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Acquisition of exogenous DNA by pathogenic bacteria

represents the basis for much of the acquired antimicrobial

resistance in pathogenic bacteria. A more extreme mechanism to

avoid the effect of an antibiotic is to delete the drug target,

although this would be predicted to be rare since drug targets are

often essential genes. Here, we review and discuss the

description of a novel mechanism of resistance to the

cephalosporin drug ceftazidime caused by loss of a penicillin-

binding protein (PBP) in a Gram-negative bacillus (Burkholderia

pseudomallei). This organism causes melioidosis across south-

east Asia and northern Australia, and is usually treated with two or

more weeks of ceftazidime followed by oral antibiotics for three to

six months. Comparison of clinical isolates from six patients with

melioidosis found initial ceftazidime-susceptible isolates and

subsequent ceftazidime-resistant variants. The latter failed to

grow on commonly used culture media, rendering these isolates

difficult to detect in the diagnostic laboratory. Genomic analysis

using pulsed-field gel electrophoresis and array based genomic

hybridisation revealed a large-scale genomic deletion comprising

49 genes in the ceftazidime-resistant strains. Mutational analysis

of wild-type B. pseudomallei demonstrated that ceftazidime

resistance was due to deletion of a gene encoding a PBP 3

present within the region of genomic loss. This provides one

explanation for ceftazidime treatment failure, and may be a

frequent but undetected event in patients with melioidosis.
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Introduction
Acquisition of exogenous DNA by pathogenic bacteria

represents the basis for the inexorable increase in the
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prevalence of resistance to numerous classes of antimi-

crobial drugs in a wide range of bacterial species [1�].
Students of microbiology are taught the mechanisms of

DNA acquisition at an early stage in their training, an

understanding of which represents one of the most useful

and durable set of principles for those who are interested

in the biology of antibiotic resistance. The three mech-

anisms are transformation (direct uptake of exogenous

DNA), conjugation (transfer of genetic material such as

plasmids and transposons by direct cell-to-cell contact),

and transduction (introduction of new genes via phage)

[1�]. Introduction of new DNA may be associated with a

fitness cost to the bacterium, but any disadvantage may be

overcome in settings where the new phenotype provides a

selective advantage. Healthcare settings are a case in

point, where the emergence of a bacterial strain with a

specific drug-resistant phenotype in response to antibiotic

pressure may lead to clonal expansion and replacement of

pre-existing strains. A good example is methicillin-resist-

ance Staphylococcus aureus (MRSA), a resistant phenotype

that results from the acquisition of a genetic element

containing mecA encoding an altered penicillin-binding

protein (PBP 2a) with lower affinity for all b-lactam

antibiotics [2]. Much of the clinically relevant drug resist-

ance arising in Gram-negative bacilli is due to gene

acquisition, and includes the spread via mobile genetic

elements of extended spectrum beta-lactamases [3�] and

carbapenemases [4�]. A recent important example is the

emergence and spread of Gram-negative bacteria positive

for NDM-1 (New Delhi metallo-beta-lactamase) [5],

which confers resistance to the carbapenem drugs, the

drug class of choice for a range of situations where in-

fection is potentially life threatening [6].

An alternative mechanism of antibiotic resistance is

through mutation in existing gene(s) that encode the

drug target. The development of resistance depends on

the introduction of a mutation that leads to a fundamental

change in the interaction between the drug and its

bacterial target. For example, rifampicin, which is a broad

spectrum antibiotic active against Mycobacterium tubercu-
losis and other bacterial pathogens, targets the DNA-

dependent RNA polymerase b subunit, and resistance

arises as a result of a mutation in the rpoB gene that

encodes the rifampicin binding area [7]. A more extreme

mechanism by which a bacterium could avoid the effect

of an antibiotic is to delete the drug target altogether.

This would be predicted to be extremely uncommon

since drug targets are often essential genes, and gene

loss would only be possible in the event that the function

of the deleted gene could be performed by alternative
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genes or gene pathways. Here, we review and discuss the

description of a novel mechanism of resistance to the

cephalosporin drug ceftazidime based on loss of a PBP in

a Gram-negative bacillus (Burkholderia pseudomallei).

B. pseudomallei and melioidosis
B. pseudomallei is an environmental bacterium and the

cause of melioidosis [8��]. This infection is most com-

monly seen in south-east Asia and northern Australia but

has been reported worldwide, particularly in travellers

returning from areas where meliodiosis is endemic. In-

fection can present with a wide spectrum of clinical

features including septicaemia, pulmonary infection,

intra-abdominal abscesses and disseminated infection

[8��]. B. pseudomallei is intrinsically resistant to a range

of antibiotics including gentamicin, streptomycin, rifam-

picin and many b-lactams. Reported resistance mechan-

isms include bacterial cell membrane impermeability [9],

mutations in the antibiotic target site [10], enzymatic

inactivation [11,12], and multi-drug efflux pumps

[13,14]. The majority of B. pseudomallei isolates are

susceptible to ceftazidime, trimethoprim-sulfamethoxa-

zole, amoxicillin-clavulanate, imipenem and meropenem

[15,16]. Antimicrobial therapy for melioidosis is required

for three to six months to achieve cure, and is divided into

an intravenous phase of ceftazidime or a carbapenem drug

for two weeks (or longer if clinically indicated), followed

by oral trimethoprim-sulfamethoxazole or amoxillin-cla-

vulanate [17�]. The switch from parenteral to oral anti-

microbial therapy is made once the patient shows clear

evidence of clinical improvement, including an absence

of fever for 48 hours and negative repeat blood culture

taken at around one week after the onset of therapy.

Prolonged parenteral therapy may be required for

patients with disseminated infection, involvement of

the central nervous system, bone or joint, and patients

with deep-seated abscesses that cannot be drained.

Despite the length of treatment, eradication of B. pseu-
domallei is notoriously difficult and high rates of clinical

failure during the period of therapy and relapse from a

persistent focus after antibiotics are stopped have been

reported [18], although the basis for this is not under-

stood. One possible explanation is the development of

antibiotic resistance during therapy in a previously

susceptible isolate (secondary resistance). No (primary

or secondary) resistance to the carbapenem drugs has

been reported in the published literature to date [15],

while secondary resistance to ceftazidime has been

reported in a very small number of cases; the mechanisms

in some of these cases have been defined as mutations in

the penA gene that encodes class A b-lactamase PenA and

alters substrate specificity [19].

Secondary resistance to ceftazidime in
B. pseudomallei
The clinical narrative to this story starts in 2006, when a

patient presented to a hospital in northeast Thailand with
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culture-confirmed melioidosis [20��]. B. pseudomallei was

isolated from blood cultures, and was unremarkable in its

growth characteristics and colonial appearance and was

susceptible to ceftazidime. The patient was commenced

on ceftazidime, but remained febrile after several weeks of

therapy and underwent a splenectomy for large and per-

sistent splenic abscesses. A subsequent blood culture taken

on day 36 of ceftazidime treatment was culture negative on

blood agar but grew pinpoint colonies after 48 hours of

incubation on a solid medium called Ashdown agar, a

selective medium used specifically for the culture of B.
pseudomallei [21�]. The colonial morphology was unusual

for B. pseudomallei (which normally produces characteristic

‘cornflower head’ colonies), and Gram stain revealed

Gram-negative filaments. Identification using routine bio-

chemical tests was unsuccessful because of very poor

bacterial growth, but a monoclonal antibody-based latex

agglutination test to B. pseudomallei exopolysaccharide was

positive [22]. Antimicrobial therapy was changed to oral

trimethoprim-sulfamethoxazole, the patient became afeb-

rile and was discharged from hospital on day 53. Two

similar cases occurred in 2007 and examination of labora-

tory records identified three further cases (six cases in

total), all of whom had been treated with prolonged cefta-

zidime therapy (median 26.5 days, range 18–36 days), had

failed to respond to therapy, and grew a bacterial variant

that was similar to the first case. The highly atypical

morphological appearance on solid agar would almost

certainly result in most such cultures being considered

as contaminants of no clinical significance.

A series of simple growth experiments were performed on

pairs of isolates from the six cases (first isolate to be

cultured on admission and subsequent variant strain),

to test whether these grew on commonly used bacterio-

logical media. The admission isolates had typical growth

characteristics and colonial morphology on a range of solid

media including blood agar, Columbia agar, Mueller-

Hinton agar, tryptone soya agar, Burkholderia cepacia agar,

Luria–Bertani agar and Ashdown agar (Figure 1a). These

also grew in commercial blood culture bottles, tryptone

soya broth and Mueller-Hinton broth. In contrast, despite

prolonged incubation for seven days at 37 8C, the variant

isolates failed to grow on any of the media apart from

Ashdown agar, on which pinpoint colonies were seen after

48 hours’ incubation (Figure 1d). The six variant strains

also failed to grow in the commercial blood culture bottles

or tryptone soya broth. This finding has major implica-

tions for clinical care, since it is highly likely that culture

of samples containing variant B. pseudomallei would be

falsely negative. Gram stain of the admission isolates was

typical for the species (Figure 1b), but Gram stain of all of

the variant isolates showed Gram-negative filaments

(Figure 1e). In the diagnostic laboratory, this appearance

would mean that B. pseudomallei would not be considered.

Real-time microscopy (RTM-3) which allows visualiza-

tion of live bacteria in the absence of stains (or fixatives)
www.sciencedirect.com
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Figure 1

(a) (b) (c)

(f)(e)(d)
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Comparison of the appearance of an initial ceftazidime-susceptible B. pseudomallei strain 415a and the ceftazidime-resistant variant strain 415e

isolated from the same patient after prolonged ceftazidime therapy. Colony morphology (a and d), Gram stain and light microscopy (b and e), and

unstained appearance by real-time microscopy (c and f) of initial (a to c) and variant strain (d to f). Colony morphology was observed after spread

plating on Ashdown agar and incubation for 4 days at 37 8C in air. Gram stain was observed through a 40� objective. Real-time microscopy was

performed using a real time microscope (RTM-3) at 1000� magnification. Reproduced with permission from Chantratita et al. [20��].
of the six initial strains demonstrated motile bacilli

(Figure 1c), whereas the six variant strains were nonmo-

tile filaments with an appearance consistent with the

presence of septa in the absence of cell division

(Figure 1f).

Antimicrobial susceptibility testing was performed on the

six isolate pairs; this confirmed that the admission isolates

were susceptible to ceftazidime but that the variants were

highly resistant (minimum inhibitory concentration

[MIC] > 256 mg/ml). MICs for other antimicrobial classes

demonstrated that within-pair MICs were comparable for

the six isolate pairs (including amoxillin-clavulanate),

indicating that the defect appeared to be specific to

ceftazidime. Resistance most likely arose in vivo during

ceftazidime therapy, a suggestion supported by genotyp-

ing data which showed that isolate pairs from the same

patient were the same genotype (as defined by multilocus
www.sciencedirect.com 
sequence typing). Each patient was infected with a

different genotype, however, suggesting that the ceftazi-

dime-resistant variant had arisen independently in sev-

eral lineages. Two of the six patients died, which is

comparable to the crude mortality rate from melioidosis

in the same hospital setting. This suggests that the

variants remained virulent in the human host despite

the obvious growth defects under in vitro conditions.

Gain of resistance through gene loss
Sequencing of the penA gene of the admission and variant

isolates failed to identify any de novo genetic changes in

the penA gene, suggesting a novel resistance mechanism.

Comparison of the banding pattern produced by pulsed-

field gel electrophoresis (PFGE) [23] between each strain

pair showed a loss of a 150 kb band in four of the six

variant strains, suggesting a large genomic deletion. This

was further investigated by array based comparative
Current Opinion in Microbiology 2012, 15:583–587
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genomic hybridisation (aCGH) [24]. B. pseudomallei has

two chromosomes, and aCGH demonstrated a genomic

deletion in chromosome 2 in all six variant strains. These

ranged in size from 145 kb to 309 kb, with a minimal

common region of genomic loss of 71 kb comprising 49

genes. PCR and sequencing in the region of the putative

deletion were used to confirm the deletion. Analysis of

the flanking sequences did not identify any distinct

motifs associated with breakpoints, suggesting that the

most likely mechanism was random recombination in the

presence of ceftazidime.

The common deleted region included three genes that

were potential candidates for the resistant phenotype —

two encoded penicillin-binding proteins of the PBP 3

family, and the third encoded a putative D-alanyl-D-ala-

nine carboxypeptidase that belongs to the PBP 5/6 family.

Mutants were made in each gene using a laboratory strain

of B. pseudomallei, which implicated one of the PBP 3

genes (BPSS1219). After a series of complex molecular

steps to circumvent what appeared to be a lethal mutation

when BPSS1219 was rendered detective, this gene was

shown to be associated with the growth detect, filamenta-

tion, and resistance to ceftazidime [20��]. This finding is

compatible with several lines of evidence in the literature.

In other Gram-negative bacilli including Escherichia coli
and Pseudomonas aeruginosa, ceftazidime owes its antibac-

terial activity to a high affinity for PBP 3 [25]. In addition,

inactivation of PBP 3 in E. coli results in inhibition of cell

division and growth into long filaments [26,27]. The

growth defect of the variant B. pseudomallei with very

slow growth on Ashdown agar but no other media may be

related to osmotic effects and bacterial lysis, with growth

on Ashdown being supported by the presence of 4%

glycerol.

Gene loss and gene gain by B. pseudomallei
The B. pseudomallei genome is highly dynamic, with

around 15% of the genome being variably present across

isolates [28–30]. The variable region includes multiple

genomic islands containing DNA acquired from other

bacteria. There is also existing evidence for genetic

divergence of B. pseudomallei during human infection,

which was demonstrated by genotyping multiple colonies

from several tissue sites of patients with acute melioidosis

[31]. Natural, large-scale deletion of genomic material in

B. pseudomallei has been reported once before [32]. B.
pseudomallei is intrinsically resistant to gentamicin, and

deletion of a region of >130 kb including the amrAB-oprA
operon is the basis for gentamicin-susceptible strains (a

phenotype which occurs in 1 in 1000 clinical isolates)

which remain virulent in patients.

Concluding comments
Gene deletion is an extreme and rare mechanism of gain

of resistance to antimicrobial drugs. A fascinating and

clinically relevant twist to the story recounted here is that
Current Opinion in Microbiology 2012, 15:583–587 
the resistant B. pseudomallei variants were rendered

almost undetectable in the diagnostic microbiology

laboratory. It remains to be seen as to what proportion

of patients who fail ceftazidime therapy for melioidosis

fall into the category of having such a variant.
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