}(x, y) = 1$ and $\partial_{\Gamma}(y, w) = h$. As $(NP)_h$ holds, there exists $v \in \{z, w\}^{\perp}$ $\Gamma_{h-1}(y)$. Then $\partial_{\Gamma}(x, v) = h$ from the triangle inequality on (x, y, w, v) . This shows $\{v, z\} \subseteq$ ${x \in S(y, z) \subseteq S(x, z)}$. By symmetry we *z*_{{*z*}, *w*}^{⊥⊥} ∩ Γ_{*h*}(*x*) contradicting our assumption. Hence *S*(*y*, *z*) ⊆ *S*(*x*, *z*). By symmetry we have $S(x, z) = S(y, z)$.

LEMMA 3.3. *If* $(SS)_{\leq h}$ *holds, then the following hold.*

- *(1)* $C(u, x)$ *is a coclique for any* $u, x \in \Gamma$ *with* $\partial_{\Gamma}(u, x) = i \leq h$.
- *(2)* Let $1 \le m < h$ and (u, v, p, p') be a quadruple of vertices with $\partial_{\Gamma}(u, p) = \partial_{\Gamma}(v, p)$ $m, \partial_{\Gamma}(u, v) \leq 1$ *and* $\partial_{\Gamma}(p, p') = h - m$. Then $\partial_{\Gamma}(u, p') = h$ *implies* $\partial_{\Gamma}(v, p') = h$.
- PROOF. (1) We prove the assertion by induction on *i*. The case $i = 1$ is clear. Let 2 < $i \leq h$. Suppose there exists an edge (v, z) in $C(u, x)$. Let $v \in C(v, u) \subseteq C(x, u)$. From our inductive assumption $C(v, x)$ is a coclique and thus $\partial_{\Gamma}(v, z) = i - 1$. Then $\partial_{\Gamma}(u, z) = \partial_{\Gamma}(v, z) = i - 1$ and $x \in S(v, z) - S(u, z)$ contradicting our assumption.

(2) Let ($p = p_m$, p_{m+1} , ..., $p_h = p'$) be a shortest path connecting them. Assume $\partial_{\Gamma}(u, \mathbf{r})$ p' = *h*. Then we have $\partial_{\Gamma}(u, p_i) = i$ for all $m \le i \le h$. Since $(SS)_m$ holds, we have $S(u, p_m) = S(v, p_m)$. This implies $p_{m+1} \in B(u, p_m) = B(v, p_m)$ and $\partial_{\Gamma}(u, p_{m+1}) =$ $\partial_{\Gamma}(v, p_{m+1}) = m + 1$. Inductively, we have $p_i \in B(u, p_{i-1}) = B(v, p_{i-1})$ and $\partial_{\Gamma}(v, p_i) = i$ for all $m + 1 \leq i \leq h$. The desired result is proved.

Next we show the following well-known result.

LEMMA 3.4. *Let* $2 \le h \le d$. *Suppose* a_1 *and* c_i *exist* for all $1 \le i \le h$. *Then the following conditions are equivalent:*

- (i) $(NP)_{\leq h}$ *holds.*
- *(ii)* For any $1 \le i \le h$ and any pair of vertices *u* and *x* at distance *i*, we have $C(u, x)$ *is a coclique and*

$$
\bigcup_{z \in C(u,x)} A(z,x) \subseteq A(u,x). \tag{*}
$$

Moreover if $i \neq h$ *, then the equality holds.*

(iii) There exists no induced subgraph $K_{2,1,1}$ and a_i exists with $a_i = c_i a_1$ for all $1 \leq i \leq h$.

PROOF. (i) \Rightarrow (ii): The first assertion follows from Lemmas [3.2](#page-3-1) and [3.3](#page-3-2). Assume *i* < *h*. Take any $y \in A(u, x)$. Then there exists $z \in \{x, y\}^{\perp \perp} \cap \Gamma_{i-1}(u)$ as $(NP)_i$ holds. Hence *y* is in the left-hand side of (∗).

(ii) \Rightarrow (iii): Γ has no induced subgraph $K_{2,1,1}$ since $C(u, u')$ is a coclique for any *u* and *u'* at distance 2. This implies that the left-hand side of (∗) is a disjoint union and

 \mathbf{I}

 \mathbf{r}

$$
|A(u, x)| = \left| \bigcup_{z \in C(u, x)} A(z, x) \right| = c_i a_1
$$

for any $u, x \in \Gamma$ with $\partial_{\Gamma}(u, x) = i < h$. Thus the desired result follows.

(iii) \Rightarrow (ii): We prove the assertion by induction on *i*. The case $i = 1$ is clear. If there exists an edge (y, z) in $C(u, x)$, then $z \in A(u, y)$ and there exists $w \in C(u, y)$ such that $z \in A(u, y)$ $A(w, y)$ from our inductive hypothesis. Then (w, y, z, x) forms $K_{2,1,1}$ which contradicts our assumption. Hence $C(u, x)$ is a coclique and the left-hand side of (*) is included in $A(u, x)$. Comparing the sizes of both sides we have the assertion.

(ii) \Rightarrow (i): Let *u* ∈ Γ and *L* be a singular line of Γ such that $\partial_{\Gamma}(u, L) = i \langle h \rangle$. If there exist distinct vertices *x* and *x'* in *L* such that $\partial_{\Gamma}(u, x) = \partial_{\Gamma}(u, x') = i$, then

$$
x' \in A(u, x) = \bigcup_{z \in C(u, x)} A(z, x).
$$

Thus there exists $z \in C(u, x)$ such that $x' \in A(z, x)$. Then we have $z \in \{x, x'\}^{\perp \perp} = L$ which contradicts $\partial_{\Gamma}(u, L) = i$.

PROOF OF PROPOSITION 3.1. The first assertion is a direct consequence of Lemma [3.2.](#page-3-1)

Since all singular lines have size $s + 1$ and all vertices lie on $t + 1$ singular lines, c_1 , a_1 , *a*₀ and *b*₀ exist such that $c_1 = 1$, $a_1 = s - 1$, $a_0 = 0$ and $b_0 = s(t + 1)$. For any integer *i* with $1 \le i \le m$ and any vertices $x, y \in \Gamma$ at distance *i*, there are exactly $t_i + 1$ singular lines containing *y* at distance $i - 1$ from *x*, and each singular line has unique vertex at distance $i - 1$ from *x*. It follows that c_i exists with $c_i = t_i + 1$. Then Lemma [3.4](#page-4-0) shows that a_i and b_i exist such that $a_i = c_i a_1 = (t_i + 1)(s - 1)$ and $b_i = b_0 - c_i - a_i = s(t - t_i)$ for all $1 \le i \le m - 1$.

If $m = d$, then b_m exists with $b_m = 0$ and hence a_m exists with $a_m = b_0 - c_m$. Hence Γ is $distance$ -regular. The proposition is proved. \Box

From a basic property of graphs we have the following corollary.

COROLLARY 3.5. *For a graph of order* $(s, t; t_2, \ldots, t_m)$ *, we have* $0 \le t_2 \le \cdots \le t_m$ *.*

The rest of this section we prove the following result.

LEMMA 3.6. Let q be a positive integer and Γ be a graph of the diameter $d_{\Gamma} > q$ such that $B(x, y) \neq \emptyset$ for any $x, y \in \Gamma$ *with* $\partial_{\Gamma}(x, y) = i \leq q$. Suppose $(SC)_q$ holds. Then $(SS)_{\leq q}$ *holds.*

PROOF. Let (x, y, z) be a triple of vertices with $\partial_{\Gamma}(x, y) \le 1$ and $\partial_{\Gamma}(x, z) = \partial_{\Gamma}(y, z)$ *h* ≤ *q*. Suppose there exists $w \text{ ∈ } S(y, z) - S(x, z)$ to derive a contradiction. Then $\partial_{\Gamma}(x, w) =$ *h* + 1, $\partial_{\Gamma}(x, y) = 1$ and $\partial_{\Gamma}(y, w) = h$. Let $w_h := w$ and take $w_i \in B(x, w_{i-1}) \subseteq B(y, w_{i-1})$ for $h + 1 \le i \le q$. Then $\partial_{\Gamma}(x, w_q) = q + 1$ and $\partial_{\Gamma}(y, w_q) = q$. Since $(SC)_q$ holds, there exists a strongly closed subgraph Δ of the diameter *q* containing (y, w_q) . Then $w_h \in \Delta$ as it is on a shortest path between *y* and w_q . Thus $z \in S(y, w_h) \subseteq \Delta$ and $x \in S(z, y) \subseteq \Delta$. We have $q + 1 = \partial_{\Gamma}(x, w_q) \leq d_{\Delta} = q$, which is a contradiction. The lemma is proved.

REMARK. Γ has no induced subgraph $K_{2,1,1}$ iff $(SS)_1$ holds. More information about the relations among $(SS)_h$, $(CR)_i$ and $(SC)_j$, the reader is referred to [\[6](#page-7-1),7].

4. PROOF OF THE THEOREM

In this section we prove our main theorem. First we prove the following result.

PROPOSITION 4.1. Let Γ be a graph such that c_i , a_i and b_i exist for all $i \leq q$ with $a_1 > 0$ *and* b_{q-1} > b_q . Suppose $(CR)_q$ *and* $(SS)_{\leq q}$ *hold. Then* $\Delta(w, x) = \Delta(y, z)$ *for any root* (w, x, y, z) *of size q. In particular,* $(SC)_q$ *holds.*

PROOF. The second assertion follows from Proposition 2.2 and the first assertion.

Let (w, x, y, z) be a root of size q. Suppose $\Delta(y, z) \nsubseteq \Delta(w, x)$ to derive a contradiction. We take a vertex $p \in \Delta(y, z) - \Delta(w, x)$ that has the maximal distance from *y*. Let $m :=$ $\partial_{\Gamma}(y, p) = \max{\{\partial_{\Gamma}(y, v) \mid v \in \Delta(y, z) - \Delta(w, x)\}}$. There exists $z' \in \Psi(y, z)$ such that *p* is on a shortest path between *y* and *z'*. We have $p \notin \Psi(y, z)$ from Lemma 2.4(1) and thus $z' \neq p$. Take $p' \in C(z', p) \subseteq B(y, p)$. Since p' is on a shortest path between *y* and *z* $\left\langle x, y \right\rangle$ and $\left\langle y, z \right\rangle$ and hence $p' \in \Delta(w, x)$ from the maximality of *m*. We have $\partial_{\Gamma}(w, p) = \partial_{\Gamma}(w, p') + 1$, otherwise $p \in S(w, p') \subseteq \Delta(w, x)$ from Lemma 2.4(2). The triangle inequality on (w, y, p, p') implies $\partial_{\Gamma}(w, p') = \partial_{\Gamma}(y, p) = m$, $\partial_{\Gamma}(w, y) = 1$ and $\partial_{\Gamma}(w, p) = \partial_{\Gamma}(y, p') = m + 1$. We can take $v \in A(p, p')$ as $a_1 > 0$. Then $\partial_{\Gamma}(w, v) =$ $\partial_{\Gamma}(y, v) = m + 1$ from Lemma [3.3\(](#page-3-2)1). Lemma 2.4(2) implies $v \in A(y, p') \subseteq \Delta(y, z)$ and thus $v \in \Delta(w, x)$ from the maximality of *m*. Hence we have $p \in A(w, v) \subseteq \Delta(w, x)$ from Lemma 2.4(2). This is a contradiction. Therefore $\Delta(y, z) \subseteq \Delta(w, x)$.

By symmetry, we have $\Delta(w, x) = \Delta(y, z)$. The proposition is proved.

Next we prove the following result.

PROPOSITION 4.2. Let r and q be positive integers with $r + 1 \leq q$. Let Γ be a graph with *the numerical girth g* = $2r + 2$ *, the diameter* $d_{\Gamma} \geq q + r$ *such that* c_i *,* a_i *and* b_i *exist for all i* ≤ *q* with $a_1 > 0$ *and* $b_{q-1} > b_q$. Suppose $(NP)_q$ *and* $(SS)_{\leq q+r}$ *hold. Then* $(CR)_q$ *and* (SC) _q hold.

To show this we prove the conditions (a) and (b) of Proposition 2.3 hold.

LEMMA 4.3. Let Γ be a graph as in Proposition [4.2](#page-5-1) satisfying $(NP)_q$ and $(SS)_{\leq q+r}$. *Let* (x, x', z, z') *be a quadruple of vertices with* $\partial_{\Gamma}(x, z) = \partial_{\Gamma}(x', z') = 1$, $\partial_{\Gamma}(x, x') = 1$ $\partial_{\Gamma}(z, z') = r$ and $\partial_{\Gamma}(x, z') = \partial_{\Gamma}(z, x') = r + 1$. Then the following hold.

- *(1) Let* $p \in \Gamma_q(x) \cap \Gamma_q(z)$. Then $\partial_{\Gamma}(p, x') = q + r$ implies $\partial_{\Gamma}(p, z') = q + r$.
- (2) Let $u \in \Gamma_q(x) \cap \Gamma_{q-1}(z)$ and $v \in \Gamma_{q-1}(x) \cap \Gamma_q(z)$ with $\partial_{\Gamma}(u, v) = 1$. Then $\partial_{\Gamma}(u, x') =$ $q + r$ *implies* $\partial_{\Gamma}(v, z') = q + r$.
- (3) Let $w, y \in \Gamma$ such that (w, x, y, z) is a root of size q. Then $\partial_{\Gamma}(w, x') = q + r$ implies $\partial_{\Gamma}(y, z') = q + r.$

PROOF. Note that $C(\alpha, \beta)$ is a coclique if $\partial_{\Gamma}(\alpha, \beta) \leq q + r$ from Lemma [3.3](#page-3-2)(1).

- (1) Since $(NP)_q$ holds, there exists $p' \in A(x, z) \cap \Gamma_{q-1}(p)$. Then we have $\partial_{\Gamma}(x', p') =$ $\partial_{\Gamma}(z', p') = r + 1$. Applying Lemma [3.3](#page-3-2)(2) to (x', z', p', p) we have the assertion.
- (2) We have $\partial_{\Gamma}(v, x') = q + r 1$ from the triangle inequality on (v, u, x, x') . Let $p \in$ *A*(*u*, *v*). Then we have $\partial_{\Gamma}(x, p) = \partial_{\Gamma}(z, p) = q$ and $\partial_{\Gamma}(p, x') = q + r$. Hence $\partial_{\Gamma}(p, z') = q + r$ from (1). Thus $\partial_{\Gamma}(u, z') = q + r - 1$ from the triangle inequality on (u, p, z, z') . Therefore $\partial_{\Gamma}(v, z') = q + r$ since $C(z', p)$ is a coclique.
- (3) Since (w, x, y, z) is a root of size q, we have $\{\partial_{\Gamma}(w, z), \partial_{\Gamma}(x, y)\} \subseteq \{q 1, q\}$. If $\partial_{\Gamma}(w, z) = \partial_{\Gamma}(x, y) = q - 1$, then the assertion follows from (2). If $\partial_{\Gamma}(w, z) = q$, then $\partial_{\Gamma}(w, z') = q + r$ from (1). Applying Lemma [3.3\(](#page-3-2)2) to (w, y, z, z') we have $\partial_{\Gamma}(y, z') = q + r$. If $\partial_{\Gamma}(x, y) = q$, then $\partial_{\Gamma}(y, x') = q + r$ by applying Lemma [3.3\(](#page-3-2)2) to (w, y, x, x') . Therefore $\partial_{\Gamma}(y, z') = q + r$ from (1). In each case we have $\partial_{\Gamma}(y, z') = q + r$. The lemma is proved.

PROOF OF PROPOSITION 4.2. Conditions (a) and (b) of Proposition 2.3 hold from Lem-mas [3.3\(](#page-3-2)2) and [4.3](#page-5-2)(3). Hence $(CR)_q$ holds. Therefore $(SC)_q$ holds from Proposition [4.1.](#page-5-3) \Box

LEMMA 4.4. Let Γ *be a graph of order* (*s*, *t*; *t*₂, . . . , *t*_{*h*}) *with s* > 1. *If t*_{*h*-1} < *t*_{*h*}, *then there exist a vertex u and a path* (x_0, \ldots, x_h) *of length h in* Γ *such that* $\partial_{\Gamma}(x_0, x_h) = \partial_{\Gamma}(u, x_i) = h$ *for all* $0 < i < h$ *.*

PROOF. Fix a vertex *u* in Γ . First we claim that $A(u, w) \cap B(v, w) \neq \emptyset$ for any $v, w \in \mathbb{R}$ $\Gamma_h(u)$ with $\partial_{\Gamma}(v, w) = i < h$. Suppose $A(u, w) \cap B(v, w) = \emptyset$. Then

$$
A(u, w) \subseteq C(v, w) \cup A(v, w).
$$

The right-hand side is a disjoint union of $(t_i + 1)$ cliques of size *s* and the left-hand side contains a disjoint union of $(t_h + 1)$ cliques of size $s - 1$ from Lemma [3.4.](#page-4-0) This contradicts $t_i \leq t_{h-1} < t_h$. Hence our claim is proved.

Take $x_0 \in \Gamma_h(u)$. Inductively we can take $x_i \in A(u, x_{i-1}) \cap B(x_0, x_{i-1})$ for all $1 \le i \le h$ from our claim. The lemma is proved. \Box

PROOF OF THEOREM 1.1. Proposition [3.1](#page-3-3) shows that c_i , a_{i-1} and b_{i-1} exist for all $i \leq$ $m + r$ such that

 $c_i = t_i + 1$, $a_{i-1} = (t_{i-1} + 1)(s - 1)$ and $b_{i-1} = s(t - t_{i-1})$.

In particular, $(SS)_{< m+r}$ holds and Γ has the numerical girth $g = 2r + 2$.

We prove $t_{h-1} < t_h$ and $(SC)_h$ holds for all $r + 1 \le h \le m$ by induction on h .

From our assumption we have $t_r < t_{r+1}$ and hence $b_r > b_{r+1}$. Hence $(SC)_{r+1}$ holds from Proposition [4.2.](#page-5-1)

Let $r+1 \leq h < m$. Suppose $t_{h-1} < t_h$ and $(SC)_h$ holds. Then $a_h < a_{h+1}$ from Lemmas [4.4](#page-6-0) and 2.5. Thus $t_h < t_{h+1}$ and $(SC)_{h+1}$ holds from Proposition [4.2.](#page-5-1) Note that c_i and a_i of a strongly closed subgraph are the same as those of Γ . The theorem is proved. \Box

REMARK. A regular near 2*d*-gon of order (*s*, *t*;*t*2, . . . , *t^d*) is called a *generalized* 2*d-gon of order* (s, t) if $t_1 = \cdots = t_{d-1} = 0$ and $t_d = t$.

Feit and Higman showed that a generalized $2d$ -gon has $d \in \{2, 3, 4, 6\}$, unless it is an ordinary polygon (see [[4\]](#page-7-5) or [[2,](#page-7-3) Theorem 6.5.1]).

Let *r* and *m* be positive integers with $r+1 \le m$. Let Γ be a graph of order $(s, t; t_2, \ldots, t_{m+r})$ with $s > 1$ and $0 = t_1 = \cdots = t_r < t_{r+1}$. Theorem [1.1](#page-1-1) shows that a graph Γ has a generalized $2(r + 1)$ -gon of order (s, t_{r+1}) as a strongly closed subgraph. Hence we have $r \in \{1, 2, 3, 5\}$ from the result of Feit and Higman. This result was first proved in [[5\]](#page-7-6).

Here we conjecture the following.

CONJECTURE. Let Γ be a regular thick near polygon of the diameter *d* and the numerical girth $g \geq 6$. Then $d < g$.

Suppose Γ is a regular thick near polygon of order $(s, t; t_2, \ldots, t_d)$ with the numerical girth $g = 2r + 2 \ge 6$. Suppose $2r + 2 \le d$. Then Corollary [1.2](#page-1-2) shows that $0 = t_1 = \cdots = t_r$ $t_{r+1} < \cdots < t_{d-r}$ and there exists a tower of regular near sub-polygons

$$
\Delta^{r+1} \subset \Delta^{r+2} \subset \cdots \subset \Delta^{d-r}
$$

where Δ^q is a regular near 2*q*-gon of order $(s, t_q; t_2, \ldots, t_q)$. In particular, $r \in \{2, 3, 5\}$.

To prove our conjecture it is enough to show that there does not exist a regular thick near 2(*r* + 2)-gon of order (*s*, *t*; *t*₂, . . . , *t*_{*r*+2}) with $r \in \{2, 3, 5\}$ and $0 = t_1 = \cdots = t_r < t_{r+1}$ t_{r+2} which satisfying the condition $(SC)_{r+1}$.

REFERENCES

- 1. E. Bannai and T. Ito, *Algebraic Combinatorics I*, Benjamin-Cummings, California, 1984.
- 2. A. E. Brouwer, A. M. Cohen and A. Neumaier, *Distance-regular Graphs*, Springer Verlag, Berlin, 1989.
- 3. A. E. Brouwer and H. A. Wilbrink, The structure of near polygons with quads, *Geom. Ded.*, **14** (1983), 145–176.
- 4. W. Feit and G. Higman, The non-existence of certain generalized polygons, *J. Algebra*, **1** (1964), 114–131.
- 5. A. Hiraki, Distance-regular subgraphs in a distance-regular graph, IV, *Europ. J. Combinatorics*, **18** (1997), 635–645.
- 6. A. Hiraki, Distance-regular subgraphs in a distance-regular graph, VI, *Europ. J. Combinatorics*, **19** (1998), 953–965.
- 7. A. Hiraki, A distance-regular graph with strongly closed subgraphs, preprint.

Received 20 October 1998 and accepted in revised form 20 July 1999

AKIRA HIRAKI *Division of Mathematical Sciences, Osaka Kyoiku University, Kashiwara, Osaka, 582-8582, Japan E-mail: hiraki@cc.osaka-kyoiku.ac.jp*