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1. Introduction

Let G = (V, E) be a simple graph without isolated vertices. The distance between u and v, denoted by d¢(u, v), is the
minimum length of a u-v path in G. For a vertex v € V and a positive integer k, the k-neighborhood of v in G is defined
as Ni(G,v) = {u € V |dg(u,v) = k}. When k = 1, it is the neighborhood of v and simply denoted by N(G, v). The
set NK(G, v) = Uf;l Ny(G,v) = {u € V|1 < dg(u,v) < k}is called the open total k-neighborhood of v in G and the
set N¥[G, v] = N¥(G, v) U {v} is called the closed total k-neighborhood of v. For S € V, N¥(G,S) = |J,.s N*(G, v) and
NX[G, S] = N¥(G, S) US.If G is clear from the content, these notations are also denoted by d(u, v), Ny(v), N(v), N¥(v), N[v],
N¥(S) and N¥[S], respectively. For S C V, the subgraph of G induced by the vertices in S is denoted by G[S]. A matching in a
graph G is a set of pairwise nonadjacent edges in G. For a matching M in G, a vertex v is unsaturated by M if v is not incident
to any edge of M. Otherwise, we say that v is saturated by M. A perfect matching M in G is a matching such that G has no
unsaturated vertex by M. For aset S € V and a vertex v € S, the set P,(v, S) = Ni(v) — N¥[S — {v}] is called the private
k-neighborhood of v with regard to S and a vertex u € P (v, S) is called a private k-neighbor of v with regard to S. Some other
notations and terminology not introduced in here can be found in [16].

Domination and its variations in graphs have been extensively studied [2,7,8]. Aset S C V is a dominating set for a graph
G = (V,E) ifevery vertexin V — S is adjacent to a vertex in S. Aset S C V is a paired-dominating set of G if S is a dominating
set of G and the induced subgraph G[S] has a perfect matching. The paired-domination was introduced by Haynes and Slater
[9]. There are many results on this problem [3-5,10,12,13,15].

For a positive integer k, a set S C V is a k-distance paired-dominating set if each vertex in V — S is within distance k of
a vertex in S and G[S] has a perfect matching. Let M be a perfect matching of G[S]. If e = uv € M, we say that u and v are
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paired in S or u (v) is the paired vertex of v (u). We say that v € V is dominated by u, ifu € S and d(u, v) < k. The k-distance
paired-domination problem is to determine the k-distance paired-domination number, which is the minimum cardinality of a
k-distance paired-dominating set for a graph G. The k-distance paired-domination problem was introduced by Raczek as a
generalization of paired-domination [ 14]. We can view a paired-dominating set as a k-distance paired-dominating set with
k = 1.In[14], Raczek proved that k-distance paired-domination problem is NP-complete even restricted to bipartite graphs.

A graph is chordal if every cycle of length at least four has a chord. Chordal graphs are raised in the theory of perfect
graphs, see [6]. It contains trees, split graphs, interval graphs, block graphs, directed path graphs, undirected path graphs
...as subclasses. The subclasses of chordal graphs are of most interesting in the study of many graphs optimization problem
[2].In [4], it was proved that paired-domination problem is NP-complete even restricted to split graphs, whose vertex set are
the disjoint union of a clique C and a stable set S. For k > 2, it is easy to point out that k-distance paired-domination problem
is NP-complete for chordal graph by transforming the paired-domination problem to it as follows. Let G be a chordal graph.
We construct the new graph G* by attaching a path of length k — 1 to every vertex of G. Then, G has a paired-dominating
set of size at most [ if and only if G* has a k-distance paired-dominating set of size at most I. However, for split graphs, any
two vertices in clique C can form a minimum k-distance paired-dominating set. Hence, the k-distance paired-domination
number is two for any nontrivial split graph when k > 2. Meanwhile, a split graph can be partitioned into a clique C and a
stable set S in polynomial time [11].

Based on the above discussion, we focus on the k-distance paired-domination problem on other subclasses of chordal
graphs in this paper. We provide two linear algorithms to find the minimum k-distance paired-dominating set in interval
and block graphs. The algorithms presented in this paper generalize the algorithms in [4]. In Section 2, a linear algorithm
will be given for this problem in interval graphs. In Section 3, we will present a linear algorithm for this problem in block
graphs. In Section 4, we give a characterization of trees with the unique minimum k-distance paired-dominating set.

2. k-distance paired-domination in interval graphs

An interval representation of a graph is a family of intervals assigned to the vertices so that vertices are adjacent if and
only if the corresponding intervals intersect. A graph having such a representation is an interval graph. Booth and Lueker [1]
gave an O(|V(G)| + |E(G)|)-time algorithm for recognizing an interval graph and constructing an interval representation
using PQ -tree.

Next, we introduce a labeling method to find a minimum k-distance paired-dominating set in an interval graph. Let
G = (V,E) be an interval graph and its interval representation is I. For every vertex u; € V, I; is the corresponding interval,
and let a; (b;, respectively) denote the left endpoint (right endpoint, respectively) of interval I;. We order the vertices of G
by us, uy, ..., u, in increasing order of their left endpoints. It is obvious that if u;u; € E withj < i, then ujuy € E for every
j+1=<k<iletV,={uy € V]|j<i}.lfGis aconnected interval graph, it is easy to know that G[V;] is also connected. In
this paper, we only consider connected interval graphs.

Let F(u;) = ujfor2 < i < n, wherej = min{a | uqu; € E and a < i}. In particular, we assume that F(u;) = u;. We define
the notation F'(u) as follows:

Fay  ifl=1;
Flw = {F(F’—l(u)) ifl > 2;

Let w(u;) = u;jfor 1 <i < n, wherej = max{a | d(uq, u;) > kand a < i}. In particular, if w(u;) does not exist, we assume
that w(u;) = ug (up & V). For convenience, we use kPD; to denote a minimum k-distance paired-dominating set of G[V;].

Lemma 1. Let G be an interval graph with vertex ordering uy, u,, . . . , u, by the increasing order of their left endpoints. If F¥ (u;) #
u; and F* 1 (u;) = F*(uy), then {uy, uy} is a kPD;.

Proof. F**1(u;) = F*(u;) implies that F¥(u;) = u;. Let [ be the minimum index such that F!(u;) = u;. Assume that
u, = F'(u))for1 <a<ILThen1=1i <i_; <--- < iy <ip =i Forany vertex u, (#u;) in V;, there exists an integer ¢
suchthat1 < c <landi; < b < i._q.uju;_, € Eimplies thatu; u, € E. Thusd(uy, up) < d(uy, uj))+1=<Il-c+1 <1<k
Asuquy € E, {uy, up}isakPD;. O

Lemma 2. Suppose G is an interval graph with vertex ordering uq, u,, . . ., u, by the increasing order of their left endpoints. Then
|kPDiy1| > |kPD;| for2 <i<n-—1.

Proof. Ifthere is a kPD;, 1 such that it does not contain u;, 1, we claim that dgjv;) (Ua, tp) < dgyv;, ;1(Uq, Up) for any two vertices
Ug, Up € V;. Suppose to the contrary that there exist two vertices g, up € V; with dgy;(ta, Up) > dgpv;,41(ta, Up). Then any
shortest uq-uy path contains u;q. Let P : ug = uj,, Uj,, ..., Uit1, ..., Up be a shortest u,-up, path with a < b. There exists
an integer I such thatij < band i, > bforj = 1,2,..., 1. Hence, u;u, € E and the path u, = uy, uj,, ..., Uy, Upisa
shorter ug-up path than P. It is a contradiction. So, a kPD; is also a k-distance paired-dominating set of G[V;], and hence
|kPD;11| > |kPD;|. Therefore, we assume that S is a kPD;, ¢ and u;;1 € S.

Case 1. ujy is paired with u; in S.
If Ngpv, (i) € S, then S — {u;, uj1} is a k-distance paired-dominating set of G[V;]. So |kPD;y1| = |S| > |S| — 2 > |kPD;|. If



5074 L. Chen et al. / Theoretical Computer Science 410 (2009) 5072-5081

there is a vertex w € Ng; (1) — S, then S — {u;1} U {w} is also a k-distance paired-dominating set of G[V;]. It follows that
|kPD;y 1| > |kPD;.

Case 2. uj 1 is paired with some vertex u, in S (1 < a < i).
Ifu; &S, then S — {u; 1} U {u;} is a k-distance paired-dominating set of G[V;]. If u; € S and u; is paired with uy, then u,u, € E
and S — {u;, u;y1} is a k-distance paired-dominating set of G[V;]. For any case, it follows that |kPD;, 1| > |kPD;|. O

Lemma 3. Suppose G is an interval graph with vertex ordering uy, u,, . . ., u, by the increasing order of their left endpoints. Let
F¥(u;) = ug and F(uy) = up with b < a < i. Then,

(1) kPD; U {up, ug} is a kPD; if w(up) = uy withl > 2;

(2) {u1, uz, up, uq} is a kPD; if w(up) = uy;

(3) {up, ug} is a kPD; if w(up) = ug.

Proof. (1) It is obvious that kPD; U {uy, u,} is a k-distance paired-dominating set of G[V;]. Next, we show that |kPD;| >
|kPD;| + 2. Let S be a kPD;. As F¥(u;) = ug, d(u;, u;) > k for every vertex u; with j < a. S contains some vertex u, with
a < ¢ < i Assume that u;, € S is the last vertex, which dominates u;, in the vertex ordering and u;, is paired with u;, in S.
It is obvious that i, > b. Let w(u;,) = uc, w(u;,) = ug and I' = min{c, d}. As d(u;, up) > k, d(u, ui,) > kand d(uy, u;,) > k.
Hence ' > | > 2. Let u, be the last vertex of S — {u;,, u;,} in the vertex ordering. If e > I, then S — {u;,, u;,} is a k-distance
paired-dominating set of G[V,]. So |kPD;| —2 > |kPD,|.Sincee > I' > I|,by Lemma 2, |kPD,| > |kPD,|.Then |kPD;| > |kPD;|+2.
Ife < I',thenS — {u;,, u;,} is a k-distance paired-domination set of G[Vy]. As I’ > I, by Lemma 2, |kPDy| > |kPD,|. Therefore,
|kPD;| > |kPD;| + 2 > |kPDy| + 2.

(2) Since w(up) = uy and uqu, € E, it is obvious that b > 3. Thus, {uy, Uz, up, Uy} is a kPD;.

(3) It is obvious that {u, uy} isa kPD;. O

Based on the above lemmas, we have the following algorithm for k-distance paired-domination problem in interval
graphs.

Algorithm k-MPDI. Find a minimum k-distance paired-dominating set of an interval graph.
Input An interval graph G = (V, E) with a vertex ordering uy, u,, ..., u, ordered by the increasing order of left endpoints,
in which each vertex u; has a label D(u;) = 0.
Output A minimum k-distance paired-dominating set kPD of G.
Method
kPD = @;
Fori=nto 1do
If (D(u;) = 0) then
If (F¥(u;) # u; and F* ' (u;) # F*(u;)) then
kPD = kPD U {F*(u;), F*"1(u;)};
D(u) = 1 for every vertex u € N¥[F¥(u;)] U N¥[F* 1 (up)1;
else if (F*(u;) # u;) then
kPD = kPD U {uq, u»};
D(u) = 1 for every vertex u € N¥[u;];
else
kPD = kPD U {uq, u»};
D(u) =1;
endif
endif
endfor

Theorem 4. Given a vertex ordering ordered by the increasing order of left endpoints, the algorithm k-MPDI can produce a
minimum k-distance paired-dominating set of an interval graph G in O(m + n), where m = |E(G)| and n = |V (G)|.

Proof. The construction and correctness of the algorithm k-MPDI are based on Lemmas 1-3. Since each vertex and edge are
used in a constant number, hence the algorithm k-MPDI can finish in O(m + n), where m = |[E(G)| andn = |V(G)|. O

3. k-distance paired-domination in block graphs

In a graph G = (V,E) with |V| = nand |E| = m, a vertex x is a cut-vertex if there are more connected components in
G — x than that in G. A block of G is a maximal connected subgraph of G without a cut-vertex. If G itself is connected and has
no cut-vertex, then G is a block. It is obvious that the intersection of any two blocks contains at most one vertex, and a vertex
is a cut-vertex if and only if it is the intersection of two or more blocks. An end block is a block with only one cut-vertex. A
block graph is a connected graph whose blocks are complete graphs. If every block is K>, then it is a tree. Every block graph
not isomorphic to complete graph has at least two end blocks. For technical reasons, we say that a complete graph has an
end block and any vertex is a cut-vertex.

Let G be a block graph with |V| = nand |E| = m. For a vertex v € V(G) and a block B, the distance of v and B, denoted by
dg(v, B), is defined as the maximum of dg(u, v) for u € V(B).We say a block B is farthest from v if d(v, B) is maximum over
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all blocks. Note that B is an end block if B is farthest from v. Our algorithm works on a vertex ordering. In order to obtain
this vertex ordering, we first define a vertex ordering connected operation. Let S = xq, X5, ..., X; be a vertex ordering and
T = uq, Uy, ..., u; be another vertex ordering. We use S + T to denote a new vertex ordering x1, X2, ..., Xs, Uy, Un, . . ., Us.
Let v be a cut-vertex of G. Beginning with a block farthest from v and working recursively inward, we can find a vertex order
V1, Vg, ..., Uy as follows.

Procedure VOB
S = @; (S is a vertex ordering.)
Let v be a cut-vertex of G;
While (G # ¥) do
If (G is a complete graph) then
Let V(G) = {uq, ug, ..., Ug};
S=S4uj,uy, ..., ug;
G=G—{ug,uy,...,uq;
else
Let B be an end block farthest from v with V(B) = {uy, us, ..., up, X}, where x
is the cut-vertex in B;
S=S4uq,uy, ..., up;
G=G—{uy, uy, ..., u};
endif
enddo
Output S.

Let vy, vy, ..., vy be the vertex ordering obtained by procedure VOB. In order to describe the algorithm, we need some
notations. For a vertex v; with 1 < i < n, we define the father of v; as F(v;) = vj such that j = max{a | vjv, € E, a > i}.
Moreover, v; is called a child of v; and let C(v;) = {v; | F(vi) = v;} be the child set of v;. In special, we define F(v,) = vy.
Obviously, if vj is the father of some vertex in G, then v; is a cut-vertex. In addition, we define the I-ancestor of v; as follows:

| . F(vy) ifl=1;
Flw = {F(F'—l(u,-)) ifl > 2.

The I-child set of v;, denoted by C'(v;), is defined as C'(v;) = {v; | F'(vj) = v;}. In fact, C(v;) = C!(vy). In special, C°(v;) = v;.
For convenience, let kPD denote a minimum k-distance paired-dominating set of G.
In our algorithm, two labels on each vertex, denoted by (D(w), L(w)), are used:

D(w) = 0 if wis not dominated;
W)=11 ifw is dominated.

0 if wis not put into kPD;
L(w) = {1 ifwisputintokPD, butit has no paired vertex in kPD;
2 ifwis putinto kPD, and it has a paired vertex in kPD.

Now, we are ready to present the algorithm to determine a minimum k-distance paired-dominating set in block graphs.

Algorithm k-MPDB. Find a minimum k-distance paired-dominating set of a block graph.
Input A block graph G = (V, E) with a vertex ordering vy, v,, ..., v, (n > 2) obtained by Procedure VOB. Each vertex v;
has labels (D(v;), L(v;)) = (0, 0).
Output A minimum k-distance paired-dominating set kPD of G.
Method
Fori=1ton— 1do
If (D(v;) = 0) then
Let A(v;) = {w € Np(v)) — {F*(v)} | G[{u | u € C(w), L(u) = 1}] has no perfect
matching};
If (A(v;) = @) then
L(F* () = 1;
D(u) = 1 for every vertex u € N*[F¥(v)]; ™
endif
endif
If (D(v;) = 1) then
Let C;(vj) = {w | w € C*¥(v;) and L(w) = 1};
L(w) = 2 for every vertex w € C{(v;);
Let M be a maximum matching in G[C; (v;)] and C; (v;) be the vertex set of saturated vertices by M in Cy(v;);
If (Cy (vi) — Co(vi) # @), then
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Let {vi,, vi,, . .., v;} be the subset of C*=1(v;) such that G[C(v,'j) N C1(v;)] has no perfect matching for
1<j=l;
Forj = 1toldo

L(vy) =2;

D(u) = 1 for every vertex u € N"[v,-j]; **

Let w be a vertex in Clvy) N Ci(vy) — G (vp);
For every vertex v € C(v,-j) N C1(vy) — Go(vy) — {w},
L(v") = 2 for some vertex v’ € C(v) with L(v') = 0;

endfor
endif
endif
endfor
If (D(v,) = 0) then
L(vy) = 2;
L(w) = 2 for some vertex w € C(v,) with L(w) = 0;
D(vn) = 1; (™)
else
Let Cy(vy) = {w | w € N¥[v,] and L(w) = 1};
L(w) = 2 for every vertex w € C;(vy);
Let M be a maximum matching in G[C;(v,)] and C,(vy,) be the vertex set of saturated vertices by M in C;(v;);
If (Cy(vy) — Go(vy) # ), then
For every vertex w € C;(v,) — Gy (vy)
If (L(F(w)) # 2 and w # v,) then
L(F(w)) = 2;
D(u) = 1 for every vertex u € N¥[F(w)]; (%)
else
L(v") = 2 for some vertex v’ € C(w) with L(v') = 0;
endif
endif
endif
Output kPD = {v | L(v) = 2}
end

Next, we will prove the correctness of the algorithm k-MPDB. For a given block graph with order at least two, when the
algorithm k-MPDB terminates, any vertex has changed its labels. In detail, for the considering vertex v; (#v,) withD(v;) =0
and A(v;) = 0, it changed its label D(v;) = 1 in the line indicated (*) of the algorithm k-MPDB. For the considering vertex
v; (F£v,) with D(v;) = 0 and A(v;) # #, it changed its label D(v;) = 1 in the line indicated (**) or (****) of the algorithm
k-MPDB. For v, with D(v,) = 0, it changed its label D(v,) = 1 in the line indicated (***) of the algorithm k-MPDB. Hence,
when the algorithm k-MPDB terminates, D(v) = 1 for every vertex v € V and L(u) = 2 for every vertex u € kPD. Moreover,
G[kPD] contains a perfect matching. Thus kPD is a k-distance paired-dominating set of G. It suffices to prove that kPD is also
a minimum k-distance paired-dominating set of G.

LetS; = {v|L(v) = 1or2,when;is the considering vertex in some step of the algorithm k-MPDB} and S} = {v |L(v) = 2,
when v; is the considering vertex in some step of the algorithm k-MPDB} fori = 1, 2, ..., n. In particular, ;41 = S,’,_H =
{v|L(v) = 2, when the algorithm k-MPDB terminates}. We use the induction oni to prove that forevery 1 < i < n+1, there
is a minimum k-distance paired-dominating set S such that S; C S and G[S;] has a perfect matching. Obviously, S; = S} = ¢
and it is true for i = 1. Assume that there is a minimum k-distance paired-dominating set S in G such that S; C S and GI[S/]
has a perfect matching for 1 < i < n. We show that S;;; and S{H also hold. The following lemmas will help us to prove the
fact.

Lemma 5. Let v; (# vy) be the considering vertex with D(v;) = 0 in some step of the algorithm. If A(v;) = (), then there is a
minimum k-distance paired-dominating set S in G such that S; U {F¥(v;)} C S and G[S{, 1] has a perfect matching.

Proof. Since D(v;) = 0, v; # v, and A(v;) = @, L(F*(v;)) = 1in the next step of the algorithm. Thus S;;; = S; U {F*(v;)} and
Si;1 = Si. By inductive hypothesis, there is a minimum k-distance paired-dominating set S in G such that §; € S and G[S]]
has a perfect matching. Since S/, ; = S/, the second requirement holds. Next, we prove that F¥(v;) € S.

Suppose to the contrary that F¥(v;) ¢ S. Since S is a minimum k-distance paired-dominating set of G, v; is dominated
by some vertex in S. Let v € S be the last vertex, which dominates v;, in the vertex ordering obtained by Procedure VOB.
Assume that its paired vertex in S is v'. Since D(v;) = 0 and v is paired with v" in S, it follows that v & S; and v & S]. If
v &S, let] = {u| F'(u) = F*(v;) for some | > 1}. According to Procedure VOB, every vertex in I — {v1, va, .. ., vi_1} within
distance k of F¥(v;). Thus each vertex in (NF[v]UNX[v']) N (I — {v1, v, .. ., vi_1}) is within distance k of F¥(v;). On the other
hand, each vertex in {vq, v,, ..., vi_1} either has been dominated by some vertex in S; or will be dominated by the father of



L. Chen et al. / Theoretical Computer Science 410 (2009) 5072-5081 5077

some vertex in S; — S/ (see Lemma 7). Therefore S — {v, v’} U {F¥(v;), w} is also a minimum k-distance paired-dominating
set, where w is a neighbor of F¥(v;). If v/ € S;, then d(v', v;) = k + 1 and v is the father of v’. As A(v;) = @, the induced
subgraph of B = {w | w € C(v) and L(w) = 1} has a perfect matching. There is a vertex w’ € B such that its paired vertex,
say w”, is not in B. Since each vertex in N*[v] — {v1, va, . .., vi_1} is within distance k of F¥(v;), s0 S — {v, w”} U {F¥(v;), w}
is also a minimum k-distance paired-dominating set, where w is a neighbor of F¥(v;). So we proved the lemma. O

From Lemma 5, when we consider the vertex v; (£v,) in G such that D(v;) = 0 and A(v;) = @, F¥(v;) will be put into kPD.
However, we cannot determine its paired vertex at once, so let L(F¥(v;)) = 1 and D(u) = 1 for every vertex u € N*[F¥(v))].
For the case A(v;) # ¥, Lemma 7 implies that A(v;) C S.

The next two lemmas will process the case D(v;) = 1 and v; # v,, when v; is considered in the algorithm.

Lemma 6. Let v; (v,) be the considering vertex with D(v;) = 1in some step of the algorithm. If C; (v;) — C2(v;) = @, then there
is a minimum k-distance paired-dominating set S such that Si;1 € S and G[C;(v;)] has a perfect matching.

Proof. In the algorithm k-MPDB, set L(w) = 2 for every vertex w € C;(v;).Itis obvious thatS;y; = S;and S|, ; = §{UCy(vy).
Let S be a minimum k-distance paired-dominating set of G such thatS; S and G[S/] has a perfect matching. C; (vi)) =G (vi) =
¢ implies that G[C;(v;)] has a perfect matching. O

From Lemma 6, when v; (£v,) is the considering vertex in the algorithm such that D(v;) = 1 and G[C;(v;)] has a perfect
matching, it is enough to set L(w) = 2 for each vertex w € C;(v;).

Lemma 7. Let v; (#v,) be the considering vertex with D(v;) = 1 in some step of the algorithm. Assume that C;(v;) — Go(v;) # @
and V, = {vy, vy, ..., v;} is a subset of C*=1(v;) such that G[C(v,-j) N C1(v;)] has no perfect matching for 1 < j < L Let
wj (1 < j < ) beavertex in C(vy) N C1(vi) — G(vy). For each vertex v € C(vy) N Ci(vi) — G(vi) — {wy}, take a vertex
v" € C(v) with L(v") = 0 into C,. Then there is a minimum k-distance paired-dominating set S of G such that ; UV, UC, € S
and G[C;(v;) U V, U Gp] has a perfect matching.

Proof. In the algorithm k-MPDB, set L(w) = 2 for every vertex w € C;(v;) U V, U G,. It is obvious that Si 4 = S; UV, UG,
and S{,; = S; U C1(v;) UV, U G,. Let S be a minimum k-distance paired-dominating set of G such that S; € S and G[S;] has
a perfect matching. By the selection of V,, and C,, G[C; (v;) U V), U (] has a perfect matching. Hence, it suffices to prove that
v,Ug, CS.

’ Thepset Cy(v;) — G(vy) is an independent set since M is a maximum matching in G[C; (v;)]. As the label of every vertex
in C;(vy) is (1, 1), each vertex in C, can always be found. Then |Gy| = [Ci(vi)| — |G (vy)| — I In addition, G, NS = #. Let
CI; = {x|x € S—Cy(v;) is paired with some vertex in C; (v;)}. Then |C;| > |G (v)| =G (v)]. IfV,NS = @, then S —CI;UV,,UCI[J
is also a minimum k-distance paired-dominating set of G.If V, NS # , let V) = V, NS.IfV, € C), thenS — UV, UGy is
also a minimum k-distance paired-dominating set of G. If V; Z C,, let V, =V, — C,. Without loss of generality, we assume
that Vl;’ = {vi,, Vi, ..., Vip}, where 1 < a < I Let w]f (1 <j < a) be avertex in C(wj) with L(wjf) = 0. Since the label of wj
is (1, 1), wj can always be found. Then S — C, U G, UV, U {w}, ..., wy} is also a minimum k-distance paired-dominating
set of G. Up to now, we proved that V, UC, € S. O

From Lemma 7, when v;(5# v,) is the considering vertex in the algorithm such that D(v;) = 1and G[C; (v;)] has no perfect
matching, we must put their fathers or children of some vertices in C; (v;) into kPD. At the same time, set D(u) = 1 for each
vertex in N"[vij]. The next lemmas will process the case v; = v,.

Lemma 8. Let v, be the considering vertex in the last step of algorithm k-MPDB. If D(v,) = 0, then there is a minimum k-distance
paired-dominating set S of G such that S, U {v,, w} C S, where w € C(v,) and L(w) = 0.

Proof. By the inductive hypothesis, there is a minimum k-distance paired-dominating set S of G such that S, € S and
G[S; ] has a perfect matching. As D(v,) = 0, by the algorithm k-MPDB, we know that S, = S, . In the algorithm k-MPDB,
set L(v,) = 2 and L(w) = 2, where w € C(v,) and L(w) = 0. As the label of v, is (0, 0), w can always be found. So,
Snp1 =Sa U {vy, w}and S, , =S, U {v,, w}. It suffices to prove that {v,, w} C S.

Ifv, €S5,S — {w'} U {w} is also a minimum k-distance paired-dominating set of G, where w’ is the paired vertex of v, in
S.Ifv, ¢ S, then v, must be dominated by a vertex in S, say v, and its paired vertex is v'. Since S, = S, C S, each vertex in
{vi, va, ..., vyp_1} is dominated by some vertex in S, and v, v’ & Sy, thus S — {v, v’} U {v,,, w} is also a minimum k-distance
paired-dominating set of G. O

From Lemma 8, when v, is the considering vertex in the algorithm such that D(v,) = 0, then v, and its child w with
L(w) = 0 will be put into kPD.

Lemma 9. Let v, be a considering vertex in the last step of algorithm k-MPDB. If D(v,) = 1 and Cy(v,) — C;(v,) = @, then there
is a minimum k-distance paired-dominating set S such that S, € S and G[C;(v,)] has a perfect matching.

Proof. By the inductive hypothesis, there is a minimum k-distance paired-dominating set S of G such that S, < S and G[S; ]
has a perfect matching. If D(v,) = 1, then v, has already been dominated by some vertex in N¥(vy). If C; (vy) — G2 (v,) = 9,
then Sy 1 =Sy and S; ;= S; U C(vp). Since C1(vy) — G2 (vn) = @, G[C1(vy)] has a perfect matching. O
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From Lemma 9, when v, is the considering vertex in the algorithm with D(v,) = 1 and C;(v,) — C(v,) = @, it is enough
to set L(w) = 2 for every vertex w € Cq(vy).

Lemma 10. Let v, be a considering vertex in the last step of algorithm k-MPDB. If D(v,) = 1 and C;(v,) — Co(vy) # 0, let
Vp = {x| C(x) N (C1(vy) — Co(vn)) # ¥} and M be a maximum matching in G[Cy (v,) UV, |. For each vertex v € Ci(vy) — V(M),
take one of its children, say v', with L(v") = 0 into C,. Then there is a minimum k-distance paired-dominating set S of G such that
V, UG, € S and G[Cy(vy) U V,, U G, has a perfect matching.

Proof. By the inductive hypothesis, there is a minimum k-distance paired-dominating set S of G such that S, € S and G[S; ]
has a perfect matching. If D(v,) = 1and Cy(v,) — Co(vy) # @, then Sy =S, UV, UG and S, =S, U Ci(vp) UV, UG,
By the selection of Vj, and G, it is obvious that G[C; (v,) U V, U G,] has a perfect matching. Hence, it suffices to prove that
V,UgC, CS.

! Sinie Ci(vp) € Sy €S, letC, = {x|x € S — Ci(vy) is paired with some vertex in C;(vy)}, then |Cy| > [Ci(va)| — |Ca(vn)|
as C1(vy) — Gy (vy) is an independent set. If V, NS = @, then S — Cz/a UV, UG, is also a minimum k-distance paired-dominating
set.If V, NS # @, let V; =V, NS.If V; € C), then S — C, UV, U G is also a minimum k-distance paired-dominating set. If
V, € CyletV) =V, —C) = {x1,Xz, ..., X}. Suppose that y; € C;(vy) with x;y; € M and y; is a child of y; with L(y}) = 0.
As the label of y; is (1, 1), y; can always be found. Then S’ = S — C, UV, UG, U {y}, ¥} . .., Y} is also a minimum k-distance
paired-dominating set. O

From Lemma 10, when v, is the considering vertex in the algorithm with D(v,) = 1 and C;(v,) — Gy (vy) # @, then put
the father or a child of some vertex in C; (v,;) — C;(vy) into kPD.
From the above lemmas, we obtained the following theorem.

Theorem 11. The algorithm k-MPDB can produce a minimum k-distance paired-dominating set of any block graph with the order
at least two in linear time.

Proof. From Lemmas 5-10, we obtain that there is a minimum k-distance paired-dominating set S of G such that S, C S
and G[S;, 1] has a perfect matching. Obviously, the output kPD of the algorithm k-MPDB is S, 1, Therefore, kPD is a minimum
k-distance paired-dominating set of G. Note that we need find a maximum matching M in G[C; (v;)] in the algorithm k-MPDB.
But G[C; (v;)] consists of some disjoint cliques in the block graph. Hence, the maximum matching M in G[C; (v;)] can be found
in liner time. Therefore, each vertex and edge is used in constant number, the algorithm will be terminated in linear time. O

Since block graphs contain trees, the algorithm k-MPDB can produce a minimum k-distance paired-dominating set in
any tree. However, By the speciality of tree, we present a more simple algorithm.

Algorithm k-MPDT. Find a minimum k-distance paired-dominating set of a tree.
Input. A tree T = (V, E) with a vertex ordering vy, vy, ..., vy (n > 2) such that d(v;, v,) < d(v}, vy) if i < j. Each vertex v;
has a label (D(v;), L(v;)) = (0, 0).
Output. A minimum k-distance paired-dominating set kPD of T.
Method.
Fori=1ton— 1do
If (D(v;) = 0) then
Let A(vi) = {w € Ne(v) — {F*(u)} | {u | u € C(w), L(u) = 1} # &};
If (A(v;) = ) then
L(F*(v)) = 1;
D(u) = 1 for every vertex u € N*[F*(v)];
endif
endif
If (D(v;) = 1) then
Let C;(v) = {w | w € C¥(v;) and L(w) = 1};
If(C] (vi) ;é @), then
L(w) = 2 for every vertex w € C;(v;);
Let {vi,, vy, - - - , Uy} be a subset of C¥~1(vy)
such that C(v,-j) NCi(v) #Bfor1 <j<I;
Forj = 1toldo
D(u) = 1 for every vertex u € N¥[v;];
Take a vertex w € Clup NG (vy), for every vertex v € C(v,—}.) N Cy(vy)—
{w}, L(v") = 2 for some vertex v’ € C(v) with L(v") = 0;
endfor
endif
endif
endfor
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If (D(v,) = 0) then
L(vy) = 2;
L(w) = 2 for some vertex w € C(v,) with L(w) = 0;
D(vy) = 1;
else
Let C;(vy) = {w | w € N¥[v,] and L(w) = 1};
L(w) = 2 for every vertex w € Ci(vy,);
Let Co(vy) = {w | w € C1(vy) and w € V(M), where M is a
maximum matching in G[C; (v,)]}.
If (Cy (vn) — G(vn) # ) then
For each vertex w € Cy(v;) — G (vy),
If (L(F(w)) # 2 and w # vy,) then
L(F(w)) = 2;
D(u) = 1 for every vertex u € N*[F(w)];
else
L(v") = 2 for some vertex v' € C(w) with L(v") = 0;
endif
endif
endif
Output kPD = {v | L(v) = 2}
end

Corollary 12. The algorithm k-MPDT can produce a minimum k-distance paired-dominating set of any tree with the order at
least two in linear time.

4. Characterization of trees with the unique minimum k-distance paired-dominating sets

Tree is an important subclass of chordal graphs. In [3], authors gave a characterization of trees with the unique minimum
paired-dominating set. In this section, we give a characterization of trees with the unique minimum k-distance paired-
dominating set.

Theorem 13. Let T = (V, E) be a tree of order at least three. The set S C V is the unique minimum k-distance paired-dominating
set of T if and only if S is a k-distance paired-dominating set of T such that every vertex in S has a private k-neighbor with regard
to S.

Proof. Suppose that S is the unique minimum k-distance paired-dominating set of T. We want to show that every vertex
in S has a private k-neighbor with regard to S. Suppose to the contrary that there is a vertex u; € S with Py(u;,S) = . Let
vy be the paired vertex of u; in S. If N(v1) — S # @, let w € N(vq) — S, then S — {u;} U {w} is also a minimum k-distance
paired-dominating set of T by Py (uy,S) = . It is a contraction to the unique of S. Hence, we assume that N(v;) C S. Let
ug, v1, Ua, Uy, ..., Uy, vy be amaximal length vertex sequence such that: (1) u;, v;are pairedinS for 1 <i < k; (2) viujzq € E
for1<i<k-—1;(3) N(v;) CSfor1 <i<k-—1.So,either N(vy) is a subset of {uy, vq, Uy, vy, ..., U} or there is a vertex
w € N(vx) with w ¢ S. For the former case, S — {uq, v} is a smaller k-distance paired-dominating set of T, a contradiction.
For the later case, S — {u1} U {w} is also a minimum k-distance paired-dominating set of T, a contraction.

For converse, let S be a k-distance paired-dominating set of T such that every vertex in S has a private k-neighbor with
regard to S. We want to show that S is the unique minimum k-distance paired-dominating set of T. We prove this by
induction on n(T), the order of T. Since S has at least two vertices and every vertex in S has a private k-neighbor with
regard to S, the longest path in T has length at least 2k + 1 and hence n(T) > 2k+ 2. Let P : vy, v, ..., v; be alongest path
inT with [ > 2k + 1.1f | = 2k + 1, it is obvious that {vy, vi+1} is the unique minimum k-distance paired-dominating set of
T. This implies that the basis step n(T) = 2k 4 2 holds. Let T be a tree with n(T) > 2k 4 3. Assume now that the assertion
holds for smaller value of n(T) and [ > 2k + 2. We may further assume that T is rooted at v;.

Fact 1. vy and vy are paired in S.

Proof. Since S is a k-distance paired-dominating set, vg is dominated by some vertex in S. Without loss of generality, we
assume that v € S is the nearest vertex from v and v’ € S is the paired vertex of v. Obviously, v is a vertex in T,,, where T,
is the subtree rooted at vy.

Ifv & {vg, v1, ..., v}, then v’ is a child of v due to the choice of v. In this case, v" has no private k-neighbor with regard
to S, a contradiction. Thus v € {vg, vy, ..., v }. Ifv = v, with b € {0, 1, ...,k — 1}, then either v or v’ has no private
k-neighbor with regard to S. It follows that v = wvy. If v’ is a child of vy, then v has no private k-neighbor with regard to S.
Hence v/ = vy1. O

Let v, be the first vertex in {vxs2, Vi3, - - - , Uaki2} such that V(T,,) — (N¥[vg 1] U N¥[vi]) # 0.
Fact2. V(T,._,) NS = {vg, vg41)-
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Proof. Suppose to the contrary thatv € SN V(T,_,) is other than vy, vi11. Let v’ be its paired vertex in S. Since vy and vy44
are paired in S (By Fact 1), then either v or v’ has no private k-neighbor with regard to S. It is a contradiction. O

LetT"=T—T, .andS =S — {vg, vgy1}. By Fact 2,5 C V(T').

Ve—1

Fact 3. S’ is a k-distance paired-dominating set of T'.

Proof. Let N = V(T') N N¥[v41]. If N = 0, it obvious that S’ is a k-distance paired-dominating set of T'. Hence, we assume
that N # #and x € N. Note that N contains those vertices near to v.. We will show that x is dominated by some vertexin S’.
Choose a vertex w in V(T,,) — V(T,,_,) farthest to vi,4. It is obvious that w is a leaf in T'. Since V(T,,) — (N"[vkﬂ] U

N¥[vi]) # @, w cannot be dominated by vy 1. Assume that u € S’ is a vertex nearest to w and u’ € S’ is the paired vertex of
u. w is dominated by u, as w cannot be dominated by vy 1.

Ifu, v’ € V(T,,), by the choice of w and u, w is a private k-neighbor of u with regard to S. Furthermore, v’ is on the u-v,
path, for otherwise u’ has no private k-neighbor with regard to S. As P is a longest path in T, d(w, v;) < d(vg, v;) = ¢ <
2k + 2. Then, d(u', vc) < d(Vkt1,vc) < k. Assume that v; is the neighbor of v on the v.-u’ path. If x € T/, then either
d',x) < kord(u,x) < k.Ifx ¢ V(T,), thend(u',x) = d(W, vc) + d(ve, x) < d(Vir1, ve) + d(ve, X) = d(vgy1,X) < k.
Thus x is dominated by u or v’. If one of u and v’ is v, then it is obvious that x is dominated by v.. If u, u" & V(T,,), with the
similar argument of the first case, x is dominated by u or v’. Therefore, in any case, S’ is a k-distance paired-dominating set
of T/. O

By Fact 3, S’ is a k-distance paired-dominating set of T’. Furthermore, every vertex in S’ has a private k-neighbor with
regard to S’. By inductive hypothesis, S is the unique minimum k-distance paired-dominating set of T’. Let y be a private
k-neighbor of v, with regard to S. As S’ is a k-distance paired-dominating set of T’, y € T,_,. Let S; be any minimum
k-distance paired-dominating set of T. We claim that 2 < [S; N V(T,__,)| < 4.

Proof of the Claim. Since vy is dominated by some vertex in Sy, Sy N V(T,,_,) have at least two vertices. Suppose to
the contrary that S; N V(T,._,) have more than four vertices. If v. € S; and its paired vertex is not in T,_,, then
(51 — V(Ty_)) U {vk, vkq1} is a smaller k-distance paired-dominating set of T, a contradiction. If v. € S; and its paired
vertex is vc_1, then (§; — V/(Ty,_,)) U {vk, vgs1, ve—1} is a smaller k-distance paired-dominating set of T, a contradiction. So
we assume that v ¢ S;. There is a neighbor v, of v with v & Sy, for otherwise (S; — V(T,__,)) U {vk, Vk41} is a smaller
k-distance paired-dominating set of T. As S; N V(T,._,) have more than four vertices, (S; — V(Ty__,)) U {vk, V41, V¢, v/} iS
a smaller k-distance paired-dominating set of T. It is also a contradiction. O

Case 1SNV (T, _)I = 2.

Since vg is dominated by Sy, |S1 N V(Ty,, )| > 2. So, in this case, S; contains no vertex in V(T,._,) — V(Ty,,,). Hence,
S1 — V(T,._,) is a k-distance paired-dominating set of T’. Furthermore, Sy — V(T,_,) is a minimum k-distance paired-
dominating set of T'. If not, let D be a minimum k-distance paired-dominating set of T’, then D U {vy, vxy1} is a smaller
k-distance paired-dominating set of T, a contradiction. Since S’ is the unique minimum k-distance paired-dominating set of
T’, we have S; — V(T,,_,) = S'. Since S’ cannot dominate the vertex y and Sy contains no vertex in V(T,_,) — V(T ,), it
follows that Sy N V(T,__,) = {vk, Vk41}. Therefore, S; = S.

k+1

Case2 |S; NV (Ty_,)| = 3.

In this case, v._; must be paired with v, in S;. Similarly, there is a neighbor v of v with v, ¢ S;. Then let S, =
S1 — {ve—1} U {v.}. With the same argument in Case 1, we have S, = S. Hence, v_. has a private k-neighbor z with regard to
S, and the length of z-v._; path is k + 1. Therefore, the vertex z cannot be dominated by any vertex in S;. It contradicts that
S1 is a k-distance paired-dominating set of T.

Case 3 |S1 NV (Ty,_,)| = 4

If v, € Sy, by [S; NV (T,._,)| = 4, its paired vertex is not in T,,_,. Let Sp= (S; — V(T,_,)) U {vi, vg41}. Obviously, S, is a
smaller k-distance paired-dominating set of T, a contradiction. Assume now that v. ¢ S;. There is a neighbor v # v._;
of v, with v, ¢ S, for otherwise (S; — V(T,,_,)) U {vk, vg41} is a smaller k-distance paired-dominating set of T. Let
Sy = (S1 — V(Ty._,)) U {vk, Vkt1, Ve, v,}. Then S; is also a minimum k-distance paired-dominating set of T. With the same
argument in Case 1, we know that S, = S. Similarly, v, has a private k-neighbor z with regard to S,, which cannot be
dominated by any vertex in Sy. It contradicts that S; is a k-distance paired-dominating set of T.

By the discussion above, we know that S; N V(T,._,) = {vk, vks1} and S; = S. Therefore, S is the unique minimum
k-distance paired-dominating setof T. O

Remark 14. The algorithm k-MPDT can be used to identify whether a given tree has the unique minimum k-distance paired-
dominating set. For a given tree T, if the output kPD of the algorithm k-MPDT has the property that every vertex in kPD has
a private k-neighbor with regard to kPD, then kPD is the unique minimum k-distance paired-dominating set of T.
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