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1 Introduction and conclusions

The future evolution of our Universe appears to be dominated by a phase of accelerated ex-

pansion [1–3]. The data from the cosmic microwave background strongly suggest that also

in the distant past our Universe experienced a phase of slow-roll inflation [4–6]. Further-

more, independently from the actual observations, the study of the physics in a accelerating

universe is interesting in its own, as still several theoretical aspects are poorly understood.

A particularly interesting set-up is represented by slow-roll eternal inflation [7–9]. In

this case the scalar potential is so flat that quantum fluctuations dominate over the classical

rolling of the scalar field. In this limit the scalar field becomes free, so despite quantum

fluctuations dominate over the classical evolution the system becomes exactly solvable [10].

In this case there is a finite probability to generate inflaton trajectories going uphill the

scalar potential, which can make inflation last forever. Quantum fluctuations are able to

completely change the future causal structure of space-time, similarly to what happens in

false vacuum eternal inflation [11, 12] or in the presence of a black-hole [13]. Indeed, these

are the only three known solutions of general relativity where quantum effects induce such

a spectacular behaviour. In particular, in the eternal inflation case, the result is even more

dramatic because the background geometry becomes completely stochastic.

The dependence of the future causal structure of space-time on the dynamics of the

theory is a delicate issue already at the semiclassical level. The problem is even more

acute in full quantum gravity, where local observables are not well defined and its proper

formulation in known cases (such as the string theory S-matrix and AdS/CFT) strongly

relies on well defined asymptotic boundaries. To make the problem even more involved,

unitarity, and in this particular context, holography also seem to suggest that space-time

regions causally disconnected by an horizon are redundant, complementary.
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These problems are particularly relevant in the framework of the landscape. If, as

suggested by string theory, quantum gravity possesses a landscape of (meta-stable) vacua,

our Universe may be doomed to deal with eternal inflation. While vacuum tunnelling from

meta-stable de Sitter vacua seems the natural mechanism for generating eternal inflation in

the landscape, slow-roll eternal inflation represents a unique framework to reliably study

the onset of the transition between the non-eternal (with a large number of e-foldings)

and the eternal inflating regime. In these type of models indeed, it exists a controllable

parameter (the flatness of the potential) that smoothly interpolates between the two phases.

It basically allows the study of the de Sitter phase with a tunable parameter.

In this context a bound was found in [14] for any model of inflation in the non-

eternal phase: the number of e-folding N is always bounded by the de Sitter entropy SdS
at the end of inflation (i.e. as calculated using the value of the Hubble constant during

the last e-folding). The relation with the entropy seems to suggest a connection with

the holographic bounds. It is indeed in close analogy with the bound on the validity of

the effective field theory description of the Hawking radiation quanta in the black-hole

evaporation process: after a time of order the black-hole entropy in units of the curvature

scale the EFT predictions for the Hawking entropy start deviating by order one from what

expected from the unitary evolution — information starts coming out and complementarity

emerges. A similar time-scale shows up in slow-roll inflation exactly when the eternal

inflation phase is approached.

It was found later in [10] that in single field slow-roll inflation the phase transition to

eternal inflation is sharp: at the critical value of the parameter

Ω ≡ 2π2

3

φ̇2

H4
= 1 ,

a finite probability of creating an infinite volume after inflation develops. This suggested

the existence of a sharp bound also for the number of e-foldings. Because of quantum

fluctuation however, the number of e-foldings is not a well defined object, as it can fluctuate

from point to point in space. The invariant quantity is the total volume of the Universe at

the reheating surface, which matches e3N in the absence of quantum fluctuations. Quantum

fluctuation makes this quantity stochastic too. A probability density for the volume V can

nonetheless be defined and actually computed. This was accomplished in [15] where a

sharp formulation for the bound was also found, namely:

The probability of producing a finite volume V larger than eSdS/2 vanishes up to non-

perturbative quantum gravity effects.

Notice that the bound applies not only in the non-eternal regime (Ω > 1), where

the volume is always finite, but also in the eternal regime, where there is still a non-zero

probability to have a finite volume.

The existence of a sharp bound and the connection with the entropy clearly cries for

an holographic interpretation. Is this bound really set by complementarity? In that case

is there a meaning of the factor 1
2 appearing in the bound? We are not able to give a

definitive answer to these questions yet. It seems however that if the answers to these
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questions are positive then the bound should be universal, including the factor 1
2 , as, for

example, in the Bekenstein-Hawking formula.

In this paper we test the universality of the bound against three different generaliza-

tions of the models studied in [15] by changing the number of space-time dimensions (from

4 to D), by taking into account the effects of higher-dimensional operators in the action,

and by considering more inflaton fields.

In the first test the dependence on the number of dimensions appears in a non-trivial

way in a number of quantities entering the calculation of the bound, such as the relation

between the entropy and the horizon area, the Friedmann equations, the quantum fluctu-

ations of a inflaton field in de Sitter space, etc. We will show that, surprisingly, when the

bound is written in terms of the total volume and the dSD entropy the dependence on the

number of dimensions cancel out leaving the bound unchanged, with the same factor as in

four dimensions.

The second test we performed is with respect to higher derivative terms in the action.

These terms not only change the equations of motion for the metric and the inflaton,

thus the Friedmann equations, but also the expression for the entropy, which is not given

anymore by just the horizon area in Planck units, and the size of the quantum fluctuations

of the inflaton. Remarkably we find that, independently of the corrections considered in

the action, the bound is not affected, included the factor 1
2 , which stays universal.

The third test requires more effort. We have to extend the formalism developed in [15]

to the case of multifield inflation. In particular the possibility to have extended regions

in field space where inflation can end triggers difficulties both at the technical and the

conceptual level. We will show that the main formula that in the single-field case was a

simple Laplace transform of the solution of a non-linear differential equation maps in this

case into a functional integral transform of the solution of a non-linear partial differential

equation. These more involved formulae allow us to calculate not only the probability

distribution of the total volume after inflation, but the multi-variate probability distribution

of each different kind of volume associated with the different reheating points in field space.

The possibility of exiting inflation in different places in field space, where in particular the

Hubble scale and thus the entropy are different, forces us to generalize the definition of the

bound too. A conservative assumption is to assume that the total volume be bounded by

the largest possible entropy on the reheating surface. We believe however that a stronger

version of the bound actually holds.

In all the realizations with finite total volume, the probability of producing a particular

volume with values of the inflaton field within a given region I of the reheating surface and

larger than the largest value of eSdS/2 on the same region I vanishes up to non-perturbative

quantum gravity effects.

In particular given any reheating region in field space the volume produced after in-

flation with that kind of inflaton values will be bounded by the corresponding de Sitter

entropy.

Because of the complexity of the formulae involved we are not able to test the validity

of the bound in the most general case, however we will discuss the two simplest examples

where we are able to take the calculation till the end. The two examples correspond to
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two-field inflationary models with a constant slope of the potential and where the reheating

region is a straight line normal or at angle with respect to the slope direction. We will be

able to calculate the average volume distribution as a function of the reheating point and

show that the bound is indeed satisfied. Interestingly the factor 1
2 is still universal and

the bound is saturated only when the slope is actually orthogonal to the reheating surface.

This configuration correspond to single field inflation with a spectator field. This result

suggests that the presence of extra fields only makes the bounds stronger, by drifting the

inflaton trajectories towards region of higher entropy where the bound is less constraining.

It would be nice to test the bound also for more complex field configuration, but we are

limited by our ability to solve the corresponding equations. Another interesting effect that

we have neglected so far is the inclusion of slow-roll corrections. While they are expected

to be very small, after all in the eternal inflation limit the slow-roll parameter is tiny, when

considering inflaton trajectories that start saturating the bound, the integrated slow-roll

effect may be non-negligible, the tiny slow-roll parameter being compensated by the large

field excursion. Arguments were given in [15] why this effect should not alter the nature

of the bound, still a dedicated study would be worthwhile.

Finally we would like to mention a suggestive relation between our bound and some

thermodynamic relations recently found for systems out of equilibrium (see e.g. [16]). The

variation of the entropy in a closed thermodynamical transformation can be thought of

as a measure of the irreversibility of the process. If we consider the cyclic transformation

of a piston moving up and down, the process will be the more irreversible the quicker

we move the piston. Analogously in eternal inflation, we can think of de Sitter space as

an equilibrium state, and inflation as the irreversible process associated to moving the

scalar field along the potential. The slower the inflaton moves, the more inflation comes

closer to becoming reversible and also closer to de Sitter space. Let us indeed consider the

equality ∆Sds = 12ΩNc with Nc the classical number of e-foldings, that is described later

in the text. This equality is usually taken to represent the second law of thermodynamics

∆S = (δQ/T )rev, with (δQ/T )rev = 12ΩNc [17, 18]. This interpretation is a bit puzzling to

us, because it may look like that all classical solutions of General Relativity are reversible.

On the other hand, the presence of an horizon suggests the presence of some irreversibility.

In particular, slow roll inflation is irreversible at the classical level, and the flatter we make

the potential, the closer we should get to reversibility. An interpretation of our formulas

that would be more coherent with this intuition would be to use the bound Ω ≥ 1 for the

non-eternally-inflating potentials, to say that whenever we do not have eternal inflation,

∆S ≥ 12Nc, with the inequality being saturated at the phase transition to eternal inflation

Ω = 1. It would be very interesting to establish such a connection between slow-roll inflation

and thermodynamics on solid grounds, for it may give deeper understanding about de Sitter

space and the onset of the eternal regime.

2 Mini-review of known results

It has been shown in [15] that many information about the phase transition from non-

eternal to eternal slow-roll inflation are encoded in a rather simple formula. We briefly

review here the results of that paper, which we refer to for details.
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In fact the probability distribution ρ(V, τ) for the volume of the reheating surface V ,

with φ = Hτ/(2
√
6π) the starting value for the inflaton field, is given by

ρ(V, τ) =
1

2πi

∫ 0++i∞

0+−i∞
dz f(τ, z)ezV , (2.1)

where at leading order in the slow-roll approximation, f is the solution of the following

differential equation (see also [19])

∂2τf(τ ; z)− 2
√
Ω∂τf(τ ; z) + f(τ ; z) log[f(τ ; z)] = 0 , (2.2)

with

Ω =
2π2

3

φ̇2

H4
, (2.3)

and boundary conditions

f(0; z) = e−z , (2.4)

∂τf(τ ; z)|τ=τb =0 . (2.5)

The first boundary condition corresponds to the end of inflation at τ = φ = 0, while the

second condition at τ = τb is a barrier condition, to make finite the allowed field space for

the inflaton.1

The meaning of the differential equation is more manifest when rewritten in terms of

φ as follows:
1

2

∆φ2

∆t

∂2

∂φ2
f − φ̇

∂

∂φ
f + 3Hf log f = 0 . (2.6)

This is a modified Fokker-Planck equation: the first term is the normal dispersion term due

to the quantum fluctuations of the inflaton field in de Sitter space (∆φ2/∆t = H3/(4π2));

the second term is the drift induced by the tilt of the scalar potential; the last term encodes

the volume growth from the de Sitter expansion.

When rewritten in terms of τ , the differential equation (2.2) only depends on the

single dimensionless parameter Ω — a combination of the rate of quantum fluctuations

(∆φ2/∆t), the classical rolling (φ̇) and the Hubble expansion (3H) — which controls the

different phases of slow-roll inflation.

Despite an analytic expression for the solution to eqs. (2.1) and (2.2) for ρ(V ; τ) is not

available, the behaviors for the different regions of the parameters V and Ω can be derived.

Moreover all the moments, given by

〈V n〉 = (−1)n∂nz f(τ ; z)|z=0 , (2.7)

can be computed analytically, as eq. (2.2) becomes linear for these quantities.

1The barrier point τb can be thought of as the region where the energy density of the inflaton potential

becomes Planckian, or where the potential becomes very steep, or the fixed point of a symmetric potential,

such as the peak in the top-of-the-hill inflationary model. The limit of arbitrary far barrier, τb → ∞, can

be subtle and special care must be put in doing such a limit, see [10, 15] for details.
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For example the expression for the average volume in terms of the classical number of

e-foldings Nc = Hφ/|φ̇| reads

〈V 〉 = e(
√
Ω−

√
Ω−1)τ = e

3Nc
2

1+
√

1−1/Ω , Ω ≥ 1. (2.8)

In the classical limit, Ω → ∞, quantum fluctuation become irrelevant, and ρ(V ; τ)

approaches a delta-function picked around the classical value Vc = e3Nc . When Ω → 1

quantum fluctuations become of order one and the average volume gets large corrections,

increasing to 〈V 〉 = e6Nc . At the critical value Ω = 1, the phase transition to eternal

inflation occurs and the average volume starts diverging.

Note also that, at leading order in the slow-roll expansion, the variation of the de Sitter

entropy between the beginning and the end of inflation reads (see next section for more

details)

∆S = 12ΩNc , (2.9)

which combined with eq. (2.8) implies the bound

〈V 〉 < eSend/2 . (2.10)

3 Universality of the bound in D-dimensions

The first test of the eternal inflation bound we present here is its universality on the

number of space-time dimensions. We remind that the bound follows from two ingredients:

a classical one, which determines the largest non-eternally inflating classical trajectory,

and a quantum one, which compute the deformation due to quantum fluctuations. As

described in the previous section the second computation boils down to solve a differential

equation and performing a Laplace transformation. The transition to eternal inflation

happens when the only parameter of the differential equation Ω crosses 1. The expression

for the differential equation given in eq. (2.6) is also valid inD space-time dimensions except

for the coefficient of the last term, the Hubble expansion coefficient, which now becomes

(D−1)H. The expression for ∆φ2/∆t in D-dimensions is also different, it can be extracted

from the coefficient of the linear term in the 2-point function of a scalar field in dSD,

〈φ2〉 = HD−1

πΘ(D−1)
t+ . . . (3.1)

where

Θ(d) =
2πd/2

Γ
(
d
2

)

is the d-dimensional solid angle. The differential equation can be easily brought back to

the form (2.2), by defining

Ω =
φ̇2

2(D − 1)H

∆t

∆φ2
=
πΘ(D−1)

2(D − 1)

φ̇2

HD
, (3.2)

τ =φ
√
2(D − 1)H

√
∆t

∆φ2
= 2(D − 1)

√
ΩNc . (3.3)
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Since the differential equation governing quantum fluctuations has the same form in

D dimensions, the same will be true for the solution when expressed in term of τ . In

particular the expression for the average volume will be

〈V 〉 = e
(D−1)Nc

2

1+
√

1−1/Ω , (3.4)

with Ω as defined in eq. (3.2). Again for Ω → ∞ the classical result is recovered 〈V 〉 =

e(D−1)Nc , while the value at the eternal inflation transition (at Ω = 1 as eq. (2.2) is formally

unchanged), is 〈V 〉 = e2(D−1)Nc , again quantum fluctuations increase the effective number

of e-foldings up to a factor 2 with respect to the classical value when the phase transition

is approached.

In order to test the bound we need now to work out the relation between the classical

number of e-folding and the de Sitter entropy in D-dimensions. The difference of de Sitter

entropy between the start and the end of inflation can be written as

∆S =

∫ Send

Sstart

dS =

∫ Aend

Astart

1

4G
dA = −

∫ Nc

0

(D − 2)

4G

Θ(D−1)Ḣ

HD
dN ′

c , (3.5)

where we used

A =
Θ(D−1)

HD−2

for the de Sitter horizon area. From Friedmann equations in D dimensions we also have

Ḣ = − 8πG

D − 2
φ̇2 , (3.6)

which allows us to write

∆S =

∫ Nc

0
2πΘ(D−1)

φ̇2

HD
dN ′

c. (3.7)

We can now use eq. (3.2) to rewrite φ̇ in terms of Ω and we finally get

∆S =

∫ Nc

0
4(D − 1)ΩdN ′

c = 4(D − 1)ΩNc , (3.8)

Send ≥ 4(D − 1)ΩNc , (3.9)

where we used the fact that at leading order in the slow-roll parameter Ω =const. The

result above gives a bound on the number of classical e-foldings allowed in non-eternal

inflation when Ω > 1. The maximum number is achieved at the phase transition Ω = 1,

where Nc ≤ Send/(4(D − 1)). Quite non-trivially the complicated dependence on the

number of dimensions D simplifies considerably in the final expression and only a D − 1

factor remains.

We can now combine this information with the full quantum computation of eq. (3.4),

we thus have

〈V 〉 = e
(D−1)Nc

2

1+
√

1−1/Ω ≤ e
Send

2
1

Ω(1+
√

1−1/Ω) ≤ e
Send

2 , for Ω ≥ 1. (3.10)

Remarkably, once written in terms of the de Sitter entropy, the bound on the volume

is universal, independent of the number of dimensions! As in D = 4 the probability to

produce a finite volume violating the bound above is super-exponentially small (see [15]

for details), i.e. zero within the effective field theory regime.
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4 Universality of the bound with higher-derivative corrections

The second test of the bound that we provide is with respect to higher-derivative corrections

in the Einstein-Hilbert plus inflaton action. Higher derivative terms have multiple effects:

they modify the Einstein equations, the expression for the energy-momentum tensor, the

inflaton equations of motion and the formula for the entropy as well. Since we are interested

here in slow-roll inflation we will assume that independently of the modification induced by

higher-derivative terms there exists a solution where the metric is approximately de Sitter

up to slow-roll corrections and the inflaton field rolls slowly, i.e. φ̈≪ Hφ̇.

This assumption may appear somewhat too restrictive. There are inflationary models

(such as DBI [20] and ghost [21] inflation) where the scalar field does not roll slowly even

though the geometry is approximately de Sitter. However, as shown in [14], these models

are very far from saturating the volume bound as soon they obey the null energy condition

and do not exhibit superluminal excitations. On the other hand, ghost inflation is capable

of violating the bound even at the classical level at the expense of violating the null energy

condition. Given that the null energy condition and the absence of superluminal excitations

are crucial for the success of black hole thermodynamics [22] we consider this link as yet

another indication that the volume bound has a thermodynamical origin. We therefore

restrict ourselves to models that are perturbatively close to slow roll inflation.

The most general action for the graviton plus inflaton system can be written as

L = L(gµν , Rµνρσ,∇αRµνρσ, . . . , φ,∇αφ, . . .)

= LG(gµν , Rµνρσ,∇αRµνρσ, . . . , φ) + Lkin(gµν , Rµνρσ,∇αRµνρσ, . . . , φ,∇αφ, . . .) , (4.1)

where we have isolated the part of the Lagrangian that does not depend on ∇αφ (LG =
1

16πGR − V (φ) + . . . ) from the one that contains derivatives of the inflaton (Lkin =

−1
2 (∂φ)

2 + . . . ).

We immediately realize that at leading order in slow-roll parameters we can neglect

the contribution of the terms in LG involving covariant derivatives. This is justified in the

leading slow-roll approximation after realizing that all the terms of this form are at least

of second order in the slow-roll parameters. Indeed all such terms must involve at least

two derivatives in order to contract the indexes. Upon integration by parts, it is therefore

possible to have at least two of these derivatives acting on different Riemann tensors. The

Riemann tensor in de Sitter space is proportional to the metric and so covariantly constant,

hence its covariant derivatives in an inflationary spacetime are proportional to the slow roll

parameters. This means that terms in LG involving covariant derivatives start at second

order in the slow roll parameters and can therefore be neglected in our approximation.

For similar reasons at leading order in the slow-roll expansion we will only consider up

to 2-derivative terms acting on the inflaton, i.e.

Lkin(gµν , Rµνρσ, . . . , φ,∇αφ, . . .) = −1

2
(∂αφ∂βφ)Π

αβ(gµν , Rµνρσ, . . . , φ) . (4.2)

In the same approximation, since (∂φ)2 is already subleading in the slow-roll expansion,

its coefficient can be taken at 0-th order in slow-roll, i.e. computed with de Sitter metric,
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this gives

Παβ(gµν , Rµνρσ, . . .) = gαβΠ(gµν , Rµνρσ, . . .) (4.3)

where Π = Πµνgµν/4.

We can now proceed to write the Einstein equations. It is possible to show that

ignoring higher derivatives the gravitation Lagrangian can be written simply in terms of

Rµν
ρσ and Rµ

ν
ρ
σ without any explicit dependence on the metric:

LG(gµν , Rµνρσ, . . . , φ) = L̃G(R
µν

ρσ, R
µ
ν
ρ
σ, . . . , φ) , (4.4)

and analogously for Π:

Π(gµν , Rµνρσ, . . . , φ) = Π̃(Rµν
ρσ, R

µ
ν
ρ
σ, . . . , φ) . (4.5)

This is proven in appendix A. In this way the equations of motion for the metric read

δL̃
δRαβ

ρσ

δRαβ
ρσ

δgµν
+

δL̃
δRα

β
ρ
σ

δRα
β
ρ
σ

δgµν
− 1

2
gµνL̃ =

1

2
Π̃∂µφ∂νφ . (4.6)

Using the relation

δL
δRµνρσ

δRµνρσ =
δL

δRµνρσ

(
2∇µ∇σδgνρ +Rτ

νρσδgµτ

)
, (4.7)

it is possible to rewrite the equations of motion as (see appendix A for details):

− 2∇α∇β
δL

δRα(µν)β
+R(µ

αβγ
δL

δRν)αβγ
− 1

2
gµνL =

1

2
Π∂µφ∂νφ (4.8)

where indices in between brackets are symmetrized.

From here we can see that higher derivative terms change non trivially several relations

used for the proof of the bound. The Friedmann equation Ḣ = −4πGφ̇2 used to relate the

change in entropy with the Ω parameter gets modified, in particular both the l.h.s. and

the r.h.s. receive corrections. The modification of the inflaton kinetic term changes the

2-point function of the inflaton in the de Sitter phase, which corresponds to a change in

the expression of Ω. Finally also the expression of the entropy changes, since for a generic

gravity Lagrangian the Wald formula [23, 24] must be employed:

S = −4π

κ

∫

H
dΣµνQ

µν (4.9)

where κ is the surface gravity on the horizon H, dΣµν = 1
2ǫµνdA is the area element (ǫµν

is a tensor binormal to H normalized such that ǫµνǫ
µν = −2) and

Qµν =
δL

δRµνρσ
∇ρξσ − 2∇ρ

δL
δRµνρσ

ξσ , (4.10)

where ξµ is the Killing vector, which on the horizon satisfies the relation ∇µξν = κǫµν .

We can now proceed to calculate the variation of the entropy in analogy to what has

been done in the black hole case [25] or in slow-roll for Einstein gravity [17]. We start
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Figure 1. The stretched horizon (in blue) in de Sitter space, with the unit vectors uµ ∝ ξµ and

nµ and the region Υ (in red) spanned by the area section Σ(t), as defined in the text.

defining (see figure 1) a stretched horizon Θ inside the true de Sitter horizon H (in FRW

coordinates it would correspond to the region of points with r = αH−1e−Ht, with α < 1).

Within Θ the Killing vector ξµ = (1,−Hr, 0, 0) has constant norm ξµξ
µ = −(1− α2). The

norm is zero on the horizon, since ξµ becomes null, and normalized to -1 on the origin

r = α = 0, where the FRW observer sits. Θ is also characterized by two unit vectors

uµ = ξµ/(1−α2)1/2 parallel to the Killing vector and nµ = (α,−Hr/α)/(1−α2)1/2, which

is orthogonal to Θ and pointing away from the horizon. In the limit where Θ approaches

H, α → 1 and both uµ and nµ become proportional to ξµ, which becomes null. On the

stretched horizon, at each moment in time t, we can use these two vectors to define the

area element dΣµν = 1
2(nµuν − nνuµ)dA ≡ 1

2ǫµνdA for the 2-sphere Σ(t), which is the

constant-t section of Θ. Moving along ξµ, Σ spans a three-volume Υ where κ is constant

and the variation of the entropy can be computed using Stokes theorem:

− δ
4π

κ

∫

Σ(t)
dΣµνQ

µν = −4π

κ

∮

∂Υ
dΣµνQ

µν =
4π

κ

∫

Υ
dτdAnµ∇νQ

µν . (4.11)

where dτ is the unit (proper) time interval in Θ.

After few algebraic manipulations (see appendix A) we arrive at the following formula:

dS

dt
=

2π

κ

∫

H
dA ξµξν

(
δL

δRµαβγ
Rν

αβγ − 2∇α∇β
δL

δRµαβν

)
. (4.12)

After using the equations of motion (4.8) we have

dS

Hdt
=

2π

κ

A(H)Π

H
∂µφ∂νφ ξ

µξν = 12Π
2π2

3

φ̇2

H4
. (4.13)

The first non trivial result is that in eq. (4.13) the non-trivial dependence on the

Riemann tensor of the l.h.s. of the Einstein equation (4.6) is completely gone after using

the Wald formula for the entropy. We will now show that the residual dependence in the

r.h.s. will also disappeared after taking into account the modification of the inflaton action.
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Indeed the kinetic term for the inflaton in eq. (4.2) is not canonical anymore. This implies

that the corresponding 2-points function during the de Sitter phase now reads

〈φ2〉 = H3

4π2Π
t+ . . . (4.14)

The corresponding definition (3.2) for Ω will thus be

Ω =
φ̇2

6H

∆t

∆φ2
= Π

2π2

3

φ̇2

H4
, (4.15)

which finally allows us to write eq. (4.13) again in the form

dS

dN
= 12Ω . (4.16)

The differential equation governing quantum fluctuations of the inflaton will also have the

same form as in the Einstein gravity case once Ω is properly defined according to eq. (4.15).

We thus conclude that, in the approximation we are working, i.e. at leading order

in the slow-roll parameter, higher derivative corrections in the Lagrangian do not modify

the calculation of the probability distribution of the volume of the reheating surface after

inflation. In particular the bound on the volume of the universe after slow-roll inflation is

universal also with respect to higher derivative corrections — the coefficient “1/2” in the

exponent of eq. (3.10) does not receive corrections from higher-derivative terms!

It is easy to check that the proof above extends also in D dimensions, by using the

formulae of section 3. In particular all equations before (4.12) do not depend explicitly

on the number of dimensions. The latter starts appearing only in the r.h.s. of eq. (4.13),

after the substitution of the expression for the horizon area. At this point, however,

higher derivative terms have already been simplified out, except for the function Π, which

factorizes. The discussion thus follows as in section 3, the only difference being the extra

factor of Π, which has to be reabsorbed in the definition of Ω, as in eq. (4.15).

5 Universality of the bound in multifield inflation

After having seen that the bound on the finite volume holds in any number of dimen-

sions and after including higher derivative terms in the Eistein-Hilbert action, we now

pass to the study of the case where we have more than one light field during inflation:

multifield inflation.

It is straightforward to generalize the procedure of ref. [15] that led to eq. (2.2) to the

case of multifield inflation. We now have

∇2f(τ , z)− 2
√
Ω ·∇f(τ , z) + f(τ , z) log[f(τ , z)] = 0 , (5.1)

where

∇ = ∂τ , τ = 2π
√
6
φ

H
,

√
Ω =

√
2π2

3

φ̇

H2
, (5.2)

the boldface font is used for vectors in field space, and we assumed for the moment that

the reheating surface is just a single point at τ = τr. We assume there is also a barrier
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Figure 2. Depending on the starting point, inflaton trajectories in field space (in magenta) drift

towards different points of the reheating surface (in red), which in general correspond to different

vacua. The field space is often confined by boundary regions (in blue) where, for instance, the

energy density of the scalar potential become Planckian.

B that bounds the moduli space. In this case the generating function must satisfy the

boundary conditions

f(τr, z) = e−z , (5.3)

n̂ ·∇f(τ , z)|
τ∈B = 0 ,

where n̂ is the normal versor to the barrier hypersurface. This is a simple generalization

of the analogous boundary condition for single field inflation eq. (2.4). The probability

distribution for the volume is given by

ρ(V, τ ) =

∫ 0++i∞

0+−i∞
dz ezV f(τ , z) . (5.4)

More generally the reheating region may be a surface in field space R, as depicted in

figure 2. In this case different points on R might correspond to local universes with

different physical properties. Hubble patches terminating inflation on different points of

the reheating region may have different Hubble constants, entropy, and even correspond to

different vacua (e.g. if R is disconnected or it represents a moduli space). In this situation

it is not clear the meaning of the bound on the volume relative to the entropy: the entropy

may vary substantially from point to point inR, and it is not obvious which of the entropies

associated to the various vacua we should take. We may consider the largest one as an

upper bound, but, as we are now going to see, we can have a more stringent definition.

In fact, it is possible to keep track of the type of volume produced at the end of inflation

by tracking the point where the fields exit inflation. If we assume that the reheating surface

R is made of a set of n disjoint points (τ i
r) in field space, the boundary condition at R for

f would read

f(τ i
r , ~z) = e−zi , (5.5)
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generalizing the boundary condition of eq. (5.3) by using a different variable zi for each

reheating point τ i
r . The conjugate variable to each zi would be Vi, the volume of type

τ i
r . The probability distribution of creating the volumes ~V = {V1, . . . , Vn} of type ~τr =

{τ 1
r , . . . , τ

n
r } respectively, is then the n-dimensional Laplace anti-transform

ρ(~V , ~τ ) =

∫

C
d~z e

~V ·~z f(~τ , ~z) , (5.6)

where C = {~z : z ∈ C ∧ Re(zi) = 0+} simply generalizes the contour of eq. (2.1).

In the case of a continuos reheating surface in field space the vector ~τr becomes a

continuous variable τr ∈ R, ~z and ~V become functions of τr respectively z(τr) and V (τr),

and the formula for the probability distribution of the volume becomes a functional integral

ρ(V (τr), τ ) =

∫

C
Dz(τr) e

∫
R dτ ′

rV (τ ′
r)z(τ

′
r) f(τ , z(τr)) , (5.7)

with τr spanning R and normalized so that
∫
R dτr = 1, and f(τ , z(τr)) now satisfying

∇2f(τ , z(τr))− 2
√
Ω ·∇f(τ , z(τr)) + f(τ , z(τr)) log[f(τ , z(τr))] = 0 , (5.8)

f(τr, z(τr)) = e−z(τr) ,

n̂ ·∇f(τ , z(τr))|τ∈B = 0 .

It is possible at this point to show that eq. (5.1) does not apply only to the case where

we have a single reheating point. It is also the generating function for the probability

distribution of the total volume V =
∫
R dτr V (τr) produced at the end of inflation. Indeed

the probability distribution for the total volume V is given by:2

ρ(V, τ ) =

∫
DV (τr) ρ(V (τr), τ ) δ

(∫

R
dτ ′

r V (τ ′
r)− V

)
=

∫ 0++i∞

0+−i∞
dz ezV f(τ , z) . (5.9)

This is exactly eq. (5.4). Therefore we conclude that solving equation (5.1) with boundary

conditions (5.3) corresponds to compute the generating function for the probability distri-

bution of the total reheated volume, independently of the particular kind of volumes this

is made of.

At this point the equation for the moments of the distribution (2.7) can be simply

generalized to the multifield case as follows

〈V (τ ′
r)V (τ ′′

r ) . . . V (τ (n)
r )〉 = (−1)n

δnf (τ , z(τr))

δz(τ ′
r)δz(τ

′′
r ) . . . δz(τ

(n)
r )

∣∣∣∣∣
z(τr)=0

. (5.10)

2The actual derivation reads

ρ(V, τ )=

∫

DV (τr) ρ(V (τr), τ ) δ

(
∫

R
dτ

′
rV (τ ′

r)− V

)

=

∫ ∞

−∞
dλ

∫

DV (τr) ρ(V (τr), τ ) e
iλ(

∫
R

dτ ′

r
V (τ ′

r
)−V )

=

∫ ∞

−∞
dλ

∫

DV (τr)

∫

Dz(τr) e
∫
R

dτ ′

r
V (τ ′

r
)z(τ ′

r
)+iλ(

∫
R

dτ ′

r
V (τ ′

r
)−V )

f(τ , z(τr))

=

∫ ∞

−∞
dλ

∫

Dz(τr) e
−iλV

f(τ , z(τr)) δ(λ−iz(τr))=−i

∫ ∞

−∞
dλ e

−iλV
f(τ ,−iλ)=

∫ 0++i∞

0+−i∞
dz e

zV
f(τ , z) .
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The differential equations for the moments of the distributions are linear and in par-

ticular the one for the average volume reads

∇2〈V (τ ′r)〉 − 2
√
Ω ·∇〈V (τ ′

r
)〉+ 〈V(τ ′

r
)〉 = 0 (5.11)

〈V (τ ′
r
)〉|τ=τr = δ(τ ′

r
− τr) ,

n̂ ·∇〈V (τ ′
r
)〉
∣∣
τ∈B = 0 .

The bound. We are now ready to give a more stringent definition of the bound that

we believe it will still be satisfied in general. In the case of multifield inflation, there are

multiple kind of vacua. According to the meaning of the bound on the volume of the

reheating surface in single field inflation, we expect that, in the non eternal inflation phase

the total volume produced of any kind be bounded by the corresponding de-Sitter entropy;

in other words we expect a bound to exist for any particular kind of volume. We are

therefore led to conjecture the following simple generalization of the bound on the volume

of inflation:

P

(∫

I
dτr V (τr) > SupI

[
eS(τr)/2

]
;V < +∞

)
= (5.12)

=

∫

I
dτr

∫ +∞

eS(τr)/2δ(τ ′
r−τr)

DV (τ ′
r) ρ

(
V (τ ′

r, τ )
)
. SupI

[
e−k eS(τr)/2

]
,

for any subset I of R and with k being a numerical factor of order one. The bound on

the volume states that the probability to create a volume of kind τr larger than eSdS/2 and

total volume finite, vanishes up to non-perturbatively small quantum gravity effects.

In particular, for the average of the volume this implies

∫

I
dτr 〈V (τr)〉 . SupI

[
eS(τr)/2

]
, (5.13)

and similarly for higher moments.

Given a certain multifiled inflationary model, one can solve eq. (5.8) and obtain the

probability distribution for any kind of volume after performing the (functional) inverse

Laplace transform (5.7). In practice, such a task is extremely difficult from a technical point

of view. What we will do next is presenting two simple examples where we are able to

compute explicitly 〈V (τr)〉 and that offer a non-trivial check for the bound in (5.13). In fact

checking for the average is expected to be enough because as it has been shown in the single

field case the probability distribution is always sharply peaked around the average value.

5.1 First example: the waterfall

The first and simplest example we consider is the two-field case τ = (x, y) where the

slope of the potential is uniform everywhere and orthogonal to the reheating surface at

τr = (0, yr), i.e.
√
Ω = (

√
Ω, 0). Physically this corresponds to the inflationary model

where the second field acts just as a classically irrelevant spectator (figure 3). In this case

the two fields decouple because of the shift symmetry in y, and we expect the result to be

quite close to the single field case. In particular, we expect to recover the same result as
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Figure 3. Average volume distribution 〈V (yr)〉 as a function of yr for the two inflationary examples:

the waterfall (left) and the tilted waterfall (right). The top half of the figure represents the field

space (x, y) where the inflaton random-walks, the brown line at x = 0 being the reheating surface

in field space where inflation ends. The two plots on the bottom represent the average volume

distributions defined on such surfaces. The red-dashed lines refer to the classical evolution. Near

the classical limit, for large Ω, the distribution (in blue) is peaked around the classical exit point.

Near the phase transition to eternal inflation, at Ωx & 1, the distribution (in magenta) broadens

(left) and drifts towards smaller values of yr (right). The green dashed lines on the left plot

correspond to the change in behaviour from Gaussian to exponential in the Ω ≫ 1 case, and the

width of the Lorentzian in the Ωx & 1 case. The magenta dashed lines on the right plot represent

the position of the average reheating point 〈yr〉 in the same two cases.

in single field inflation once we integrate over the position of the reheating point. Though

quite similar to the single field case, this example is simple enough to allow us to calculate

explicitly also the distribution of “different volumes” on the reheating surface. This will

lead us to quite non-trivial results.

For example let us calculate the average volume of type yr given the starting point τ =

(x, y). Applying (5.10) we obtain

〈V (yr)〉 = − δf(x, y; z(y′r))

δz(yr)

∣∣∣∣
z(y′r)=0

≡ −ψ(x,∆y) . (5.14)

where we have used the shift symmetry in y to assume that the y-dependence can be only

in the form ∆y = y − yr. ψ(x,∆y) satisfies

ψxx + ψyy − 2
√
Ωψx + ψ = 0 , (5.15)

ψ(0,∆y) = −δ(∆y) ,
ψx(x,∆y)

∣∣
x=xb

= 0 ,

where xb is the y-independent location of the barrier.

The solution reads

ψ(x,∆y) =

∫ ∞

−∞

dk

2π
ei k∆yωk−e

ωk+x+ωk−xb − ωk+e
ωk−x+ωk+xb

ωk+eωk+xb − ωk−eωk−xb
, (5.16)

ωk± =
√
Ω±

√
Ω− 1 + k2 .
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For Ω > 1 the limit xb → ∞ can easily be done and we get the following expression

for the average volume of type yr

〈V (yr)〉 =
∫ ∞

−∞

dk

2π
ei k∆y+ωk−x =

√
Ω− 1

π

x√
x2 + y2

e
√
ΩxK1[

√
(Ω− 1)(x2 + y2)] , (5.17)

where K1[x] ≡ 1
2

∫∞
0 dte−

x
2 (t+

1
t ) is the modified Bessel function.

It is easy to check that the average of the total volume

〈V 〉 =
∫ ∞

−∞
dyr〈V (yr)〉 =

∫ ∞

−∞
dyr

∫ ∞

−∞

dk

2π
eik∆y+ωk−x = eω0−x = e

3Nc
2

1+
√

1−1/Ω (5.18)

coincides with the one-field case, eq. (2.8). From this we see that the phase transition to

eternal inflation happens at

Ω = 1 . (5.19)

This result is not surprising given the shift symmetry in y. However from eq. (5.17) we also

have the information on the shape of the volume distribution on the reheating surface. As

expected the distribution is peaked around yr = y, which is the classical exit point. Let us

look at the shape in several limits (see also figure 3).

We can expand the Bessel function to obtain

〈V (yr)〉 → e
−

√
Ω−1
x

∆y2

1+
√

1+∆y2/x2 , for (Ω− 1)(x2 +∆y2) ≫ 1 , (5.20)

which is a Gaussian in ∆y for ∆y . x (when the y-distance of the starting point from the

reheating point is smaller than the classical trajectory). The tail of the Gaussian turns

into an exponential for ∆y & x while the width of the Gaussian is always smaller than x.

Instead, very near to the transition to eternal inflation, Ω → 1, the distribution ap-

proaches a Lorentzian for ∆y small enough:

〈V (yr)〉 → x

x2 +∆y2
, for (Ω− 1)(x2 +∆y2) ≪ 1 (5.21)

while the tail becomes again exponential e−(
√
Ω−1 ∆y) for ∆y & (Ω− 1)−1/2.

The bound on the volume is in this case trivially satisfied. The reheating entropy is the

same for every reheating point (S(y) = S), and for the volume associated to each reheating

region I we have

∫

I
dyr 〈V (yr)〉 ≤ 〈V 〉 = e

3Nc
2

1+
√

1−1/Ω < e−S/2 . (5.22)

5.2 Second example: tilted waterfall

We now consider a generalization of the former case. We imagine that the reheating surface

is defined at x = 0 as in the former case. However, now the gradient of the inflaton potential

is not orthogonal to the reheating surface:
√
Ω = (

√
Ωx,

√
Ωy). Consequently the value

of the Hubble radius at each point of the reheating surface can be different, this fact will

allow us to test the generalized bound in (5.13) in a non-trivial way.
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In this case eq. (5.15) becomes

ψxx + ψyy − 2
[√

Ωxψx +
√
Ωyψy

]
+ ψ = 0 , (5.23)

with the same boundary conditions.3 The solution for the average volume is similar to the

previous case:

〈V (yr)〉 =
∫ ∞

−∞

dk

2π
eik∆y+

√
Ωxx+

√
Ωy∆y−

√
Ω−1+k2x (5.24)

=

√
Ω− 1

π

x√
x2 +∆y2

e
√
Ωxx+

√
Ωy∆yK1[

√
(Ω− 1)(x2 +∆y2)] , (5.25)

where we defined

Ω ≡
(√

Ω
)2

= Ωx +Ωy . (5.26)

From the solution above, we notice that this time the phase transition happens when

Ωx becomes smaller than one, i.e. before Ω reaches one. Indeed if we consider the total

average volume:

〈V 〉=
∫ ∞

−∞
dyr〈V (y)〉=

∫ ∞

−∞
dyr

∫ ∞

−∞

dk

2π
eik∆y+

√
Ωxx+

√
Ωy∆y−

√
Ω−1+k2x = e(

√
Ωx−

√
Ωx−1)x ,

(5.27)

we can see that it is not analytic at Ωx = 1, signaling the onset of the eternal inflation

regime. This was indeed expected from the symmetries of the problem — it is only the

gradient of the potential normal to the reheating surface
√
Ωx that matters in determining

the transition to eternal inflation. The slope
√
Ωy along the y-direction, parallel to the

reheating surface obviously plays no role for the phase transition. Still the information

about the reheating point yr is non-trivial in this model, as for example each different

volume yr is associated to a different Hubble scale or more generally to a different kind of

vacuum. If we look at the average value of the reheating point defined as

〈yr〉 =
∫∞
−∞ dyr yr 〈V (yr)〉∫∞
−∞ dyr 〈V (yr)〉

= y − x

√
Ωy

Ωx − 1
, (5.28)

we can see that for Ωx ≫ 1, 〈yr〉 coincides with the exit point of the classical trajectory

yclr = y − x
√
Ωy/Ωx. In this limit, 〈V (yr)〉 is a Gaussian sharply peaked around yclr , as in

the previous example. Instead as Ωx → 1, 〈yr〉 → −∞, and 〈V (yr)〉 broadens as roughly

shown in figure 3. This result is qualitatively expected: the closer we get to the phase

3Actually since in this case there is a non vanishing slope also in the y direction, the barrier will be

naturally at angle, normal to the vector
√

Ω, if, for example, corresponds to the region where H =const.

In particular it will always intersect the reheating surface in one point, as H will be Planckian somewhere

on R. For this analysis we are interested only in the region far from the barrier, where boundary effects can

be neglected. So we took the barrier to be parallel to the reheating surface as in the previous example and

then took the limit τb → ∞. For our purposes this is a safe approximation because, as explained in [15],

finite boundary effects are expected to make the actual bound even stronger since they cut-off inflaton

trajectories getting arbitrary far from the reheating surface.
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transition, the longer the stochastic trajectories become, and the more they drift downhill

(because of the
√
Ωy tilt). This explains why the singularity in 〈V (yr)〉 only appears at

Ω = 1. Indeed even when Ωx < 1, 〈V (yr)〉 can be finite for any yr, the infinity of 〈V 〉 being
due to trajectories exiting at yr → −∞. When the whole Ω = 1, then also 〈V (yr)〉 has

to start diverging because trajectories can start to go up-hill also in the y direction and

produce infinite volume at finite yr. Graphically the phase diagram looks like as follows:

Ωx

Ωy

V  < 8
V  = 8

V  = 8

V(y)  < 8

r

V(y)  < 8

r

8V(y)  =
r

1

10

Notice that for Ωx < 1 but Ω > 1 (the yellow region above) we have eternal inflation only

because the total volume diverges, while 〈V (yr)〉 stays finite for every finite yr. In realistic

models we would expect also the range of y to be finite (as the shift symmetry in y is broken

by Ωy). In this case the divergence in 〈V 〉 disappears being due to the non integrability of

〈V (yr)〉. The yellow region turns into a non-eternal slow-roll inflation region and the phase

transition is expected to happen now at Ω = 1.

We are now ready to formulate and test the bound in this multi field case. Eq. (5.13)

must be checked for any interval I on the reheating surface, however since the entropy

in this example is monotonically decreasing with yr it will be enough to consider just the

intervals I = [y0r ,∞) for every y0r . Notice that the total volume is bounded by

〈V 〉 = e(
√
Ωx−

√
Ωx−1)x = e

6Nc
1

1+
√

1− 1
Ωx < eSc/2 (5.29)

where Sc is the entropy as calculated at the value of the Hubble constant corresponding to

the classical exit point yclr of the reheating surface and we used the relation x = 6
√
ΩxNc.

It follows that the bound is trivially satisfied on any interval I = [y0r ,∞) with y0r < yclr since
∫ ∞

y0r

dyr 〈V (yr)〉 < 〈V 〉 < eSc/2 < eS(y
0
r)/2 . (5.30)

We just need to show now that the bound is not violated when y0r > yclr .

For (Ω− 1)(x2 +∆y2) ≫ 1, 〈V (yr)〉 behaves like

〈V (yr)〉 ∼ e
√
Ωxx+

√
Ωy∆y−

√
(Ω−1)(x2+∆y2) , (5.31)

which is a falling exponential for yr > yclr (since 〈V (yr)〉 is peaked around 〈yr〉 < yclr ).

Therefore the integral in the l.h.s. of eq. (5.13) is dominated by the value of the integrand

– 18 –
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at y0r . We thus need to check whether

〈V (y0r )〉 < e
S(y0r )

2 , (5.32)

up to pre-exponential factors. At leading order in the slow roll approximation we also have

that S(y0r ) = Sc − 2
√

Ωy(y
0
r − yclr ) and looking only at the exponents of (5.32) we have

√
Ωxx+

√
Ωy∆y −

√
(Ω− 1)(x2 +∆y2) <

Sc
2

−
√
Ωy(y

0
r − yclr ) . (5.33)

Using the fact that x = 6
√
ΩxNc and defining δy = y0r − yclr , after a bit of algebra we get

6
√
ΩNc


√

Ω− 1

√√√√1 +
Ωx

Ω

δy

x

(
δy

x
− 2

√
Ωy

Ωx

)
+
√
Ω

(
Sc

12ΩNc
− 1

)
 > 0 . (5.34)

This is the sum of two terms. The first is positive and the second is also positive since

Sc > ∆S = Sc − Sstart = 12ΩNc.

Of course, the bound continues to hold even when (Ω − 1)(x2 + ∆y2) ≫ 1 is not

satisfied — right before entering the phase of eternal inflation — because the distribution

of volumes move further towards large negative values of yr where the bound is trivially

satisfied because the volume produced in I is smaller.

Notice also that the l.h.s. of (5.34) is minimized at δy = ∆yc (corresponding to y0r = y),

where we get

6Nc

[√
Ωx

√
Ω− 1 + Ω

(
Sc

12ΩNc
− 1

)]
> 0 , (5.35)

which can be saturated only when Sc = ∆S and Ω = 1, which implies Ωy = 0, i.e. the

untilted potential of the previous section, corresponding in practice to single-field inflation.

This shows that tilting the reheating surface with respect to the gradient in field space

actually makes the bound stronger. It also suggests that only single field slow-roll inflation

manages to actually saturate the bound, any other multifield models which move further

away from the symmetric setup of the single field case, seem to make the bound stronger,

by producing less volume.
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Figure 4. Each node corresponds to the insertion of a Riemann tensor, each link to the contraction

of a pair of indices. Closed orientable loops can be identified such that all nodes will end up having

an equal number of incoming and outgoing lines. Hence any scalar contraction of Riemann tensors

can be written just in terms of Riemann tensors with two upper and two lower indices contracted

without using the metric.

A Some explicit computations

In this appendix we report some of the calculations omitted in section 4.

First we show that any given Lagrangian L, generic function of the metric gµν , the

Riemann tensor Rµνρσ and scalar quantities φ, with no explicit covariant derivatives, can

be rewritten just in terms of the Riemann tensors with two covariant and two contravariant

indices (Rµν
ρσ and Rµ

ν
ρ
σ) without any explicit dependence on the metric gµν , i.e.

L(gµν , Rµνρσ, . . . , φ) = L̃(Rµν
ρσ, R

µ
ν
ρ
σ, . . . , φ) . (A.1)

Any term in L can be viewed as a network of nodes and lines, each node corresponding to

the insertion of a Riemann tensor, each line to the contraction of two indices with a metric.

Each node has thus four lines attached to it. The statement (A.1) corresponds to showing

that the lines of each network can be oriented such that each node has two incoming and

two outgoing lines (see figure 4).

Consider now a node of the network and let start following a line departing from it.

Since every node has an even number of lines attached, when the line arrives to a node there

will be another line which has not been used yet, which can be followed, until eventually

the path will close arriving back to the initial node. At this point we have a closed path

which we can orient. Each node in this path will have an equal number of incoming and

outgoing lines and an even number of unused lines. We can thus repeat the construction

by starting with another unused line, forming another closed loop and orienting it. When

we will have used all the available links we will have oriented all lines such that an equal

number of incoming and outgoing line will pass through each node. This proves eq. (A.1).

We prove now that the equations of motion (4.6) can be rewritten as in eq. (4.8). First

– 20 –



J
H
E
P
0
5
(
2
0
1
2
)
0
3
5

we use that

L̃(Rµν
ρσ, R

µ
ν
ρ
σ, . . . , φ) = L̃(Rαβρσg

αµgβν , Rανβσg
αµgβρ, . . . , φ)

δL̃
δRµν

ρσ
=

δ1L̃
δ1Rαβρσ

gαµgβν

δL̃
δRµ

ν
ρ
σ
=

δ2L̃
δ2Rανβσ

gαµgβρ

where δn/δnRµνρσ means that we only differentiate with respect to the Rµνρσ appearing in

the n-th argument. We thus have that

δL̃
δRαβ

ρσ
δRαβ

ρσ +
δL̃

δRα
β
ρ
σ
δRα

β
ρ
σ =

δ1L̃
δ1Rαβρσ

gαµgβνδR
µν

ρσ +
δ2L̃

δ2Rανβσ
gαµgβρδR

µ
ν
ρ
σ

=

(
δ1L̃

δ1Rµνρσ
+

δ2L̃
δ2Rµνρσ

)
(δRµνρσ − 2Rα

νρσδgαµ)

=
δL

δRµνρσ
(2∇µ∇σδgνρ −Rα

νρσδgαµ) (A.2)

where in the last step we used the identity (4.7) and the fact that

δ1L̃
δ1Rµνρσ

+
δ2L̃

δ2Rµνρσ
=

δL
δRµνρσ

. (A.3)

Hence, we finally have

δL̃
δRαβ

ρσ

δRαβ
ρσ

δgµν
+

δL̃
δRα

β
ρ
σ

δRα
β
ρ
σ

δgµν
= 2∇ρ∇σ

δL
δRρ(µν)σ

−R(µ
αβγ

δL
δRν)αβγ

, (A.4)

which can be used to derive eq. (4.8) from eq. (4.6).

The last missing step to explicitly show the universality of the bound with respect to

higher derivative terms, is the relation between the variation of the de Sitter entropy and

the metric equations of motion, in particular how to get eq. (4.12) from the variation of

eq. (4.9). We start with the Wald formula for the entropy of Σ(t), which reads

S(t) = −4π

κ

∫

Σ(t)
dΣµν

(
δL

δRµνρσ
∇ρξσ − 2∇ρ

δL
δRµνρσ

ξσ

)
, (A.5)

where κ is the surface gravity on the stretched horizon. Using Stokes theorem it follows

that

dS

dt
=

4π

κ

∫

Υ

dτ

dt
dAnµ∇ν

(
δL

δRµνρσ
∇ρξσ − 2∇ρ

δL
δRµνρσ

ξσ

)

=
4π

κ

∫

Υ
dA ñµ

[
∇ν

(
δL

δRµνρσ
− 2

δL
δRµρνσ

)
∇ρξσ +

δL
δRµνρσ

∇ν∇ρξσ − 2∇ν∇ρ
δL

δRµνρσ
ξσ

]

=
4π

κ

∫

Υ
dA ñµξσ

(
δL

δRµνρτ
Rσ

νρτ − 2∇ν∇ρ
δL

δRµνρσ

)

α→0−→ 4π

κ

∫

H
dA ξµξν

(
δL

δRµσρτ
Rν

σρτ − 2∇σ∇ρ
δL

δRσµνρ

)
, (A.6)
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where in the first step we defined ñµ ≡ dτ
dt n

µ = (α,−Hr/α, 0, 0), which is normalized like

the Killing vector (ñµñµ = −ξµξµ), in the second step we used the cyclic properties of the

Riemann tensor, in the third the fact that

∇(µξν) = 0 , ∇µ∇νξρ = Rσ
µνρξσ , (A.7)

and in the last we performed the horizon limit α → 1. Eq. (A.6) matches eq. (4.12) and

this terminates our proof.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License which permits any use, distribution and reproduction in any medium,

provided the original author(s) and source are credited.
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