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This paper presents an exact closed-form solution for the Eshelby problem of a polygonal inclusion with
graded eigenstrains in an anisotropic piezoelectric half plane with traction-free on its surface. Using the
line-source Green’s function, the line integral is carried out analytically for the linear eigenstrain case,
with the final expression involving only elementary functions. The solutions are applied to the semicon-
ductor quantum wire (QWR) of square, triangular, and rectangular shapes, with results clearly illustrating
various influencing factors on the induced fields. The exact closed-form solution should be useful to the
analysis of nanoscale QWR structures where large strain and electric fields could be induced by the
non-uniform misfit strain.
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1. Introduction

Eshelby problem (Eshelby, 1957, 1961) has been an interesting
topic in various engineering and material fields for more than
50 years, and is the subject of constant studies (Willis, 1981; Mura,
1987). Some of the previous studies include the effective
elastoplastic behavior of composites (Ju and Sun, 2001), and dy-
namic Eshelby tensor of ellipsoidal inclusions (Michelitsch et al.,
2003), among others. Although most Eshelby problems in isotropic
elasticity can be solved analytically for both two-dimensional (2D)
and three-dimensional (3D) deformations (see, e.g. Kouris and
Mura, 1989), solution to the corresponding anisotropic elasticity
is still a challenging and attractive topic. For a transversely isotro-
pic elasticity problem an analytical solution can be obtained (Yu
et al., 1994), whilst in an anisotropic elasticity it is usually solved
numerically (Dong et al., 2003). As a typical application of the
Eshelby solution, it is effective to study the semiconductor proper-
ties for efficient device design. However, different from simple
isotropic elastic materials, most semiconductor materials show
both anisotropic and piezoelectric properties, with some of them
being strongly electromechanically coupled (Pan, 2002). For piezo-
electric Eshelby inclusion problems, most reported analytical solu-
tions concerned with elliptical/ellipsoidal shapes only (Wang,
1992; Chung and Ting, 1996). In real applications, however, the
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Eshelby problem with arbitrarily shaped inclusion is particularly
useful in the study of the strained semiconductor quantum devices
(Freund and Gosling, 1995; Andreev et al., 1999). In the work of Ru
(1999), analytical solutions for Eshelby inclusion of arbitrary shape
were derived based on the conformal mapping which maps the
exterior of a unit circle onto the exterior of the inclusion. This
method is elegant and convenient for the inclusion with smooth
boundary. In the work of Pan (2004), the Green'’s function solutions
were adopted with the final solution involving only elementary
functions, which is particularly suited for a polygonal inclusion.
The perturbation method can also be applied to handle the elastic
material anisotropy and arbitrary shape of an inclusion (Wang and
Chu, 2006). Zou et al. (2011) applied the extended Stroh formalism
to an Eshelby problem of 2D arbitrarily shaped piezoelectric inclu-
sion, which is actually very powerful in treating 2D anisotropic
problems. Inclusion of an arbitrary shape with uniform eigen-
strains in magnetoelectroelastic bimaterial planes was also inves-
tigated (Jiang and Pan, 2004; Zou and Pan, 2012).

We point out that in most of the previous studies, the eigen-
strain within the inclusion was assumed to be uniform, which
could be very limited because in most semiconductor materials,
the eigenstrain shows non-uniform distribution. Thus, the effect
of non-uniform eigenstrain on the induced field is particularly
interesting. Eshelby (1961) showed that if the eigenstrain inside
an ellipsoidal inclusion in an infinite domain is in the form of a
polynomial, then the induced-strain field in the inclusion is also
characterized by a polynomial of the same order. Other types of
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non-uniform eigenstrain were also considered, including an
ellipsoidal inclusion with dilatational Gaussian and exponential
eigenstrains (Sharma and Sharma, 2003), and an ellipsoidal or
elliptic inclusion with linear and polynomial distributions of
eigenstrain (Rahman, 2002; Nie et al., 2007; Guo et al., 2011).
Recently, Sun et al. (2012) solved the Eshelby inclusion problem
of an arbitrary polygon with a linear eigenstrain in an
anisotropic piezoelectric full plane via the Green’s function
method.

In most engineering applications, the size of the substrate
would be finite. Liu (2010) studied the 2D periodic inclusion
problem in a finite cell and obtained the solution to the problem
in terms of Cauchy-type integrals. Using the Somigliana’s identity
and Green'’s functions in classical elasticity, analytical solution of
the Eshelby tensors of a spherical inclusion embedded concentri-
cally within a finite sphere can be derived (Li et al., 2007). Mejak
(2011) obtained the Eshelby tensors for a spherical inclusion
within a finite spherical body by power series approximation.
Ma and Gao (2011) extended the classical elasticity to strain
gradient elasticity theory. Zou et al. (2012) proposed a general
approach based on the principle of superposition to study the
problem of a finite elastic body with an arbitrarily shaped
inclusion. Although the half-plane piezoelectric problem of an
arbitrarily shaped inclusion was investigated before (Ru, 2003;
Wang and Pan, 2010), solution to the inclusion problem with
non-uniform eigenstrain in an anisotropic piezoelectric half plane
remains to be solved.

In this paper, an exact closed-form solution for an arbitrarily
shaped polygonal inclusion in an anisotropic piezoelectric half
plane is presented, where the eigenstrain within the inclusion
can be not only uniform but also graded. Based on the equivalent
body force and by means of subdomain division, the eigenstrain
can be expressed as a linear graded function in every subregion.
Thus, we can express the induced elastic and piezoelectric fields
in terms of a line integral on the boundary of the inclusion, with
the integrand being the multiplication of the line-source Green'’s
function and the equivalent body force of the piezoelectric solid.
The line integral can be carried out analytically assuming that
the inclusion is a polygon. The most remarkable feature is that
the final exact closed-form solution involves only elementary func-
tions, similar to the corresponding isotropic elastic solutions (Faux
etal., 1997; Nozaki and Taya, 1997; Glas, 2002a). Using our present
simple solutions, the piezoelectric field due to multiple inclusions
or an array of QWRs can be easily obtained by adding the contribu-
tions from all the QWRs. As numerical examples, our solution is ap-
plied to square, triangular, and rectangular QWRs within a GaAs
(001) half-plane substrate. Our numerical results clearly show
the obvious effects of graded eigenstrain distribution, depth, and
orientation of the embedded inclusion on the induced fields. When
a QWR is embedded sufficiently deep, our results reduce to the ex-
act closed-form solutions in a full plane (Sun et al., 2012). Further-
more, the piezoelectric field due to an elliptical inclusion can be
calculated by an inscribed polygon with a relatively large side
number and thus it should be an efficient and recommended meth-
od for the elastic and electric field analysis in nanoscale QWR
structures.

This paper is organized as follows: In Section 2, we derive an
exact closed-form solution in a piezoelectric half plane for a gen-
eral polygon under a linear eigenstrain in x and z. In Section 3,
we apply our solutions to a couple of inclusion problems within
a piezoelectric half-plane substrate with traction-free boundary
conditions. The effect of different non-uniform eigenstrains, dif-
ferent orientations of the polygon, and different embedded
depths of the QWR, along with certain interesting features in
the induced fields are discussed. Conclusions are drawn in
Section 4.

2. Solutions of inclusion problems in piezoelectric half-plane

Let us assume that there is a general inclusion with arbitrary
shape in an anisotropic piezoelectric half-plane (z<0), and an
extended general eigenstrain y; (i.e, the eigenstrain 7} and
eigen-electric field E;) within the domain V bounded by its bound-
ary oV (Fig. 1). The eigenstrain is further assumed to be a linear
function of the coordinates (x,z). Our task is to find the eigen-
strain-induced field within and outside the QWR.

For a general eigenstrain ;; at x = (x,z) within the domain V, the
induced extended displacement at X=(X,Z) can be expressed
based on the method of superposition and equivalent body-force
concept. In other words, the response is an integral, over V, of
the equivalent body force in the square bracket below, multiplied
by the line-source Green'’s function (Pan, 2004), i.e.,

g (X) = — / (% X) [Cyum i (%)] AV (%) (1)

where u]K(x;X) is the J-th Green'’s elastic displacement/electric po-
tential at x due to a line-force/line-charge in the K-th direction ap-
plied at X. Summation is assumed for repeated lowercase (from 1 to
3) and uppercase (from 1 to 4) indices.

Integrating by parts and noticing that the eigenstrain is nonzero
only in V, Eq. (1) can be written alternatively as

e (X) = [, (6K Cpni ()Y ) 2)

Since the eigenstrain can be expressed as a linear function of the
coordinates (x,z) (Sun et al.,, 2012):

Vim(X) = Vim + VimX + VinZ (3)

Eq. (2) becomes

ug(X) = / Uy, (% X) Cyum [V + VimX + 72 AV (X) (4)
JV

or

U (X) + ug (X) +up(X) = // uf (%:X) [Cymim + CiimVimX + Cim V2] dV (x)
(5)

The involved area integrals can be easily transformed to the line
integrals along the boundary of the QWR by the Green formula:

ue(X) = Coum i /a 1y (e X)mi(2)dS(x) (6)
z
Surface 0 x

ov

Fig. 1. A general inclusion problem in an anisotropic piezoelectric half-plane
(z<0): a linear eigenstrain y;; (y; and —E;) within an arbitrarily shaped polygon.
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g (X) = oy | X0m, (015 0) ~ G
ov

« /(9 U Xm (0ds(x) (7)

U (X) = CoumVim /a ) uf (% X)zni(X)dS(X) — Coum )iy

X /) U (x; X)n(x)dS(x) (8)

Vv

In Egs. (7) and (8), the two new functions are defined as
U (% X), = uf (x:X)

U (% X), = uf (%, X) 9)

Thus, the following four analytical integrations are required in order
to find the induced elastic displacement and electric potential.

Iy = fav u}((x;X)xn,»(x)dS(x); I, = fav u}((x;X)zni(x)dS(x)
Je= Ly U@ X)n@)dS®); ], = [, U (% X)n (x)dS(x)

It is noted that these four quantities are also functions of the indices
Jand K.

To carry out the integration, we assume as before that the
boundary of the linear eigenstrain domain is composed of piece-
wise straight line segments. We then define an arbitrary line seg-
ment in the (x,z)-plane starting from point 1 (x1,z;) and ending

at point 2 (x»,2z), in terms of parameter t (0 <t < 1), as
X=X Xy — X))t

1+ (X2 —X1) (11)
Z=z1+(zp —z1)t

Then, the outward normal component n; (x) along the line segment
is constant, given by

= (z—z1)/l;, n=—(X—x)/l (12)

where [ = \/(xz — x1)2 + (22 — 21)2 is the length of the line segment.

Using the exact closed-form expression for the Green’s function
in a piezoelectric half-plane substrate, the integration along the
line segment for I, can be easily carried out as

! . 5 v
L(X) = niE[m{AthR(X-,Z)AKR + ZA]Rg’IQ”(X,Z)QRK} (13)

v=1

where the first term involving hy is the contribution from the full-
plane Green’s function (Sun et al., 2012), the second term involving
g¥ comes from the complementary part, which is used to satisfy the
boundary conditions on the surface of the half plane. Qg is related
to the boundary conditions on the surface of the half plane. Also in
Eq. (13), summation from 1 to 4 is implied for the repeated index R.
Since the first term on the right-hand side of Eq. (13) has been
determined previously (Sun et al., 2012), we only need to discuss
the second term in Eq. (13).

The function g¥(X,Z) and its derivatives (required for the in-
duced strain calculation) are given below:

g(X,2) = /O " n(ze 5, de

= X24;le [a(2c —a) = 2(c* — @) In(a+ ¢) + 2¢* In(c)]

+%[—a+ (a+c)In(a+c) - cln(c)] (14)
BROD _ _moi[g— cln ()] - % In (o) (15)
XD Lo mbe [q ¢l (4)] — %P n (o)

where

a= Xy —X1)+Pr(z2 —21) (16)
€= (X1 +Pgz1) =Sy

with the overbar on s, (=X + p,Z) denoting the complex conjugate
and p, being the Stroh eigenvalue.

Similarly for I, its integration along each line segment can be
found as

l Z 4 v
L(X) = niEIm{AJRhR(X,Z)AKR + ZA]Rgﬁ”(X,Z)QRK} (17)

v=1

where

gy (X,2) = /0] In(zz —5,)zdt

- 224:1221 [a(2c —a) - 2(c* — @) In(a + c) + 2¢* In(c)]

+2—a+(@+)lna+c) —cln(c)] (18)
BEXD _ _aafg - cln ()] -2 In (4) (19)
0D @nb[q ¢l (a€)] — A In (4)

We now treat the integrations in J, and J, along the straight line
segment. First, since half-plane Green’s function can be expressed
as (Pan, 2004)

1
UJK(X,X) = EIm{A]R ln(ZR — SR)AKR}
1.3 o
+ %[mZ{A,R In(zr —5,)Qpy }
v=1

1
= Elm{A]R In(pgz + X — sr)Axr }

1, & o
to [m;{AJR In(pgz +x — 5,) Qe } (20)

we have, based on Eq. (9),

+b1 In(a;x+by)

XK _l _
UJ (x,X)_nlm ARr|—X :

+Xln(a1x+b1 ):|AKR}

4
+%[mZ{AjR {_X_Fw-i-xln(aﬁwﬁ )} ng}
v=1 !

(21)

where

Table 1

Stress component gy, (GPa) induced by an elliptical QWR within the GaAs (001) half
plane located at a depth of 20 nm. The eigenstrain inside the ellipse is linear in x, i.e.,
79 =0,y% =y =0.07,7;% = 0. The ellipse is approximated by N-sided polygon
(N =20, 30, 50, 80, 100).

(X,2)(nm) N=20 N=30 N=50 N=80 N=100

(1,-19) —024376 -024523 -024443 -024396 —0.24396
(2,-18) ~0.48637 —0.48932 048771 —0.48678 —0.48677
(3,-17) ~0.72726  —0.73165 —0.72922 072784 —0.72781
(4,-16) -0.96574 -0.97153 -0.96827 —0.96645 —0.96639
(5,-15) 120093 -1.20820 -1.20413 -1.20191 —1.20179
(6,-14) ~1.43145 ~1.44086 -1.43606 —1.43349 —1.43324
(7,-13) ~165697 -1.66864 —1.66347 —1.66038 —1.66005
(8,-12) -1.88829 -1.88472 -1.88625 —1.88200 —1.88140
(9,-11) ~0.58914 -0.58789 —0.58546 —0.57246 —0.58469
(10,-10) 051444 —0.52481 -0.51899 —0.51810 —0.51964
(11,-9) ~0.48891 049648 049452 049340 —0.49362
(12,-8) ~0.49381 -0.49796 —0.49577 —0.49466 —0.49442
(13,-7) -0.49905 -0.50222 -0.49999 —0.49891 —0.49861
(14,-6) ~0.49294 049592 049385 049286 —0.49257
(15,-5) ~0.47410 -0.47705 —0.47521 —0.47430 —0.47406
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Table 2 Integration of (21) and (23) gives us
Electric displacement component D, (x103 C/m?) induced by an elliptical QWR
within the GaAs (001) half plane located at a depth of 20 nm. The eigenstrain inside

l
the ellipse is linear in x, i.e., ;% = 0,7:X = y:* = 0.07, ;%, = 0. The ellipse is approx- Ju(X) = *[m A]RH X, 2)Ak + ZA]RGXU X Z)QRK (25)

imated by N-sided polygon (N = 20, 30, 50, 80, 100). v=1
(X.Z)(nm) N=20 N=30 N=50 N=80 N=100 l 4
1,-19) 151122 -1.53484 -1.53737 —1.53677 —1.53763 J,(X) = n,=Imq ArHg (X, Z)Ax + ZA,RG?(X., Z2)Qp (26)
(2,-18) ~1.592 -136874 -137200 -137176 —1.37263 T |
(3,-17) ~1.17334 -1.19506 —1.19907 —1.19918 —1.20007 ) ) ) )
(4,~16) 099268 -1.01298 -1.01779 -1.01827 -1.01915 in which the terms H; and H; were derived previously (Sun et al.,
(5,-15) -0.80321 -0.82185 -0.82767 -0.82849 —0.82934 2012). We thus need to calculate only the functions Gy’'(X,Z),
(6,—14) —~0.60499 -0.62169 —0.62863 —0.62960 —0.63048 G¥(X,Z) and their derivatives. They are
(7,-13) -040534 -0.41218 -0.42150 -0.42168 —0.42307 R
(8,-12) -0.22147 -0.19260 -0.20866 —0.20585 —0.20818 1 ¢ In(aix+c
Gf{’(X,Z):/ [4+M+xln(a1x+c1)}dt
(9,-11) 1.00050  1.09223 098785  1.00355  1.02727 o a
(10,-10) 1.13329 1.17148 1.16240 1.16108 1.15918 X +X
(11,-9) 1.25572 1.27116 1.26385 1.26203 1.26033 ==
(12,-8) 1.25870 1.27339 1.26947 1.26806 1.26730 1
(13,-7) 1.18310 1.19768 1.19577 1.19475 1.19450 2 ac—a?—2(c —a)In(a+ o)+ 22 In(c) +-£
(14,-6) 1.06612 1.07958 1.07868 1.07787 1.07787 + a[ ( )In(@+c)+ @]+
(15,-5) 0.92930 0.94106 0.94056 0.93987 0.93997 % [_a + ((1 + C) ln(a + C) _ ClH(C)] (27)
and
=1 XX — _1aln(a+c) +cln (&) — ¢}
by = prz — sk (22) D _ e (ainias o) 4 cln (9] — (28)
Cl:pkz_gy oz { + ) ( )_ }
similarly, we have Similarly, we have
1
1 b, In(a,z+b 20 _ [ [, cIn(@ztc)
U]ZK(x,X):EIm{A]R {7z+72 (azz 2) | 2in(as2+ by) | A GrX2)= | |24, fHin@zta)dt
1. & cIn(az+cy) =-21a
+%Imz {A]R {—z+#+zln(azz+ cz)} QEK} 2
=1 + [2ac —a® —2(c* —a?)In(a+¢) +2c2In(c)]
(23) 4apy
c
with +aTJR[7a+ (a+c)In(a+c)—cln(c)] (29)
4 = Pr G (XZ)
by =x—si (24) X = T apg {aln a+C)+Cln( ) C} (30)
C2=X—Sy %:—ﬁ{aln(wrc)#rcln(a—f)—c}
Z Z
X
0 —— X. —— 0 L L L N B T
-5 | _ -5+ -
h, -
-10 4 ] -10 ho —
-15 i -15 4 B
T 20 b _____________ . € 204 .
= = |
N’ N
N o - N -25 .
-30 4 - -30 -
-35 a o -35 4
-40 A——— -40 A———
-20 -15 -10 5 0 5 10 15 20 -20 -15 -10 -5 0 5 10 15 20
(a) x(nm) (b) x(nm)

Fig. 2. A square QWR (a) and a triangle QWR (b) within a half-plane substrate (z < 0).
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With the extended displacements and their derivatives, we can
find immediately the elastic strain and electric fields using the fol-
lowing expressions

1
epX) =5 7inCitm /W [uf, (X)), (x:X)| m(x)dS@®); kp=123 (31a)

E,(X) = fysz;]Lm/ ufxp(x;X) ni(x)dS(x); p=1,2,3 (31b)
av

The stresses and electric displacements can be obtained from the
strain and electric fields via the coupled constitutive relation.

In summary, we have derived the exact closed-form solutions for
the piezoelectric fields induced by an arbitrary polygonal inclusion
in an anisotropic piezoelectric half plane. Since our resultis in an ex-
act closed form, solution to multiple inclusions can be simply de-
rived by superposing the contributions from all inclusions. This is
particularly useful in analyzing the induced piezoelectric fields in
QWR array (Glas, 2002a,b). Furthermore, a solution to the inclusion
with curved boundary can also be obtained by approximating the
curved boundary with piecewise straight-line segments. It is worth
emphasizing that our results include the uniform eigenstrain case in
a general anisotropic piezoelectric half-plane substrate (Pan, 2004)
as the special case.

z(nm)
"'I'"'I""I‘"'?""I“"I""I"

TN U Erue W

-20 -15 -10 -5 0
(c) x(nm)

3. Numerical examples

We assume that there is an elliptical QWR with its semi-major
axis a = 20 nm along the x-direction and semi-minor axis b = 10 nm
along the z-direction in a GaAs (001) half plane. The vertical
distance of the QWR to the surface of the half plane is ho. Within
the ellipse there is a linear eigenstrain distribution in x, i.e.,
V1% =0,y:% =y =0.07,7;%2 = 0. The elastic properties of GaAs
(001) are C;;=118x10°N/m?, C;5=54 x 10°N/m?, and
Cas =59 x 10° N/m?. The piezoelectric constant and relative per-
meability are, respectively, e;4=—-0.16 C/m? and & =12.5. We
point out that, for GaAs (001), the global coordinates x, y, and z
are coincident with the crystalline axes [100], [010], and [001].
In our calculation, we approximate the curved ellipse with N piece-
wise straight line segments. Namely, we replace the ellipse with an
N-sided regular polygon, for N equals 20, 30, 50, 80, and 100. The
induced stress and electric displacement along the diagonal line
of the ellipse (X=Z+ hg, hg=20nm) are listed in Tables 1 and 2
for the polygon with different side N. Notice that points from
(1,-19) to (8,—13) are inside the elliptical QWR, whilst points
from (9,—12) to (15,-5) are in the half-plane substrate.

Tables 1 and 2 show the induced fields within the ellipse and in
the half-plane substrate. It is noticed that these quantities converge
with increasing N. It is further noticed that the stress and electric

LUNL AL L L L L L OO L L 2

M B L (L

0 5 10 15 20

(d) x(nm)

Fig. 3. A square QWR with eigenstrain ;% = 0,y;% = 0,7;Z = y:Z = 0.07 in the GaAs (001) half-plane substrate: (a) contours of stress o, (GPa); (b) contours of stress g,
(GPa); (c) contours of stress gy, (GPa); (d) contours of electric displacement D, (x10~3 C/m?).
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displacement for points near the center converge faster than those
far from the center. Also for points close to the interface between
the inclusion and substrate, the convergence becomes very slow. It
is particularly noted that electric displacement D, is negative within
the elliptical QWR but positive in the substrate. This observation
illustrates that a large number of polarization charges concentrate
on the interface, i.e., the electric displacement D, is discontinuous
across the interface along the diagonal direction of the inclusion.
We have also checked the stresses and electric displacements both
in the inclusion and substrate induced by different linear eigenstrain
distributions and found that they all converge as N increases.

The exact closed-form solutions can be applied to the QWR
made of different shapes with three types of eigenstrain distribu-
tion: Case #1 with a linear eigenstrain in x (y;% =0,y = y% =
0.07,7;zZ =0); Case #2 with a linear eigenstrain in z
(7,9 =0,y = 0,7:Z = y:2 = 0.07); and Case #3 with a linear eigen-
strain in both x and z (% = 0,y = v = 0.07, ;%2 = 72 = 0.07). A
square QWR (a x b=20nm x 20 nm) in piezoelectric GaAs (001)
is embedded symmetrically (about the z-axis) within the substrate
at a depth of 20 nm from the surface as the first numerical example
(shown in Fig. 2a). The second numerical example is an isosceles
triangular QWR (i.e., the base-line length is b=20nm and the
height is a = 20 nm) within the GaAs (001) substrate (Fig. 2b) lo-
cated also at a depth of 20 nm below the free surface.

z(nm)

z(nm)

(C) x(nm)

First, to further verify our solutions, we have calculated the
induced stresses and electric displacements for the two models un-
der linear eigenstrain in x (Case #1). As compared to the full-plane
results (Sun et al., 2012), the induced fields (o,,, 0x; D,) quickly
converge to zero when approaching the boundary, satisfying the
traction-free conditions (figures not included). On the other hand,
our half-plane results approach those in Sun et al. (2012) when the
depth approaches infinity.

Fig. 3a-d show the contours of the stress and electric displace-
ment for the square QWR case due to a linear eigenstrain in z. We
can clearly observe that the distribution of the induced stresses
and electric displacements is symmetric with respect to z-axis.
Comparing to the results in the corresponding full-plane case, we
find that the free surface condition not only alters the contour
shapes, especially for the regions close to surface, but also in-
creases the magnitude of the induced stress and electric displace-
ment within the inclusion. For instance, in the half-plane case, the
stresses gy and o, within a square reach their maximums at the
bottom side of the square, being, respectively, 4.0 and 6.0 GPa.
Compared to the maximum values which appear at the top or bot-
tom side of a square in a full plane, the stresses g, and o, increase
about 33% and 50%, respectively. It is also observed that the normal
stress o, reaches 6.1 GPa on the free surface, and the stresses o,,,
oy, and electric displacement D, are zero on the free surface,

z(nm)

LU LI L [
I I I I T T T

20 15 -10 -5 0 5 10 15 20
(b) x(nm)

z(nm)

(d) x(nm)

Fig. 4. A triangular QWR with eigenstrain y;%, = 0,;% = 0, y:Z = y;Z = 0.07 in the GaAs (001) half-plane substrate: (a) contours of stress g, (GPa); (b) contours of stress g,
(GPa); (c) contours of stress gy, (GPa); (d) contours of electric displacement D, (x10~3 C/m?).
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satisfying again the given boundary conditions. It is further noted
that the contour shapes of the stress oy, and electric displacement
D, are exactly the same except for their magnitudes, with concen-
trations occurring at the four corners of the square. Therefore, in
the fabrication and design of QWR structure, the distance between
QWR and free surface needs to be carefully arranged by consider-
ing the contour features observed.

Fig. 4a-d shows the contours of the stress and electric displace-
ment induced by a triangular QWR under a hydrostatic linear
eigenstrain in z. For this case, it is clear that there is no longer
any symmetry in the contours. It can be seen from Fig. 4a that
the magnitude of the stress oy, on the free surface is around
2.8 GPa, much less than that for the square QWR case (6.1 GPa).
This demonstrates that the induced fields can depend strongly on
the QWR shape. It is also interesting to observe that all the induced
fields are continuous around the left vertex of the triangle, whilst
there exists a singularity at the other two vertices, which will be
further investigated later on. We should point out that the stress
and electric displacement due to a square or triangular QWR under
linear eigenstrains in both x and z (Case #3) can be calculated by
simply taking the summation of the induced fields corresponding
to the previous two cases (Cases #1 and #2).

We further point out that for the case of multiple QWRs, the in-
duced fields can be obtained by superimposing the contribution
from each QWR. For instance, Fig. 5a-d show the contours of the
induced fields for three triangular QWRs embedded into GaAs
(001) half-plane substrate, all located at the depth of 20 nm. In
our calculation, the eigenstrain within each QWR is linear in z. As
shown in Fig. 5a, the magnitude of the stress oy, on the free surface
is 4.0 GPa. This value is greater than the value (2.8 GPa) induced by
a single triangular QWR. Again, the three field components (¢ ,,, oy,
D,) satisfy the traction-free boundary conditions. We also remark
that, compared to the results due to a single triangular QWR, these
figures show clearly the interactive influence of the neighboring
QWRs on the induced field.
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We now consider a special and interesting case where the aver-
age eigenstrain within the QWR is zero. The QWR is embedded in a
half plane and we would like to calculate the means of the induced
strain and stress fields within the QWR. For the square QWR case
under a linear eigenstrain in x (Fig. 2a), we found that the means
of strain components (Jx, 7..), electric-field components (E,, E;)
and stress components (G, 0,) are zero, but 7., =0.0063,
Oy, =0.75 GPa and electric displacement D, = —2.02 x 1073 C/m?.
For a linear eigenstrain in z (actually in z + hy as shown in Fig. 2a
in order that the average eigenstrain is zero within the QWR),
the non-zero means of the induced fields are 7, =0.0064,
V22 =0.016, G4 = 1.63 GPa, 6, = 2.27 GPa. For an isosceles triangu-
lar QWR (Fig. 2b), if a symmetric linear eigenstrain in z + hg is dis-
tributed, then the average eigenstrain within the QWR is zero. The
non-zero means of the induced fields are },, = 0.0026, },, = 0.0087,
Vxz = —0.0025, Gy =0.77 GPa, G, = 1.17 GPa, 6, = —0.31 GPa, and
D, =0.81 x 10~ C/m?. During our calculations, we also notice that
the induced electric fields within the QWR are zero for the GaAs
(001) half-plane case. This phenomenon is actually consistent with
previous well-known observation in the superlattice structures
(Smith, 1986). These results also illustrate the significant effect of
different eigenstrains, QWR shapes, and free surface conditions
on the induced piezoelectric fields.

Another interesting issue is on the effect of QWR depth on the
induced average fields within the QWR. Besides the two QWR
models (square and triangle) presented above, we also consider a
thin rectangular QWR (a x b=20nm x 5 nm) located at a depth
of 20 nm, with its long side parallel to the x-axis and short side
to the z-axis. For easy analysis, we define the dimensionless
averages of the stress and electric displacement components as
; (64/(0.75GPa)), D; (D./(—2.02 x 107> C/m?)), respectively.
Fig. 6a-d show the variation of the dimensionless averages of the
internal fields (6;,,6%,, G%,, D;) for the three QWR models with dif-
ferent dimensionless depths h* = —z/a (h" > 0.5). We point out that
coordinate —z is the vertical distance from the center of symmetric

z(nm)
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o
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Fig. 5. Three triangular QWRs with eigenstrain y;% = 0,7;X, = 0,7;Z = y:Z = 0.07 in the GaAs (001) half-plane substrate: (a) contours of stress o, (GPa); (b) contours of stress
7., (GPa); (c) contours of stress o, (GPa); (d) contours of electric displacement D, (x10~> C/m?).



Q.D. Chen et al./International Journal of Solids and Structures 51 (2014) 53-62

60
35 LR E UL L W R I 0 UL N UL IR LN LU
—=— square QWR in half plane
304 —e— triangular QWR in half plane |
i —A— rectangular QWR in half plane i
25 ——square or rectangular QWR in full plane ||
—— triangular QWR in full plane

L 2 % E
o < o o
T T LR E LR R
25 30 35 40 45
1.4 T T T T T T
a5 ] —a—square QWR in half plane
“7] —e— triangular QWR in half plane I
1.0 4 —a— rectangular QWR in half plane s
] —x—square or rectangular QWR in full plane |1
0.8 : : u
i —— triangular QWR in full plane
0.6 -
0.4+ g
y 02 -
1o ]
0.0 3k 4
-0.2 4 i
-0.4 - B
.0,6_- -
0.8 | trfesesesr W ‘ o < o o o ]
LELILELEN L L N AL NLELELELES NLELEL LS NLELELELE LA ELELE BN
0 5 10 15 20 b 25 30 35 40 45

(c)

4.0 4 —-—'square QWR in half'plane ' 1
35 —e— triangular QWR in half plane ]
50 —a— rectangular QWR in half plane I
'_ —x—square or rectangular QWR in full plane
25 —=— triangular QWR in full plane 1

45

—a— square QWR in half plane

—e— triangular QWR in half plane
—A— rectangular QWR in half plane 5
——square or rectangular QWR in full plane ]
—s— triangular QWR in full plane

45

(d) 0 5 10 15 20 h‘

Fig. 6. Variation of the dimensionless averages of the stress and electric displacement components induced by a QWR (square, triangle, and rectangle) vs. dimensionless
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Fig. 7. A triangular QWR in three different orientations within the GaAs (001) half-

plane substrate.

=0.07, y;Z = y;Z = 0.07: (a) variation of &,; (b) variation of &},; (c) variation of G,; (d) variation of D;.

axis of inclusion to the boundary of the half plane. It can be ob-
served from Fig. 6a-d that these averages all approach the full-
plane results with increasing depth. Since these fields converge
to the full-plane results, one can define a critical dimensionless
depth h; so that the half-plane results can be approximated by
those in the corresponding full-plane when h* > h;. For instance,
when the dimensionless depth h* > 20, the absolute errors of the
induced average fields within the QWR between the half- and
full-plane are less than 0.05. In other words, for a given absolute
error of 0.05, the critical depth can be selected at h; = 20 (i.e., the
actual embedded depth 400 nm) for these three QWR models in
the GaAs (001) half plane.

Finally, we come back to the vertex singularity issue. From Eqs.
(15),(19), (28), and (30), we can easily observe that the strain and
electric-field components may be of logarithmic singularity at the
vertices. For the square model, the contours in Fig. 3c and d show
that the shear stress and electric displacement components are
singular at the four corners. However, for the triangular QWR, all
fields around the left vertex are regular as shown in Fig. 4. This
interesting feature motivates us to investigate the effect of the ori-
entation of the triangular QWR on the vertex singularity. Fig. 7
shows a triangular QWR embedded in the half plane at the same
depth of hy (20nm) but with three different orientations.
Fig. 8a(c) and b(d) show the variation of the dimensionless stress
o}, and electric displacement D] along the local dimensionless

XX

coordinate x'/a originated at 0’(0, —20) under linear eigenstrain
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Fig. 8. Variation of dimensionless stress and electric displacement components along the local dimensionless coordinate x'/a: (a) variation of o}, due to linear eigenstrain
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710 =0,y = 0,72 = y:Z = 0.07. (d) Variation of D, due to linear eigenstrain y;% = 0,7;%, =0

in x(z). It is observed from these figures that, for triangle # 2 at the
vertex A, the stress o, and electric displacement D, are both
singular under linear eigenstrain in x or z. For triangle # 1, stress
oxx Shows a singularity at this vertex under linear eigenstrain in
X, but it is regular under linear eigenstrain in z (Fig. 8a vs. c). For
triangle #3, stress o,y exhibits singularity only under linear eigen-
strain in z. Therefore, the geometric shape, embedded orientation,
and eigenstrain distribution can strongly affect the singularity at
the vertex of the polygonal QWR.

4. Conclusions

In this paper, we have derived an exact closed-form solution for
the Eshelby problem of polygonal inclusion (or QWR) in an aniso-
tropic piezoelectric half plane, with the final expression involving
only elementary functions. The solution is applied to square, trian-
gular, and rectangular QWRs within the GaAs (001) half-plane
substrate. The induced piezoelectric fields are mostly affected by
the free surface, depth of the QWR, and the graded eigenstrain dis-
tribution. Our numerical results also demonstrate the significant
influence of the QWR shape on the induced fields. Furthermore,
for a polygonal QWR, its geometrical shape, embedded orientation,
and eigenstrain distribution can all affect the vertex singularity. All
the numerical results can be served as benchmarks and could be

72 =7 = 0.07.

)z
XX

useful to the analysis of strained QWR structures of arbitrary shape
with general anisotropic piezoelectricity.
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