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a b s t r a c t

Let G = (V , E) be a graph without isolated vertices. For a positive integer k, a set S ⊆ V is a
k-distance paired-dominating set if each vertex in V −S is within distance k of a vertex in S
and the subgraph induced by S contains a perfect matching. In this paper, we present two
linear time algorithms to find a minimum cardinality k-distance paired-dominating set in
interval graphs and block graphs, which are two subclasses of chordal graphs. In addition,
we present a characterization of treeswith uniqueminimum k-distance paired-dominating
set.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Let G = (V , E) be a simple graph without isolated vertices. The distance between u and v, denoted by dG(u, v), is the
minimum length of a u-v path in G. For a vertex v ∈ V and a positive integer k, the k-neighborhood of v in G is defined
as Nk(G, v) = {u ∈ V | dG(u, v) = k}. When k = 1, it is the neighborhood of v and simply denoted by N(G, v). The
set Nk(G, v) =

⋃k
i=1 Nk(G, v) = {u ∈ V | 1 ≤ dG(u, v) ≤ k} is called the open total k-neighborhood of v in G and the

set Nk[G, v] = Nk(G, v) ∪ {v} is called the closed total k-neighborhood of v. For S ⊆ V , Nk(G, S) =
⋃

v∈S N
k(G, v) and

Nk[G, S] = Nk(G, S)∪ S. If G is clear from the content, these notations are also denoted by d(u, v), Nk(v), N(v), Nk(v), Nk[v],
Nk(S) and Nk[S], respectively. For S ⊆ V , the subgraph of G induced by the vertices in S is denoted by G[S]. Amatching in a
graph G is a set of pairwise nonadjacent edges in G. For a matchingM in G, a vertex v is unsaturated by M if v is not incident
to any edge of M . Otherwise, we say that v is saturated by M . A perfect matching M in G is a matching such that G has no
unsaturated vertex by M . For a set S ⊆ V and a vertex v ∈ S, the set Pk(v, S) = Nk(v) − Nk[S − {v}] is called the private
k-neighborhood of v with regard to S and a vertex u ∈ Pk(v, S) is called a private k-neighbor of v with regard to S. Some other
notations and terminology not introduced in here can be found in [16].
Domination and its variations in graphs have been extensively studied [2,7,8]. A set S ⊆ V is a dominating set for a graph

G = (V , E) if every vertex in V − S is adjacent to a vertex in S. A set S ⊆ V is a paired-dominating set of G if S is a dominating
set of G and the induced subgraph G[S] has a perfect matching. The paired-domination was introduced by Haynes and Slater
[9]. There are many results on this problem [3–5,10,12,13,15].
For a positive integer k, a set S ⊆ V is a k-distance paired-dominating set if each vertex in V − S is within distance k of

a vertex in S and G[S] has a perfect matching. Let M be a perfect matching of G[S]. If e = uv ∈ M , we say that u and v are
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paired in S or u (v) is the paired vertex of v (u). We say that v ∈ V is dominated by u, if u ∈ S and d(u, v) ≤ k. The k-distance
paired-domination problem is to determine the k-distance paired-domination number, which is the minimum cardinality of a
k-distance paired-dominating set for a graph G. The k-distance paired-domination problem was introduced by Raczek as a
generalization of paired-domination [14]. We can view a paired-dominating set as a k-distance paired-dominating set with
k = 1. In [14], Raczek proved that k-distance paired-domination problem isNP-complete even restricted to bipartite graphs.
A graph is chordal if every cycle of length at least four has a chord. Chordal graphs are raised in the theory of perfect

graphs, see [6]. It contains trees, split graphs, interval graphs, block graphs, directed path graphs, undirected path graphs
. . . as subclasses. The subclasses of chordal graphs are of most interesting in the study of many graphs optimization problem
[2]. In [4], it was proved that paired-domination problem isNP-complete even restricted to split graphs, whose vertex set are
the disjoint union of a clique C and a stable set S. For k ≥ 2, it is easy to point out that k-distance paired-domination problem
is NP-complete for chordal graph by transforming the paired-domination problem to it as follows. Let G be a chordal graph.
We construct the new graph G∗ by attaching a path of length k − 1 to every vertex of G. Then, G has a paired-dominating
set of size at most l if and only if G∗ has a k-distance paired-dominating set of size at most l. However, for split graphs, any
two vertices in clique C can form a minimum k-distance paired-dominating set. Hence, the k-distance paired-domination
number is two for any nontrivial split graph when k ≥ 2. Meanwhile, a split graph can be partitioned into a clique C and a
stable set S in polynomial time [11].
Based on the above discussion, we focus on the k-distance paired-domination problem on other subclasses of chordal

graphs in this paper. We provide two linear algorithms to find the minimum k-distance paired-dominating set in interval
and block graphs. The algorithms presented in this paper generalize the algorithms in [4]. In Section 2, a linear algorithm
will be given for this problem in interval graphs. In Section 3, we will present a linear algorithm for this problem in block
graphs. In Section 4, we give a characterization of trees with the unique minimum k-distance paired-dominating set.

2. k-distance paired-domination in interval graphs

An interval representation of a graph is a family of intervals assigned to the vertices so that vertices are adjacent if and
only if the corresponding intervals intersect. A graph having such a representation is an interval graph. Booth and Lueker [1]
gave an O(|V (G)| + |E(G)|)-time algorithm for recognizing an interval graph and constructing an interval representation
using PQ -tree.
Next, we introduce a labeling method to find a minimum k-distance paired-dominating set in an interval graph. Let

G = (V , E) be an interval graph and its interval representation is I . For every vertex ui ∈ V , Ii is the corresponding interval,
and let ai (bi, respectively) denote the left endpoint (right endpoint, respectively) of interval Ii. We order the vertices of G
by u1, u2, . . . , un in increasing order of their left endpoints. It is obvious that if uiuj ∈ E with j < i, then ujuk ∈ E for every
j + 1 ≤ k ≤ i. Let Vi = {uj ∈ V | j ≤ i}. If G is a connected interval graph, it is easy to know that G[Vi] is also connected. In
this paper, we only consider connected interval graphs.
Let F(ui) = uj for 2 ≤ i ≤ n, where j = min{a | uaui ∈ E and a < i}. In particular, we assume that F(u1) = u1. We define

the notation F l(u) as follows:

F l(u) =
{

F(u) if l = 1;
F(F l−1(u)) if l ≥ 2;

Let w(ui) = uj for 1 ≤ i ≤ n, where j = max{a | d(ua, ui) > k and a < i}. In particular, if w(ui) does not exist, we assume
thatw(ui) = u0 (u0 6∈ V ). For convenience, we use kPDi to denote a minimum k-distance paired-dominating set of G[Vi].

Lemma 1. Let G be an interval graphwith vertex ordering u1, u2, . . . , un by the increasing order of their left endpoints. If F k(ui) 6=
ui and F k+1(ui) = F k(ui), then {u1, u2} is a kPDi.

Proof. F k+1(ui) = F k(ui) implies that F k(ui) = u1. Let l be the minimum index such that F l(ui) = u1. Assume that
uia = F

a(ui) for 1 ≤ a ≤ l. Then 1 = il < il−1 < · · · < i1 < i0 = i. For any vertex ub (6=u1) in Vi, there exists an integer c
such that 1 ≤ c ≤ l and ic < b ≤ ic−1. uicuic−1 ∈ E implies that uicub ∈ E. Thus d(u1, ub) ≤ d(u1, uic )+1 ≤ l−c+1 ≤ l ≤ k.
As u1u2 ∈ E, {u1, u2} is a kPDi. �

Lemma 2. Suppose G is an interval graph with vertex ordering u1, u2, . . . , un by the increasing order of their left endpoints. Then
|kPDi+1| ≥ |kPDi| for 2 ≤ i ≤ n− 1.

Proof. If there is a kPDi+1 such that it does not contain ui+1, we claim that dG[Vi](ua, ub) ≤ dG[Vi+1](ua, ub) for any two vertices
ua, ub ∈ Vi. Suppose to the contrary that there exist two vertices ua, ub ∈ Vi with dG[Vi](ua, ub) > dG[Vi+1](ua, ub). Then any
shortest ua-ub path contains ui+1. Let P : ua = ui1 , ui2 , . . . , ui+1, . . . , ub be a shortest ua-ub path with a < b. There exists
an integer l such that ij < b and il+1 > b for j = 1, 2, . . . , l. Hence, uilub ∈ E and the path ua = ui1 , ui2 , . . . , uil , ub is a
shorter ua-ub path than P . It is a contradiction. So, a kPDi+1 is also a k-distance paired-dominating set of G[Vi], and hence
|kPDi+1| ≥ |kPDi|. Therefore, we assume that S is a kPDi+1 and ui+1 ∈ S.

Case 1. ui+1 is paired with ui in S.
If NG[Vi](ui) ⊆ S, then S − {ui, ui+1} is a k-distance paired-dominating set of G[Vi]. So |kPDi+1| = |S| > |S| − 2 ≥ |kPDi|. If
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there is a vertexw ∈ NG[Vi](ui)− S, then S − {ui+1} ∪ {w} is also a k-distance paired-dominating set of G[Vi]. It follows that
|kPDi+1| ≥ |kPDi|.

Case 2. ui+1 is paired with some vertex ua in S (1 ≤ a < i).
If ui 6∈ S, then S−{ui+1}∪ {ui} is a k-distance paired-dominating set of G[Vi]. If ui ∈ S and ui is paired with ub, then uaub ∈ E
and S − {ui, ui+1} is a k-distance paired-dominating set of G[Vi]. For any case, it follows that |kPDi+1| ≥ |kPDi|. �

Lemma 3. Suppose G is an interval graph with vertex ordering u1, u2, . . . , un by the increasing order of their left endpoints. Let
F k(ui) = ua and F(ua) = ub with b < a < i. Then,
(1) kPDl ∪ {ub, ua} is a kPDi ifw(ub) = ul with l ≥ 2;
(2) {u1, u2, ub, ua} is a kPDi ifw(ub) = u1;
(3) {ub, ua} is a kPDi ifw(ub) = u0.
Proof. (1) It is obvious that kPDl ∪ {ub, ua} is a k-distance paired-dominating set of G[Vi]. Next, we show that |kPDi| ≥
|kPDl| + 2. Let S be a kPDi. As F k(ui) = ua, d(uj, ui) > k for every vertex uj with j < a. S contains some vertex uc with
a ≤ c ≤ i. Assume that ui1 ∈ S is the last vertex, which dominates ui, in the vertex ordering and ui1 is paired with ui2 in S.
It is obvious that i2 ≥ b. Let w(ui1) = uc , w(ui2) = ud and l

′
= min{c, d}. As d(ul, ub) > k, d(ul, ui1) > k and d(ul, ui2) > k.

Hence l′ ≥ l ≥ 2. Let ue be the last vertex of S − {ui1 , ui2} in the vertex ordering. If e ≥ l
′, then S − {ui1 , ui2} is a k-distance

paired-dominating set ofG[Ve]. So |kPDi|−2 ≥ |kPDe|. Since e ≥ l′ ≥ l, by Lemma2, |kPDe| ≥ |kPDl|. Then |kPDi| ≥ |kPDl|+2.
If e < l′, then S − {ui1 , ui2} is a k-distance paired-domination set of G[Vl′ ]. As l

′
≥ l, by Lemma 2, |kPDl′ | ≥ |kPDl|. Therefore,

|kPDi| ≥ |kPD′l| + 2 ≥ |kPDl| + 2.
(2) Sincew(ub) = u1 and u1u2 ∈ E, it is obvious that b ≥ 3. Thus, {u1, u2, ub, ua} is a kPDi.
(3) It is obvious that {ub, ua} is a kPDi. �

Based on the above lemmas, we have the following algorithm for k-distance paired-domination problem in interval
graphs.

Algorithm k-MPDI. Find a minimum k-distance paired-dominating set of an interval graph.
Input An interval graph G = (V , E)with a vertex ordering u1, u2, . . . , un ordered by the increasing order of left endpoints,
in which each vertex ui has a label D(ui) = 0.
Output A minimum k-distance paired-dominating set kPD of G.
Method
kPD = ∅;
For i = n to 1 do

If (D(ui) = 0) then
If (F k(ui) 6= ui and F k+1(ui) 6= F k(ui)) then

kPD = kPD ∪ {F k(ui), F k+1(ui)};
D(u) = 1 for every vertex u ∈ Nk[F k(ui)] ∪ Nk[F k+1(ui)];

else if (F k(ui) 6= ui) then
kPD = kPD ∪ {u1, u2};
D(u) = 1 for every vertex u ∈ Nk[u1];

else
kPD = kPD ∪ {u1, u2};
D(ui) = 1;

endif
endif

endfor
Theorem 4. Given a vertex ordering ordered by the increasing order of left endpoints, the algorithm k-MPDI can produce a
minimum k-distance paired-dominating set of an interval graph G in O(m+ n), where m = |E(G)| and n = |V (G)|.
Proof. The construction and correctness of the algorithm k-MPDI are based on Lemmas 1–3. Since each vertex and edge are
used in a constant number, hence the algorithm k-MPDI can finish in O(m+ n), wherem = |E(G)| and n = |V (G)|. �

3. k-distance paired-domination in block graphs

In a graph G = (V , E) with |V | = n and |E| = m, a vertex x is a cut-vertex if there are more connected components in
G− x than that in G. A block of G is a maximal connected subgraph of Gwithout a cut-vertex. If G itself is connected and has
no cut-vertex, then G is a block. It is obvious that the intersection of any two blocks contains atmost one vertex, and a vertex
is a cut-vertex if and only if it is the intersection of two or more blocks. An end block is a block with only one cut-vertex. A
block graph is a connected graph whose blocks are complete graphs. If every block is K2, then it is a tree. Every block graph
not isomorphic to complete graph has at least two end blocks. For technical reasons, we say that a complete graph has an
end block and any vertex is a cut-vertex.
Let G be a block graph with |V | = n and |E| = m. For a vertex v ∈ V (G) and a block B, the distance of v and B, denoted by

dG(v, B), is defined as the maximum of dG(u, v) for u ∈ V (B).We say a block B is farthest from v if dG(v, B) is maximum over
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all blocks. Note that B is an end block if B is farthest from v. Our algorithm works on a vertex ordering. In order to obtain
this vertex ordering, we first define a vertex ordering connected operation. Let S = x1, x2, . . . , xs be a vertex ordering and
T = u1, u2, . . . , ut be another vertex ordering. We use S + T to denote a new vertex ordering x1, x2, . . . , xs, u1, u2, . . . , ut .
Let v be a cut-vertex of G. Beginning with a block farthest from v andworking recursively inward, we can find a vertex order
v1, v2, . . . , vn as follows.

Procedure VOB
S = ∅; (S is a vertex ordering.)
Let v be a cut-vertex of G;
While (G 6= ∅) do
If (G is a complete graph) then
Let V (G) = {u1, u2, . . . , ua};
S = S + u1, u2, . . . , ua;
G = G− {u1, u2, . . . , ua};

else
Let B be an end block farthest from v with V (B) = {u1, u2, . . . , ub, x}, where x
is the cut-vertex in B;
S = S + u1, u2, . . . , ub;
G = G− {u1, u2, . . . , ub};

endif
enddo
Output S.

Let v1, v2, . . . , vn be the vertex ordering obtained by procedure VOB. In order to describe the algorithm, we need some
notations. For a vertex vi with 1 ≤ i < n, we define the father of vi as F(vi) = vj such that j = max{a | viva ∈ E, a > i}.
Moreover, vi is called a child of vj and let C(vj) = {vi | F(vi) = vj} be the child set of vj. In special, we define F(vn) = vn.
Obviously, if vj is the father of some vertex in G, then vj is a cut-vertex. In addition, we define the l-ancestor of vi as follows:

F l(vi) =
{

F(vi) if l = 1;
F(F l−1(vi)) if l ≥ 2.

The l-child set of vi, denoted by C l(vi), is defined as C l(vi) = {vj | F l(vj) = vi}. In fact, C(vi) = C1(vi). In special, C0(vi) = vi.
For convenience, let kPD denote a minimum k-distance paired-dominating set of G.
In our algorithm, two labels on each vertex, denoted by (D(w), L(w)), are used:

D(w) =

{
0 ifw is not dominated;
1 ifw is dominated.

L(w) =

{0 ifw is not put into kPD;
1 ifw is put into kPD, but it has no paired vertex in kPD;
2 ifw is put into kPD, and it has a paired vertex in kPD.

Now, we are ready to present the algorithm to determine a minimum k-distance paired-dominating set in block graphs.

Algorithm k-MPDB. Find a minimum k-distance paired-dominating set of a block graph.
Input A block graph G = (V , E) with a vertex ordering v1, v2, . . . , vn (n ≥ 2) obtained by Procedure VOB. Each vertex vi
has labels (D(vi), L(vi)) = (0, 0).
Output A minimum k-distance paired-dominating set kPD of G.
Method
For i = 1 to n− 1 do

If (D(vi) = 0) then
Let A(vi) = {w ∈ Nk(vi)− {F k(vi)} | G[{u | u ∈ C(w), L(u) = 1}] has no perfect
matching};
If (A(vi) = ∅) then

L(F k(vi)) = 1;
D(u) = 1 for every vertex u ∈ Nk[F k(vi)]; (*)

endif
endif
If (D(vi) = 1) then

Let C1(vi) = {w |w ∈ Ck(vi) and L(w) = 1};
L(w) = 2 for every vertexw ∈ C1(vi);
LetM be a maximummatching in G[C1(vi)] and C2(vi) be the vertex set of saturated vertices byM in C1(vi);
If (C1(vi)− C2(vi) 6= ∅), then
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Let {vi1 , vi2 , . . . , vil} be the subset of C
k−1(vi) such that G[C(vij) ∩ C1(vi)] has no perfect matching for

1 ≤ j ≤ l;
For j = 1 to l do

L(vij) = 2;
D(u) = 1 for every vertex u ∈ Nk[vij ]; (**)
Letw be a vertex in C(vij) ∩ C1(vi)− C2(vi);
For every vertex v ∈ C(vij) ∩ C1(vi)− C2(vi)− {w},
L(v′) = 2 for some vertex v′ ∈ C(v)with L(v′) = 0;

endfor
endif

endif
endfor
If (D(vn) = 0) then

L(vn) = 2;
L(w) = 2 for some vertexw ∈ C(vn)with L(w) = 0;
D(vn) = 1; (***)

else
Let C1(vn) = {w |w ∈ Nk[vn] and L(w) = 1};
L(w) = 2 for every vertexw ∈ C1(vn);
LetM be a maximummatching in G[C1(vn)] and C2(vn) be the vertex set of saturated vertices byM in C1(vn);
If (C1(vn)− C2(vn) 6= ∅), then

For every vertexw ∈ C1(vn)− C2(vn)
If (L(F(w)) 6= 2 andw 6= vn) then

L(F(w)) = 2;
D(u) = 1 for every vertex u ∈ Nk[F(w)]; (****)

else
L(v′) = 2 for some vertex v′ ∈ C(w)with L(v′) = 0;

endif
endif

endif
Output kPD = {v | L(v) = 2}
end

Next, we will prove the correctness of the algorithm k-MPDB. For a given block graph with order at least two, when the
algorithm k-MPDB terminates, any vertex has changed its labels. In detail, for the considering vertex vi (6=vn)withD(vi) = 0
and A(vi) = ∅, it changed its label D(vi) = 1 in the line indicated (*) of the algorithm k-MPDB. For the considering vertex
vi (6=vn) with D(vi) = 0 and A(vi) 6= ∅, it changed its label D(vi) = 1 in the line indicated (**) or (****) of the algorithm
k-MPDB. For vn with D(vn) = 0, it changed its label D(vn) = 1 in the line indicated (***) of the algorithm k-MPDB. Hence,
when the algorithm k-MPDB terminates, D(v) = 1 for every vertex v ∈ V and L(u) = 2 for every vertex u ∈ kPD. Moreover,
G[kPD] contains a perfect matching. Thus kPD is a k-distance paired-dominating set of G. It suffices to prove that kPD is also
a minimum k-distance paired-dominating set of G.
Let Si = {v | L(v) = 1or 2,when vi is the considering vertex in some step of the algorithm k-MPDB} and S ′i = {v | L(v) = 2,

when vi is the considering vertex in some step of the algorithm k-MPDB} for i = 1, 2, . . . , n. In particular, Sn+1 = S ′n+1 =
{v | L(v) = 2, when the algorithm k-MPDB terminates}. We use the induction on i to prove that for every 1 ≤ i ≤ n+1, there
is a minimum k-distance paired-dominating set S such that Si ⊆ S and G[S ′i ] has a perfect matching. Obviously, S1 = S

′

1 = ∅

and it is true for i = 1. Assume that there is a minimum k-distance paired-dominating set S in G such that Si ⊆ S and G[S ′i ]
has a perfect matching for 1 ≤ i ≤ n. We show that Si+1 and S ′i+1 also hold. The following lemmas will help us to prove the
fact.

Lemma 5. Let vi (6= vn) be the considering vertex with D(vi) = 0 in some step of the algorithm. If A(vi) = ∅, then there is a
minimum k-distance paired-dominating set S in G such that Si ∪ {F k(vi)} ⊆ S and G[S ′i+1] has a perfect matching.

Proof. Since D(vi) = 0, vi 6= vn and A(vi) = ∅, L(F k(vi)) = 1 in the next step of the algorithm. Thus Si+1 = Si ∪ {F k(vi)} and
S ′i+1 = S

′

i . By inductive hypothesis, there is a minimum k-distance paired-dominating set S in G such that Si ⊆ S and G[S
′

i ]

has a perfect matching. Since S ′i+1 = S
′

i , the second requirement holds. Next, we prove that F
k(vi) ∈ S.

Suppose to the contrary that F k(vi) 6∈ S. Since S is a minimum k-distance paired-dominating set of G, vi is dominated
by some vertex in S. Let v ∈ S be the last vertex, which dominates vi, in the vertex ordering obtained by Procedure VOB.
Assume that its paired vertex in S is v′. Since D(vi) = 0 and v is paired with v′ in S, it follows that v 6∈ Si and v′ 6∈ S ′i . If
v′ 6∈ Si, let I = {u | F l(u) = F k(vi) for some l ≥ 1}. According to Procedure VOB, every vertex in I − {v1, v2, . . . , vi−1}within
distance k of F k(vi). Thus each vertex in (Nk[v]∪Nk[v′])∩ (I−{v1, v2, . . . , vi−1}) is within distance k of F k(vi). On the other
hand, each vertex in {v1, v2, . . . , vi−1} either has been dominated by some vertex in Si or will be dominated by the father of
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some vertex in Si − S ′i (see Lemma 7). Therefore S − {v, v′} ∪ {F k(vi), w} is also a minimum k-distance paired-dominating
set, where w is a neighbor of F k(vi). If v′ ∈ Si, then d(v′, vi) = k + 1 and v is the father of v′. As A(vi) = ∅, the induced
subgraph of B = {w | w ∈ C(v) and L(w) = 1} has a perfect matching. There is a vertex w′ ∈ B such that its paired vertex,
sayw′′, is not in B. Since each vertex in Nk[v] − {v1, v2, . . . , vi−1} is within distance k of F k(vi), so S − {v, w′′} ∪ {F k(vi), w}
is also a minimum k-distance paired-dominating set, wherew is a neighbor of F k(vi). So we proved the lemma. �

From Lemma 5, whenwe consider the vertex vi (6=vn) in G such that D(vi) = 0 and A(vi) = ∅, F k(vi)will be put into kPD.
However, we cannot determine its paired vertex at once, so let L(F k(vi)) = 1 and D(u) = 1 for every vertex u ∈ Nk[F k(vi)].
For the case A(vi) 6= ∅, Lemma 7 implies that A(vi) ⊆ S.
The next two lemmas will process the case D(vi) = 1 and vi 6= vn, when vi is considered in the algorithm.

Lemma 6. Let vi (6=vn) be the considering vertex with D(vi) = 1 in some step of the algorithm. If C1(vi)−C2(vi) = ∅, then there
is a minimum k-distance paired-dominating set S such that Si+1 ⊆ S and G[C1(vi)] has a perfect matching.

Proof. In the algorithm k-MPDB, set L(w) = 2 for every vertexw ∈ C1(vi). It is obvious that Si+1 = Si and S ′i+1 = S
′

i ∪C1(vi).
Let S be aminimum k-distance paired-dominating set ofG such that Si ⊆ S andG[S ′i ]has a perfectmatching. C1(vi)−C2(vi) =
∅ implies that G[C1(vi)] has a perfect matching. �

From Lemma 6, when vi (6=vn) is the considering vertex in the algorithm such that D(vi) = 1 and G[C1(vi)] has a perfect
matching, it is enough to set L(w) = 2 for each vertexw ∈ C1(vi).

Lemma 7. Let vi (6=vn) be the considering vertex with D(vi) = 1 in some step of the algorithm. Assume that C1(vi)−C2(vi) 6= ∅
and Vp = {vi1 , vi2 , . . . , vil} is a subset of C

k−1(vi) such that G[C(vij) ∩ C1(vi)] has no perfect matching for 1 ≤ j ≤ l. Let
wj (1 ≤ j ≤ l) be a vertex in C(vij) ∩ C1(vi) − C2(vi). For each vertex v ∈ C(vij) ∩ C1(vi) − C2(vi) − {wj}, take a vertex
v′ ∈ C(v) with L(v′) = 0 into Cp. Then there is a minimum k-distance paired-dominating set S of G such that Si ∪ Vp ∪ Cp ⊆ S
and G[C1(vi) ∪ Vp ∪ Cp] has a perfect matching.

Proof. In the algorithm k-MPDB, set L(w) = 2 for every vertex w ∈ C1(vi) ∪ Vp ∪ Cp. It is obvious that Si+1 = Si ∪ Vp ∪ Cp
and S ′i+1 = S

′

i ∪ C1(vi) ∪ Vp ∪ Cp. Let S be a minimum k-distance paired-dominating set of G such that Si ⊆ S and G[S
′

i ] has
a perfect matching. By the selection of Vp and Cp, G[C1(vi) ∪ Vp ∪ Cp] has a perfect matching. Hence, it suffices to prove that
Vp ∪ Cp ⊆ S.
The set C1(vi) − C2(vi) is an independent set since M is a maximum matching in G[C1(vi)]. As the label of every vertex

in C1(vi) is (1, 1), each vertex in Cp can always be found. Then |Cp| = |C1(vi)| − |C2(vi)| − l. In addition, Cp ∩ S = ∅. Let
C ′p = {x | x ∈ S−C1(vi) is pairedwith some vertex in C1(vi)}. Then |C

′
p| ≥ |C1(vi)|−|C2(vi)|. If Vp∩S = ∅, then S−C

′
p∪Vp∪Cp

is also a minimum k-distance paired-dominating set of G. If Vp ∩ S 6= ∅, let V ′p = Vp ∩ S. If V
′
p ⊆ C

′
p, then S − C

′
p ∪ Vp ∪ Cp is

also a minimum k-distance paired-dominating set of G. If V ′p 6⊆ C
′
p, let V

′′
p = V

′
p − C

′
p. Without loss of generality, we assume

that V ′′p = {vi1 , vi2 , . . . , via}, where 1 ≤ a ≤ l. Let w
′

j (1 ≤ j ≤ a) be a vertex in C(wj) with L(w
′

j) = 0. Since the label of wj
is (1, 1), w′j can always be found. Then S − C

′
p ∪ Cp ∪ Vp ∪ {w

′

1, . . . , w
′
a} is also a minimum k-distance paired-dominating

set of G. Up to now, we proved that Vp ∪ Cp ⊆ S. �

From Lemma 7, when vi(6= vn) is the considering vertex in the algorithm such thatD(vi) = 1 and G[C1(vi)] has no perfect
matching, we must put their fathers or children of some vertices in C1(vi) into kPD. At the same time, set D(u) = 1 for each
vertex in Nk[vij ]. The next lemmas will process the case vi = vn.

Lemma 8. Let vn be the considering vertex in the last step of algorithm k-MPDB. If D(vn) = 0, then there is a minimum k-distance
paired-dominating set S of G such that Sn ∪ {vn, w} ⊆ S, wherew ∈ C(vn) and L(w) = 0.

Proof. By the inductive hypothesis, there is a minimum k-distance paired-dominating set S of G such that Sn ⊆ S and
G[S ′n] has a perfect matching. As D(vn) = 0, by the algorithm k-MPDB, we know that Sn = S

′
n . In the algorithm k-MPDB,

set L(vn) = 2 and L(w) = 2, where w ∈ C(vn) and L(w) = 0. As the label of vn is (0, 0), w can always be found. So,
Sn+1 = Sn ∪ {vn, w} and S ′n+1 = S

′
n ∪ {vn, w}. It suffices to prove that {vn, w} ⊆ S.

If vn ∈ S, S − {w′} ∪ {w} is also a minimum k-distance paired-dominating set of G, wherew′ is the paired vertex of vn in
S. If vn 6∈ S, then vn must be dominated by a vertex in S, say v, and its paired vertex is v′. Since Sn = S ′n ⊆ S, each vertex in
{v1, v2, . . . , vn−1} is dominated by some vertex in Sn and v, v′ 6∈ Sn, thus S − {v, v′} ∪ {vn, w} is also a minimum k-distance
paired-dominating set of G. �

From Lemma 8, when vn is the considering vertex in the algorithm such that D(vn) = 0, then vn and its child w with
L(w) = 0 will be put into kPD.

Lemma 9. Let vn be a considering vertex in the last step of algorithm k-MPDB. If D(vn) = 1 and C1(vn)− C2(vn) = ∅, then there
is a minimum k-distance paired-dominating set S such that Sn+1 ⊆ S and G[C1(vn)] has a perfect matching.

Proof. By the inductive hypothesis, there is a minimum k-distance paired-dominating set S of G such that Sn ⊆ S and G[S ′n]
has a perfect matching. If D(vn) = 1, then vn has already been dominated by some vertex in Nk(vn). If C1(vn)− C2(vn) = ∅,
then Sn+1 = Sn and S ′n+1 = S

′
n ∪ C1(vn). Since C1(vn)− C2(vn) = ∅, G[C1(vn)] has a perfect matching. �
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From Lemma 9, when vn is the considering vertex in the algorithmwith D(vn) = 1 and C1(vn)− C2(vn) = ∅, it is enough
to set L(w) = 2 for every vertexw ∈ C1(vn).

Lemma 10. Let vn be a considering vertex in the last step of algorithm k-MPDB. If D(vn) = 1 and C1(vn) − C2(vn) 6= ∅, let
Vp = {x | C(x)∩ (C1(vn)−C2(vn)) 6= ∅} and M be a maximummatching in G[C1(vn)∪Vp]. For each vertex v ∈ C1(vn)−V (M),
take one of its children, say v′, with L(v′) = 0 into Cp. Then there is a minimum k-distance paired-dominating set S of G such that
Vp ∪ Cp ⊆ S and G[C1(vn) ∪ Vp ∪ Cp] has a perfect matching.

Proof. By the inductive hypothesis, there is a minimum k-distance paired-dominating set S of G such that Sn ⊆ S and G[S ′n]
has a perfect matching. If D(vn) = 1 and C1(vn)− C2(vn) 6= ∅, then Sn+1 = Sn ∪ Vp ∪ Cp and S ′n+1 = S

′
n ∪ C1(vn) ∪ Vp ∪ Cp.

By the selection of Vp and Cp, it is obvious that G[C1(vn) ∪ Vp ∪ Cp] has a perfect matching. Hence, it suffices to prove that
Vp ∪ Cp ⊆ S.
Since C1(vn) ⊆ Sn ⊆ S, let C ′p = {x | x ∈ S − C1(vn) is paired with some vertex in C1(vn)}, then |C

′
p| ≥ |C1(vn)| − |C2(vn)|

as C1(vn)−C2(vn) is an independent set. If Vp∩S = ∅, then S−C ′p∪Vp∪Cp is also aminimum k-distance paired-dominating
set. If Vp ∩ S 6= ∅, let V ′p = Vp ∩ S. If V

′
p ⊆ C

′
p, then S − C

′
p ∪ Vp ∪ Cp is also a minimum k-distance paired-dominating set. If

V ′p 6⊆ C
′
p, let V

′′
p = V

′
p − C

′
p = {x1, x2, . . . , xa}. Suppose that yi ∈ C1(vn) with xiyi ∈ M and y

′

i is a child of yi with L(y
′

i) = 0.
As the label of yi is (1, 1), y′i can always be found. Then S

′
= S − C ′p ∪ Vp ∪ Cp ∪ {y

′

1, y
′

2 . . . , y′a} is also a minimum k-distance
paired-dominating set. �

From Lemma 10, when vn is the considering vertex in the algorithm with D(vn) = 1 and C1(vn)− C2(vn) 6= ∅, then put
the father or a child of some vertex in C1(vn)− C2(vn) into kPD.
From the above lemmas, we obtained the following theorem.

Theorem 11. The algorithm k-MPDB can produce aminimum k-distance paired-dominating set of any block graphwith the order
at least two in linear time.

Proof. From Lemmas 5–10, we obtain that there is a minimum k-distance paired-dominating set S of G such that Sn+1 ⊆ S
and G[S ′n+1] has a perfectmatching. Obviously, the output kPD of the algorithm k-MPDB is Sn+1, Therefore, kPD is aminimum
k-distance paired-dominating set ofG. Note thatwe need find amaximummatchingM inG[C1(vi)] in the algorithm k-MPDB.
ButG[C1(vi)] consists of some disjoint cliques in the block graph. Hence, themaximummatchingM inG[C1(vi)] can be found
in liner time. Therefore, each vertex and edge is used in constant number, the algorithmwill be terminated in linear time. �

Since block graphs contain trees, the algorithm k-MPDB can produce a minimum k-distance paired-dominating set in
any tree. However, By the speciality of tree, we present a more simple algorithm.

Algorithm k-MPDT. Find a minimum k-distance paired-dominating set of a tree.
Input. A tree T = (V , E)with a vertex ordering v1, v2, . . . , vn (n ≥ 2) such that d(vi, vn) ≤ d(vj, vn) if i < j. Each vertex vi
has a label (D(vi), L(vi)) = (0, 0).
Output. A minimum k-distance paired-dominating set kPD of T .
Method.
For i = 1 to n− 1 do

If (D(vi) = 0) then
Let A(vi) = {w ∈ Nk(vi)− {F k(vi)} | {u | u ∈ C(w), L(u) = 1} 6= ∅};
If (A(vi) = ∅) then

L(F k(vi)) = 1;
D(u) = 1 for every vertex u ∈ Nk[F k(vi)];

endif
endif
If (D(vi) = 1) then

Let C1(vi) = {w |w ∈ Ck(vi) and L(w) = 1};
If (C1(vi) 6= ∅), then

L(w) = 2 for every vertexw ∈ C1(vi);
Let {vi1 , vi2 , . . . , vil} be a subset of C

k−1(vi)
such that C(vij) ∩ C1(vi) 6= ∅ for 1 ≤ j ≤ l;
For j = 1 to l do

L(vij) = 2;
D(u) = 1 for every vertex u ∈ Nk[vij ];
Take a vertexw ∈ C(vij) ∩ C1(vi), for every vertex v ∈ C(vij) ∩ C1(vi)−
{w}, L(v′) = 2 for some vertex v′ ∈ C(v)with L(v′) = 0;

endfor
endif

endif
endfor



L. Chen et al. / Theoretical Computer Science 410 (2009) 5072–5081 5079

If (D(vn) = 0) then
L(vn) = 2;
L(w) = 2 for some vertexw ∈ C(vn)with L(w) = 0;
D(vn) = 1;

else
Let C1(vn) = {w |w ∈ Nk[vn] and L(w) = 1};
L(w) = 2 for every vertexw ∈ C1(vn);
Let C2(vn) = {w |w ∈ C1(vn) andw ∈ V (M), whereM is a
maximummatching in G[C1(vn)]}.
If (C1(vn)− C2(vn) 6= ∅) then

For each vertexw ∈ C1(vi)− C2(vi),
If (L(F(w)) 6= 2 andw 6= vn) then

L(F(w)) = 2;
D(u) = 1 for every vertex u ∈ Nk[F(w)];

else
L(v′) = 2 for some vertex v′ ∈ C(w)with L(v′) = 0;

endif
endif

endif
Output kPD = {v | L(v) = 2}
end

Corollary 12. The algorithm k-MPDT can produce a minimum k-distance paired-dominating set of any tree with the order at
least two in linear time.

4. Characterization of trees with the unique minimum k-distance paired-dominating sets

Tree is an important subclass of chordal graphs. In [3], authors gave a characterization of trees with the uniqueminimum
paired-dominating set. In this section, we give a characterization of trees with the unique minimum k-distance paired-
dominating set.

Theorem 13. Let T = (V , E) be a tree of order at least three. The set S ⊆ V is the uniqueminimum k-distance paired-dominating
set of T if and only if S is a k-distance paired-dominating set of T such that every vertex in S has a private k-neighbor with regard
to S.

Proof. Suppose that S is the unique minimum k-distance paired-dominating set of T . We want to show that every vertex
in S has a private k-neighbor with regard to S. Suppose to the contrary that there is a vertex u1 ∈ S with Pk(u1, S) = ∅. Let
v1 be the paired vertex of u1 in S. If N(v1) − S 6= ∅, let w ∈ N(v1) − S, then S − {u1} ∪ {w} is also a minimum k-distance
paired-dominating set of T by Pk(u1, S) = ∅. It is a contraction to the unique of S. Hence, we assume that N(v1) ⊆ S. Let
u1, v1, u2, v2, . . . , uk, vk be amaximal length vertex sequence such that: (1) ui, vi are paired in S for 1 ≤ i ≤ k; (2) viui+1 ∈ E
for 1 ≤ i ≤ k− 1; (3) N(vi) ⊆ S for 1 ≤ i ≤ k− 1. So, either N(vk) is a subset of {u1, v1, u2, v2, . . . , uk} or there is a vertex
w ∈ N(vk)withw 6∈ S. For the former case, S − {u1, vk} is a smaller k-distance paired-dominating set of T , a contradiction.
For the later case, S − {u1} ∪ {w} is also a minimum k-distance paired-dominating set of T , a contraction.
For converse, let S be a k-distance paired-dominating set of T such that every vertex in S has a private k-neighbor with

regard to S. We want to show that S is the unique minimum k-distance paired-dominating set of T . We prove this by
induction on n(T ), the order of T . Since S has at least two vertices and every vertex in S has a private k-neighbor with
regard to S, the longest path in T has length at least 2k+ 1 and hence n(T ) ≥ 2k+ 2. Let P : v0, v1, . . . , vl be a longest path
in T with l ≥ 2k+ 1. If l = 2k+ 1, it is obvious that {vk, vk+1} is the unique minimum k-distance paired-dominating set of
T . This implies that the basis step n(T ) = 2k+ 2 holds. Let T be a tree with n(T ) ≥ 2k+ 3. Assume now that the assertion
holds for smaller value of n(T ) and l ≥ 2k+ 2. We may further assume that T is rooted at vl.

Fact 1. vk and vk+1 are paired in S.

Proof. Since S is a k-distance paired-dominating set, v0 is dominated by some vertex in S. Without loss of generality, we
assume that v ∈ S is the nearest vertex from v0 and v′ ∈ S is the paired vertex of v. Obviously, v is a vertex in Tvk , where Tvk
is the subtree rooted at vk.
If v 6∈ {v0, v1, . . . , vk}, then v′ is a child of v due to the choice of v. In this case, v′ has no private k-neighbor with regard

to S, a contradiction. Thus v ∈ {v0, v1, . . . , vk}. If v = vb with b ∈ {0, 1, . . . , k − 1}, then either v or v′ has no private
k-neighbor with regard to S. It follows that v = vk. If v′ is a child of vk, then v′ has no private k-neighbor with regard to S.
Hence v′ = vk+1. �

Let vc be the first vertex in {vk+2, vk+3, . . . , v2k+2} such that V (Tvc )− (Nk[vk+1] ∪ Nk[vk]) 6= ∅.

Fact 2. V (Tvc−1) ∩ S = {vk, vk+1}.
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Proof. Suppose to the contrary that v ∈ S ∩ V (Tvc−1) is other than vk, vk+1. Let v′ be its paired vertex in S. Since vk and vk+1
are paired in S (By Fact 1), then either v or v′ has no private k-neighbor with regard to S. It is a contradiction. �

Let T ′ = T − Tvc−1 and S
′
= S − {vk, vk+1}. By Fact 2, S ′ ⊆ V (T ′).

Fact 3. S ′ is a k-distance paired-dominating set of T ′.
Proof. Let N = V (T ′) ∩ Nk[vk+1]. If N = ∅, it obvious that S ′ is a k-distance paired-dominating set of T ′. Hence, we assume
that N 6= ∅ and x ∈ N . Note that N contains those vertices near to vc . We will show that x is dominated by some vertex in S ′.
Choose a vertex w in V (Tvc ) − V (Tvc−1) farthest to vk+1. It is obvious that w is a leaf in T ′. Since V (Tvc ) − (Nk[vk+1] ∪

Nk[vk]) 6= ∅,w cannot be dominated by vk+1. Assume that u ∈ S ′ is a vertex nearest tow and u′ ∈ S ′ is the paired vertex of
u.w is dominated by u, asw cannot be dominated by vk+1.
If u, u′ ∈ V (Tvc ), by the choice of w and u, w is a private k-neighbor of u with regard to S. Furthermore, u

′ is on the u-vc
path, for otherwise u′ has no private k-neighbor with regard to S. As P is a longest path in T , d(w, vc) ≤ d(v0, vc) = c ≤
2k + 2. Then, d(u′, vc) ≤ d(vk+1, vc) ≤ k. Assume that v′c is the neighbor of vc on the vc-u′ path. If x ∈ Tv′c , then either
d(u′, x) ≤ k or d(u, x) ≤ k. If x 6∈ V (Tv′c ), then d(u

′, x) = d(u′, vc) + d(vc, x) ≤ d(vk+1, vc) + d(vc, x) = d(vk+1, x) ≤ k.
Thus x is dominated by u or u′. If one of u and u′ is vc , then it is obvious that x is dominated by vc . If u, u′ 6∈ V (Tvc ), with the
similar argument of the first case, x is dominated by u or u′. Therefore, in any case, S ′ is a k-distance paired-dominating set
of T ′. �

By Fact 3, S ′ is a k-distance paired-dominating set of T ′. Furthermore, every vertex in S ′ has a private k-neighbor with
regard to S ′. By inductive hypothesis, S ′ is the unique minimum k-distance paired-dominating set of T ′. Let y be a private
k-neighbor of vk+1 with regard to S. As S ′ is a k-distance paired-dominating set of T ′, y ∈ Tvc−1 . Let S1 be any minimum
k-distance paired-dominating set of T . We claim that 2 ≤ |S1 ∩ V (Tvc−1)| ≤ 4.
Proof of the Claim. Since v0 is dominated by some vertex in S1, S1 ∩ V (Tvc−1) have at least two vertices. Suppose to
the contrary that S1 ∩ V (Tvc−1) have more than four vertices. If vc ∈ S1 and its paired vertex is not in Tvc−1 , then
(S1 − V (Tvc−1)) ∪ {vk, vk+1} is a smaller k-distance paired-dominating set of T , a contradiction. If vc ∈ S1 and its paired
vertex is vc−1, then (S1 − V (Tvc−1))∪ {vk, vk+1, vc−1} is a smaller k-distance paired-dominating set of T , a contradiction. So
we assume that vc 6∈ S1. There is a neighbor v′c of vc with v′c 6∈ S1, for otherwise (S1 − V (Tvc−1)) ∪ {vk, vk+1} is a smaller
k-distance paired-dominating set of T . As S1 ∩ V (Tvc−1) have more than four vertices, (S1 − V (Tvc−1)) ∪ {vk, vk+1, vc, v

′
c} is

a smaller k-distance paired-dominating set of T . It is also a contradiction. �

Case 1 |S1 ∩ V (Tvc−1)| = 2.

Since v0 is dominated by S1, |S1 ∩ V (Tvk+1)| ≥ 2. So, in this case, S1 contains no vertex in V (Tvc−1) − V (Tvk+1). Hence,
S1 − V (Tvc−1) is a k-distance paired-dominating set of T

′. Furthermore, S1 − V (Tvc−1) is a minimum k-distance paired-
dominating set of T ′. If not, let D be a minimum k-distance paired-dominating set of T ′, then D ∪ {vk, vk+1} is a smaller
k-distance paired-dominating set of T , a contradiction. Since S ′ is the unique minimum k-distance paired-dominating set of
T ′, we have S1 − V (Tvc−1) = S

′. Since S ′ cannot dominate the vertex y and S1 contains no vertex in V (Tvc−1) − V (Tvk+1), it
follows that S1 ∩ V (Tvc−1) = {vk, vk+1}. Therefore, S1 = S.

Case 2 |S1 ∩ V (Tvc−1)| = 3.

In this case, vc−1 must be paired with vc in S1. Similarly, there is a neighbor v′c of vc with v′c 6∈ S1. Then let S2 =
S1 − {vc−1} ∪ {v′c}. With the same argument in Case 1, we have S2 = S. Hence, v

′
c has a private k-neighbor z with regard to

S2 and the length of z-vc−1 path is k+ 1. Therefore, the vertex z cannot be dominated by any vertex in S1. It contradicts that
S1 is a k-distance paired-dominating set of T .

Case 3 |S1 ∩ V (Tvc−1)| = 4.

If vc ∈ S1, by |S1 ∩ V (Tvc−1)| = 4, its paired vertex is not in Tvc−1 . Let S2= (S1 − V (Tvc−1)) ∪ {vk, vk+1}. Obviously, S2 is a
smaller k-distance paired-dominating set of T , a contradiction. Assume now that vc 6∈ S1. There is a neighbor v′c 6= vc−1
of vc with v′c 6∈ S1, for otherwise (S1 − V (Tvc−1)) ∪ {vk, vk+1} is a smaller k-distance paired-dominating set of T . Let
S2 = (S1 − V (Tvc−1)) ∪ {vk, vk+1, vc, v

′
c}. Then S2 is also a minimum k-distance paired-dominating set of T . With the same

argument in Case 1, we know that S2 = S. Similarly, vc has a private k-neighbor z with regard to S2, which cannot be
dominated by any vertex in S1. It contradicts that S1 is a k-distance paired-dominating set of T .
By the discussion above, we know that S1 ∩ V (Tvc−1) = {vk, vk+1} and S1 = S. Therefore, S is the unique minimum

k-distance paired-dominating set of T . �

Remark 14. The algorithm k-MPDT can be used to identifywhether a given tree has the uniqueminimum k-distance paired-
dominating set. For a given tree T , if the output kPD of the algorithm k-MPDT has the property that every vertex in kPD has
a private k-neighbor with regard to kPD, then kPD is the unique minimum k-distance paired-dominating set of T .
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