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Abstract The purpose of the present paper was to investigate the flow and heat transfer of Jeffery

fluid past a linearly stretching sheet with the effect of a magnetic dipole. The governing differential

equations of motion and heat transfer are transformed into nonlinear coupled ordinary differential

equations (ODEs) using appropriate similarity transformations. Then the ODEs are solved by

adopting two different schemes, Runge–Kutta with shooting technique and series solution based

on GA and NM. The effect of various physical parameters including ferromagnetic interaction

parameter (b), Deborah number (c1), Prandtl number (Pr), suction/injection parameter (S), ratio

of relaxation to retardation times (k2) on velocity and temperature profiles is illustrated graphically

and in tabular form by considering two types of thermal process namely prescribed surface temper-

ature (PST) and prescribed heat flux (PHF). Comparison with available results for particular cases

is found an excellent agreement.
� 2016 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Boundary layer flow and heat and mass transfer over a stretch-

ing surface have received spectacular attention due to their
extensive applications in industry, engineering, and metallurgy
process such as production of polythene and paper, polymer

extrusion, cooling of elastic sheets, wire drawing, fiber technol-
ogy, continuous stretching of plastic films, hot rolling, crystal
growing and cooling of an infinite metallic plate in a cooling
bath. Heat transfer is important because the rate of cooling
can be controlled and final products of desired characteristics

might be achieved. Flow over a flat plate with uniform free
stream has been examined by Blasius [1]. The boundary layer
flow over a continuous moving flat surface was initially inves-

tigated by Sakiadis [2]. Crane [3] established a simple closed
form analytical solution for two-dimensional incompressible
boundary layer flow over a linear stretching sheet with the
velocity proportional to the distance from the origin. This

problem was extended to heat and mass transfer with the effect
of suction or blowing by Gupta and Gupta [4]. Ariel [5] consid-
ered the problem of boundary layer flow of a viscous fluid by a

stretching sheet using homotopy perturbation method. Some
of the collections of research papers existing in the open liter-
ature can be found in [6–11].
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Nomenclature

a distance

c stretching rate ðs�1Þ
cp specific heat at constant pressure ðJkg�1 K�1Þ
Cf skin friction coefficient
f dimensionless stream function

H magnetic field ðA=mÞ
k thermal conductivity ðWm�1 K�1Þ
K* pyromagnetic coefficient

j extra stress tensor
M magnetization ðA=mÞ
Nux local Nusselt number

Pr Prandtl number
Rex local Reynolds number
R1 Rivlin-Ericksen tensor
S suction/injection parameter

T temperature (K)
Tc Curie temperature (K)
(u,v) velocity components ðm s�1Þ
(x, y) coordinates along and normal to sheet ðmÞ

l dynamic viscosity ðNsm�1Þ
lo magnetic permeability
h dimensionless temperature

Greek symbols
a1 dimensionless distance

b ferromagnetic interaction parameter
c magnetic field strength ðA=mÞ
c1 Deborah number

q density ðkgm�3Þ
e dimensionless curie temperature
(g,n) dimensionless coordinate
w stream function ðm2 s�1Þ
/ magnetic potential
s Cauchy stress tensor
k viscous dissipation parameter

k1 k2 material parameters of Jeffrey fluid
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However, all the above-mentioned researches are restricted
to Newtonian fluid flows. Fluids that do not obey the Newton’s

law of motion are called non-Newtonian fluids. Study of
non-Newtonian fluids has received great attention in modern
technologies such as geothermal engineering, geophysical,

astrophysical bio-fluid and petroleum industries, and some of
the examples of non-Newtonian fluids are toothpaste, waste
fluids, and food products. Many constituent relations of non-

Newtonian fluids have been considered in the literature due
to its versatile nature. Here we considered Jeffrey fluid model
for non-Newtonian fluids. Sahoo [12] performed heat transfer
analysis of non-Newtonian fluid over a stretching surface. He

applied finite difference method with shooting technique to
obtain simultaneous effects of the partial slip and the third-
grade fluid parameter on velocity and temperature fields.

Sandeep et al. [13] investigated the stagnation point flow of
MHD Jeffrey nanofluid over a stretching surface with induced
magnetic field and chemical reaction. Raju et al. [14] analyzed

the effects of nonlinear thermal radiation on 3D Jeffrey fluid
flow over a stretching/shrinking surface in the presence of
homogeneous-heterogeneous reactions, non-uniform heat
source/sink, and suction/injection. Rashidi et al. [15] performed

mixed convective laminar, incompressible flow and heat analysis
transfer of viscoelastic fluid over a permeable wedge with ther-
mal radiation by employing homotopy analysis method (HAM).

Hayat et al. [16] considered Jeffery fluid flow in a porous
channel in the presence of a transverse magnetic field. They
found a semi-analytical solution to the highly nonlinear

problem by applying HAM. Hayat et al. [17] determined
three-dimensional boundary layer flow of Jeffrey fluid past a
stretching surface by employing HAM. Animasaun et al. [18]

studied the motion of viscoelastic fluid toward a stretching
sheet in the presence of induced magnetic field for the case of
unequal diffusivities of homogeneous–heterogeneous reaction
with thermal radiation. Nadeem et al. [19] investigated the

effect of nanoparticles on two-dimensional steady flow of a
Jeffrey fluid past a stretching surface. Rashidi and Erfani [20]
analyzed thermal-diffusion and soret effect on steady MHD
convective slip flow due to a rotating disk with viscous dissipa-

tion and Ohmic heating using the DTM-Padé technique.
Malik et al. [21] presented the Jeffrey fluid flow with a

pressure-dependent viscosity. They considered two types of flow

problem, Couette and Poiseulle flow for the Jeffrey fluid. Raju
et al. [22] have discussed MHD chemically reacting boundary
layer flow of Jeffrey nanofluid over a permeable cone in a porous

medium with the effect of thermophoresis, Brownian motion,
and thermal radiation. Sandeep et al. [23] studied heat and mass
transfer of convective non-Newtonian nanofluids over a perme-
able stretching sheet with the effects of transverse magnetic field

and suction/injection. Abolbashari et al. [24] examined entropy
analysis for MHD nano-fluid past a permeable stretching sur-
face. They considered four different types of nanoparticles with

water as the base fluid. Narayana et al. [25] studied the flow of
micropolar ferromagnetic fluid due to stretching of an elastic
sheet in the presence of an applied magnetic field.

In view of all the above-stated application, the main objec-
tive of the present article was to explore the flow and heat trans-
fer behavior of Jeffery fluid over a stretching surface with the
influence of magnetic dipole. Effect of non-dimensional gov-

erning parameters such as ferromagnetic interaction parameter,
suction/injection parameter, Deborah number, the ratio of
relaxation to retardation times, Prandtl number on velocity

and temperature fields is analyzed through the graph.

2. Mathematical formulation

2.1. Magnetic dipole

Magnetic liquid flow is influenced by the dipole field whose
permanent magnetic scalar potential is taken as

U ¼ c
2p

x

x2 þ ðyþ aÞ2
 !

; ð1Þ
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where c is the strength of magnetic field. The components of

magnetic field intensity Hx and Hy along the coordinates x

and y axes are

Hx ¼ � @U
@x

¼ c
2p

x2 � ðyþ aÞ2

ðx2 þ ðyþ aÞ2Þ2
 !( )

; ð2Þ

Hy ¼ � @U
@y

¼ c
2p

2xðyþ aÞ
ðx2 þ ðyþ aÞ2Þ2
 !( )

; ð3Þ

The resultant magnitude H of the magnetic field intensity is

given by

H ¼ @U
@x

� �2

þ @U
@y

� �2
" #1

2

; ð4Þ

@H

@x
¼ � c

2p
2x

ðyþ aÞ4
 !

; ð5Þ

@H

@y
¼ c

2p
�2

ðyþ aÞ3 þ
4x2

ðyþ aÞ5
 !

; ð6Þ

The variation of magnetization M can be considered as a
linear function of temperature [26].

M ¼ K�ðTc � TÞ; ð7Þ
where K� is a pyromagnetic coefficient and Tc is the Curie tem-
perature; however, the following point is essential for the
occurrence of ferrohydrodynamic interaction: (i) the fluid is
at a temperature T different from Tc and (ii) the external

magnetic field is inhomogeneous. Once the ferromagnetic fluid
approaches Curie temperature, there is no furthermore magne-
tization. Characteristic for physical significance is very impor-

tant , as Curie temperature is very high, that is 1043 K for iron.

2.2. Flow analysis

Let us consider a two-dimensional viscous incompressible flow
of Jeffrey fluid, electrically non-conducting past a stretching
surface under the impact of the magnetic field induced by

the magnetic dipole. A stretching sheet is considered along
the x-axis with velocity uw ¼ cx and y-axis is normal to it as
Figure 1 The geometry of the problem, circles indicate magnetic

dipole.
shown schematically in Fig. 1. A magnetic dipole is situated
in the center of y-axis and distance ‘‘a” from the sheet. Due
to a dipole, magnetic field points in the positive x-direction

and rises the magnetic field strength to marinate the ferrofluid.
It is also supposed that the uniform temperature at the surface
is Tw and Curie temperature Tc, while the temperature of the

ambient ferrofluid far from the surface of the sheet is
T1 ¼ Tc and unable to magnetize until they start to cool after
coming into the thermal boundary layer area near to the sheet.

The necessary equations for Jeffrey model can be written as
[27]

s ¼ pIþ j ð8Þ

j ¼ l
1þ k2

R1 þ k1
@R1

@t
þ V � r

� �
R1

� �
ð9Þ

where s is the Cauchy stress tensor, j is extra stress tensor,
l is the dynamic viscosity k2 and k1 are material parameters
of Jeffrey fluid and R1 is the Rivlin-Ericksen tensor defined

by

R1 ¼ ðrVÞ þ ðrVÞ 0 ð10Þ
Using the boundary layer approximation, the continuity

and momentum equations of Jeffery fluid are listed below:

@u

@x
þ @v

@y
¼ 0; ð11Þ

u
@u

@x
þ v

@u

@y
¼ l0

q
M

@H

@x
þ m
1þ k2

@2u

@y2
þ k1 u

@3u

@x@y2
þ v

@3u

@y3

��

� @u

@x

@2u

@y2
þ @u

@y

@2u

@x@y

��
; ð12Þ

where (u, v) are the velocity components along the (x, y) direc-
tions, respectively. k1 is the relaxation time, k2 is the ratio of
relaxation to the retardation times, q is the density of the fluid,
l is the dynamic viscosity, m ¼ l

q is the kinematic viscosity, l0 is

the magnetic permeability, k is the thermal conductivity, cP is

specific heat,M is the magnetization, andH is the magnetic field.
The relevant boundary conditions on velocity profile are

u ¼ uw ¼ cx; v ¼ vw; at y ¼ 0 ð13Þ

u ! 0;
@u

@y
! 0; as y ! 1

where c > 0 is stretching rate of sheet, and vw is the suction/
injection velocity.

To solve the governing Eq. (12), following similarity trans-
formations are used [26]

Wðn; gÞ ¼ l
q

� �
n � fðgÞ; n ¼

ffiffiffiffiffi
cl
q

r
x; g ¼

ffiffiffiffiffi
cl
q

r
y ð14Þ

Wðn; gÞ is the stream function and n; g are the dimensionless

coordinates ð15Þ
The velocity components can be defined as

u ¼ @W
@y

¼ cx � f 0ðgÞ; v ¼ � @W
@x

¼ � ffiffiffiffiffi
cm

p � fðgÞ ð16Þ

Substituting Eq. (16) in Eq. (12), and comparing the coeffi-

cients of like powers up to order n2, we get the fourth-order

nonlinear ordinary differential equations:
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f 000 � ð1þ k2Þðf 02 � ff 00Þ þ c1ðf002 � ffivÞ � ð1þ k2Þ 2bh1
ðgþ a1Þ4

¼ 0;

ð17Þ
In view of the transformations, Eq. (13) takes the following

non-dimensional form

f ¼ S; f 0 ¼ 1 at g ¼ 0 ð18Þ

f 0 ! 0; f 00 ! 0 as g ! 1
Here c1 ¼ k1c is the Deborah number and
b ¼ cq

2pl2 l0K
�ðTc � TwÞ is the ferromagnetic interaction param-

eter, S ¼ �vwffiffiffi
cm

p is the suction/injection parameter with S > 0 for

suction and S < 0 for injection.

2.3. Heat transfer

The energy equation with the existence of magnetic fluid and
viscous dissipation is given by [28]

qcp u
@T

@x
þ v

@T

@y

� �
þ l0T

@M

@T
u
@H

@x
þ v

@H

@y

� �

¼ k
@2T

@y2
þ l

@u

@y

� �2

þ 2l
@v

@y

� �2

ð19Þ

where q is the density of the fluid, cP is specific heat, l0 is the

magnetic permeability, k is the thermal conductivity and T is
the fluid temperature.

To solve the thermal boundary layer Eq. (8), we consider

non-isothermal temperature boundary condition as

T ¼ Tw ¼ Tc � A x
l

� �2
for PST

qw ¼ �k @T
@y

¼ D x
l

� �2
for PHF

9=
; at y ¼ 0 ð20Þ

T ! Tc; as y ! 1
where A and D are positive constants and l ¼ ffiffiffiffiffiffiffi

m=c
p

is the char-

acteristic length.
Now we introduce the dimensionless variable hðn; gÞ

hðn; gÞ � Tc � T

Tc � Tw

¼ h1ðgÞ þ n2h2ðgÞ; ð21Þ

where

Tc � Tw ¼ A x
l

� �2
for PST; Tc � Tw ¼ D

k
x
l

� �2 ffiffi
t
c

p
for PHF

Substituting Eq. (21) in Eq. (19) we obtain non-dimensional

thermal boundary layer equations up to order n2

h001 þ Pr fh 0
1 � 2f 0h

� �þ 2kbðh1 � eÞ f
ðgþ a1Þ3

� 2kf 02 ¼ 0; ð22Þ

h002 � Pr 4f 0h2 � fh02
� �þ 2kbh2f

ðgþ a1Þ3

� kbðh1 � eÞ 2f 0

ðgþ a1Þ4
þ 4f

ðgþ a1Þ5
" #

� kf 002 ¼ 0; ð23Þ

where Pr ¼ lcp
k
is Prandtl number, k ¼ cl2

qkðTc�TwÞ k is the viscous

dissipation parameter, a1 ¼
ffiffiffiffi
cq
l

q
a is the dimensionless distance

from the origin to the magnetic dipole and e ¼ Tc

Tc�Tw
is the

dimensionless Curie temperature ratio.
The boundary conditions (20) become

h1 ¼ 1; h2 ¼ 0; for PST

h01 ¼ �1; h02 ¼ 0; for PHF

	
at g ¼ 0 ð24Þ

h1 ! 0; h2 ! 0; as g ! 1
The quantities of physical interest are the local skin-friction

coefficient and the local Nusselt number can be expressed as

Cfx �
�2sw
qðcxÞ2 ; Nux � xqw

�kðTc � TwÞ ð25Þ

where sw is the surface shear stress and qw is the surface heat
flux are

sw ¼ l
@u

@y

� �
y¼0

; qw ¼ � @T

@y

� �
y¼0

ð26Þ

Using Eqs. (16) and (21) we have

CfRe
1=2
x ¼ �2f 00ð0Þ;

Nux=Re
1=2
x ¼ �ðh01ð0Þ þ n2h02ð0ÞÞ PST

Nux=Re
1=2
x ¼ 1=ðh1ð0Þ þ n2h2ð0ÞÞ PHF

9>=
>;; ð27Þ

where Rex ¼ qcx2

l is the local Reynolds number. It is superficial

that the flow is influenced by the ferromagnetic parameter b. It
is more fascinating and suitable to exchange the dimensionless

wall heat transfer rate �h0 ¼ �½h01ð0Þ þ n2h02ð0Þ� by the inde-

pendent of the distance n, a ratio h�ð0Þ ¼ h01ð0Þ
h01ð0Þjb¼0

called the

coefficient of the heat transfer rate at the sheet.

3. Numerical solution

Transformed differential Eqs. (17), (22) and (23) with relevant
boundary conditions (18) and (24) are highly nonlinear and
possess no analytically solution and must be solved numeri-

cally by efficient Runge-Kutta method based on shooting tech-
nique with the help of software package Matlab. The higher
order differential equations are converted into the set of eight

first-order simultaneous equations and they require eight ini-
tial conditions to solve. Four initial conditions are known
and remaining four missed initial conditions are obtained with

the help of f 0ð1Þ, f 00ð1Þ, h1ð1Þ and h2ð1Þ by employing
shooting technique. In shooting method, the boundary value
problem is reduced to an initial value problem by assuming ini-

tial values. This method works by considering the boundary
conditions as a function of multivariate of initial condition
at some points, converting the boundary value problem to

get the initial conditions. The boundary values calculated have
to be matched with the real boundary values. An essential part
of this method is to select the suitable finite value for g1. The
maximum value of g1 is taken equal to 15 in order to achieve
the far field boundary condition asymptotically.

4. Series solution based on genetic algorithm and Nelder-Mead

method

4.1. Series solution

Our interest now is to find the series solutions of velocity fðgÞ
and temperature h1ðgÞ. For these solutions we write
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fðgÞ ¼ f0ðgÞ þ
X1
m¼1

1

m!

@mfðg; pÞ
@pm







p¼0

pm ð28Þ

h1ðgÞ ¼ h10ðgÞ þ
X1
m¼1

1

m!

@mh1ðg; pÞ
@pm







p¼0

pm ð29Þ

Initial guesses f0 and h10 of fðgÞ and h1ðgÞ are chosen as

f0ðgÞ ¼ Sþ 1� expð�gÞ; h10ðgÞ ¼ expð�gÞ ð30Þ
The auxiliary linear operators are selected in the following

forms:

Lf ¼ d3f

dg3
� df

dg
ð31Þ

Lh1 ¼ d3h1
dg3

� h1 ð32Þ

The zeroth order deformation problems are constructed as

ð1� qÞLf½f̂ðg; pÞ � f0ðgÞ� ¼ q�hfNf½f̂ðg; pÞ � ĥ1ðg; pÞ� ð33Þ

ð1� qÞLh1½ĥ1ðg; pÞ � h10ðgÞ� ¼ q�hh1Nh1½f̂ðg; pÞ � ĥ1ðg; pÞ�
ð34Þ

f̂ðg; pÞ ¼ Sjg¼0;
@ f̂ðg; pÞ

@g







g¼0

¼ 1;

@f̂ðg; pÞ
@g







g¼1

¼ 0
@ĥ1ðg; pÞ

@g
jg¼0 ¼ 1;

@ĥ1ðg; pÞ
@g







g¼1

¼ 0 ð35Þ

in which the nonlinear operators Nf and Nh1 are

Nf½f̂ðg;pÞ� ĥ1ðg;qÞ�

¼ @3 f̂ðg;pÞ
@g3

�ð1� k2Þ @f̂ðg;pÞ
@g

 !2

� f̂ðg;pÞ@
2 f̂ðg;pÞ
@g2

0
@

1
A

þ c1
@2 f̂ðg;pÞ
@g2

 !2

� f̂ðg;pÞ@
4 f̂ðg;pÞ
@g4

0
@

1
A�ð1þ k2Þ2bĥ1ðg;qÞðgþ a1Þ4

;

ð36Þ

Nh1½f̂ðg; pÞ � ĥ1ðg; pÞ�

¼ @2ĥ1ðg; pÞ
@g2

þ Prðf̂ðg; pÞ @ĥ1ðg; pÞ
@g

� 2
@ f̂ðg; pÞ

@g
ĥ1ðg; pÞÞ

þ 2kbðĥ1ðg; pÞ � eÞ f̂ðg; pÞ
ðgþ a1Þ3

� 2k
@ f̂ðg; pÞ

@g

 !2

; ð37Þ

when p ¼ 0 and p ¼ 1, we have

f̂ðg; 0Þ ¼ f0ðgÞ; f̂ðg; 1Þ ¼ fðgÞ; ð38Þ

ĥ1ðg; 0Þ ¼ h10ðgÞ; ĥ1ðg; 1Þ ¼ hðgÞ; ð39Þ
By Taylor theorem, we obtain

f̂ðg; pÞ ¼ f0ðgÞ þ
X1
m¼1

fmðgÞpm; ð40Þ

ĥ1ðg; pÞ ¼ h10ðgÞ þ
X1
m¼1

h1mðgÞpm; ð41Þ
fmðgÞ ¼
1

m!

@mfðg; pÞ
@gm






p¼0

ð42Þ

h1mðgÞ ¼ 1

m!

@mh1ðg; pÞ
@gm






p¼0

ð43Þ

The auxiliary parameters are so properly chosen that the

series (40) and (41) converge at p ¼ 1, so we have

f̂ðg; pÞ ¼ f0ðgÞ þ
X1
m¼1

fmðgÞ; ð44Þ

ĥ1ðg; pÞ ¼ h10ðgÞ þ
X1
m¼1

h1mðgÞ; ð45Þ

The mth-order deformation problems are

Nf½fmðgÞ � vmfm�1ðgÞ� ¼ �hfR
f
mðgÞ; ð46Þ

Nh1½h1mðgÞ � vmh1m�1ðgÞ� ¼ �hh1R
h
mðgÞ; ð47Þ

fmð0Þ ¼ 0; f 0
mð0Þ ¼ 0; f 0

mð1Þ ¼ 0

h1mð0Þ ¼ 0; h1mð1Þ ¼ 0
ð48Þ

R f
mðgÞ ¼ f000m�1 �ð1þ k2Þ

Xm�1

k¼0

ðf 0m�1�kf
0
k � fm�1�kf

00
k Þ

" #

þ c1
Xm�1

k¼0

ðf00m�1�kf
00
k � fm�1�kf

iv
k Þ� ð1þ k2Þ

Xm�1

k¼0

2bh1m�1

ðgþ a1Þ4
 !

;

ð49Þ

Rh1
m ðgÞ ¼ Pr

Xm�1

k¼0

ðfm�1�kh
0
1k � 2f 0

m�1�kh1kÞ

þ 2kb
Pm�1

k¼0 ðfm�1�kh1k � efm�1�kÞ
ðgþ a1Þ3

� 2k
Xm�1

k¼0

f 00
m�1�kf

00
k

� �
;

ð50Þ

vm ¼ 0; m 6 1;

1; m > 1;

�
ð51Þ

The general solution of (44) and (45) is

fmðgÞ ¼ f�mðgÞ þ C1 þ C2 expðgÞ þ C3 expð�gÞ;

h1mðgÞ ¼ h�1mðgÞ þ C4 expðgÞ þ C5 expð�gÞ;
where f�mðgÞ and h�1mðgÞ represent the special solution

4.2. Genetic algorithm and Nelder Mead method

Genetic algorithm (GA) is an optimization tool based on Dar-
winian evolution which has been developed in 1976, but its uti-
lization in heat transfer problems has not been tested. In fact

GA plays an important role when multiple parameters are
involved. The main procedure is inspired by the Darwinian
theory of evolution ‘‘The survival of the fittest.” The genetic

algorithm is a random search technique. Major advantage of
GA is that the demand about computer memory for nonlinear
problems is minimum. Genetic algorithm will be helpful for

future even to get minimum and maximum solutions to satisfy
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inequality relationships as well [30,31]. There are five main
decision points in the procedure given below:
Ta

b ¼
Pr

0.7

1

3

10

Ta

and

Pr

1.0

2.0

3.0

3.0

3.0

3.0

3.0

3.0
Decision Points
ble 1 Comparison of N

k ¼ k2 ¼ c1 ¼ S ¼ 0.

Chen [7] Abel et

2 1.0885 1.0885

1.3333 1.3333

2.5097 –

4.7968 4.7968

ble 2 Skin friction coeffi

k.

b k2 c1

0.2 0.1 0.2

2.0 0.1 0.2

3.0

4.0

0.2 0.1 0.2

0.2

0.3

0.2 0.1 0.1

0.2

0.3

0.2 0.1 0.2

0.2 0.1 0.2
(a)
usselt number �

al. [29] Num

resul

1.088

1.333

2.509

4.796

cient �f 00ð0Þ, Nu

S k

0.1 0.0

0.1 0.0
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There are several techniques for optimization such as analyti-
cal approach, downhill simplex method, gradient descent, and

Newton’s method. Moreover, the Nelder-Mead method is
direct search simplex algorithm published in 1965 and is one
of the most widely used methods for nonlinear unconstrained
h01ð0Þ for the case

erical

ts

OHAM

results

527 1.088534

333 1.333347

725 2.509729

873 4.796874

sselt number �h01ð0Þ and

Numerical solutio

�f 00ð0Þ PS
�h01

1 1.0471 1.395

1.0400 2.118

1.0356 2.685

1 1.3987 2.645

1.6043 2.622

1.8132 2.597

1 1.0356 2.685

1.0815 2.673

1.1257 2.661

1 1.0916 2.671

1.0356 2.685

0.9876 2.696

1 1.0356 2.685

1.1379 3.229

1.2061 3.632

1.0337 2.910

1.0327 3.027

1.0317 3.143
optimization. The Nelder-Mead method minimizes a nonlinear

function of n real variables without taking any derivative. The
function is evaluated at each point of the simplex structure
formed by (n + 1) points and the vertex with the highest value

is replaced by a new point with a lower value. It continues until
the minimum value of the function is achieved [32].

5. Result and discussion

The purpose of the present article was to investigate the bound-
ary layer flow and heat transfer of Jeffery fluid flow over a
stretching surface with the effect of the magnetic dipole and

suction/injection. Influence of various pertinent parameters is
discussed with the help of figures and tables. The default values
of the parameters for current work are considered as Pr ¼ 0:72;
b ¼ 0:2; k2 ¼ 0:1, c1 ¼ 0:2 k ¼ 0:01; S ¼ 0:1; e ¼ 2:0; a1 ¼ 1:0:
To check the efficiency of the numerical procedure, the present

computational results for �h01ð0Þ are carried out for different

values of Pr and compared with those reported by Chen [7]

and Abel et al. [29] in Table 1 and found an excellent agree-

ment. The numerical values of skin friction coefficient �f00ð0Þ,
Nusselt number �h01ð0Þ in PST and surface temperature

1=h1ð0Þ in PHF case are given for numerical solution and series

solution based on GA and NM case for various values of the
physical parameter presented in Table 2. This table is evident
that Nusselt number for PST is directly proportional to Prandtl

number, Deborah number, and suction/injection parameter,
and inversely proportional to ferromagnetic interaction param-
eter, the ratio of relaxation and retardation times. Similarly,

surface temperature for PHF case and skin friction coefficient
is directly proportional to ferromagnetic interaction parameter,
the ratio of relaxation and retardation times, and inversely pro-
portional to Prandtl number, Deborah number. Table 3 identi-

fies the fast convergence of optimal series solution. It has been
observed that good convergence is obtained at even third iter-
ation and excellent solution can be taken in only 5.463 sec.
temperature function h1ð0Þ for different values of Pr, b, k2, c1m S

n Series solution based on GA and NM

T
ð0Þ

PHF
1=h1ð0Þ �f 00ð0Þ

PST
�h01ð0Þ

PHF
1=h1ð0Þ

9 0.7140 1.0470 1.3958 0.7138

5 0.4698 1.0399 2.1184 0.4697

0 0.3706 1.0357 2.6848 0.3705

9 0.3708 1.3986 2.6458 0.3706

5 0.3708 1.6042 2.6223 0.3705

5 0.3709 1.8131 2.5973 0.3708

0 0.3706 1.0355 2.6848 0.3704

0 0.3723 1.0814 2.6728 0.3722

4 0.3740 1.1255 2.6613 0.3739

1 0.3725 1.0914 2.6710 0.3724

0 0.3706 1.0354 2.6849 0.3705

9 0.3690 0.9875 2.6967 0.3689

0 0.3706 1.0352 2.6848 0.3705

5 0.3080 1.1377 3.2293 0.3079

7 0.2737 1.2060 3.6325 0.2736

8 0.2849 1.0335 2.9106 0.2848

0 0.2407 1.0325 3.0269 0.2405

4 0.1963 1.0316 3.1432 0.1961



Table 3 Series solution of velocity and temperature profile based on GA and NM.

Pr b k2 c1 S k After 3rd Iteration After 7th Iteration

g Time f 0 h1 Time f 0 h1

0.72 0.2 0.1 0.2 0.1 0.01 0.0 3.689 s 1.0000 1.0000 5.463 s 1.0000 1.0000

0.2 0.7951 0.7816 0.7950 0.7814

0.4 0.6350 0.6176 0.6348 0.6175

2.4 0.0869 0.1003 0.0868 0.1001

5.0 0.0069 0.0127 0.0068 0.0125
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Figure 2 Effect of ferromagnetic interaction parameter b on velocity: (a) for PST and (b) for PHF.
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Figure 3 Effect of ferromagnetic interaction parameter b on temperature: (a) for PST and (b) for PHF.
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The influence of applied external magnetic field due to mag-
netic dipole is demonstrated through ferromagnetic interaction

parameter b. The existence of magnetic field acts as the delay-
ing force on the velocity profile and then as b increases so does
the delaying force and hence results in flattening the axial

velocity f 0ðgÞ. This is because of the fact that variation of mag-
netic parameter leads to deviation of Lorentz force and this
force produces a more resistance to the transport phenomena.

Also noticed that in the presence of magnetic field, the velocity
profile is less as compared with the hydrodynamic case (b = 0)
for both PST and PHF cases as seen in Fig. 2(a) and (b).
Because there is an intervention between the fluid motion

and the action of the applied magnetic field, this kind of inter-
vention reduces the velocity and increasing frictional heating
involving within the fluid layers which are answerable for the

enhancement in the thermal transport as cleared in Fig. 3
(a) and (b) for case PST and PHF.

Fig. 4(a) and (b) displays the influence of Deborah number

(c1) on temperature profile for two types PST and PHF respec-
tively. Increasing the values of Deborah number, there is a
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Figure 4 Effect of Deborah parameter c1 on velocity: (a) for PST and (b) for PHF.
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Figure 6 Effect of suction/injection S on temperature: (a) for PST and (b) for PHF.
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Figure 5 Effect of ratio of relaxation and retardation time k2 on temperature: (a) for PST and (b) for PHF.
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Figure 7 Effect of Pr on temperature: (a) for PST and (b) for PHF.
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decrease in temperature profile h1 for both types PST and
PHF. Physically c1 is proportional to retardation time k1;
hence, a large retardation time of any material makes it less

viscous, which may result in an increase in its motion, which
consequently weakens the thermal boundary layer thickness
and lower temperature profile.

Fig. 5(a) and (b) portrays the effect of the ratio of relax-
ation to retardation time parameter k2 on temperature profile
h1. From figures, it observed that temperature profile is grad-
ually increasing with an increase in the value of k2 for both

cases PST and PHF. An increase in k2 implies to an increase
in relaxation time and decrease in retardation time. This
change in relaxation and retardation times elucidates the rise

in temperature and thicker thermal boundary layer thickness.
Fig. 6(a) and (b) represents the influence of suction/

injection parameter (S) on temperature profile for both cases

PST and PHF. It is evident temperature profile depreciates
with increasing suction parameter (S> 0) whereas for injec-
tion (S< 0) opposite behavior is noted. Here negative values
signify the injection and positive values signify the suction.
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Figure 8 (a) Skin friction coefficient and (b) Nusselt number with th

values of Prandtl number Pr.
Moreover, the thermal boundary layer thickness reduces with
the increase in S for both PST and PHF cases.

Fig. 7(a) and (b) draws to analyze the effect of Prandtl

number on temperature profile h1. It is seen that temperature
decreases with respect to Pr for both PST and PHF cases. This
is due to the fact that fluid has relatively lower thermal conduc-

tivity for a large value of Prandtl number, which reduces the
conduction and thermal boundary layer thickness, as a result
temperature decreases.

Fig. 8(a) and (b) highlights the skin friction coefficient and

Nusselt number with the variation of ferromagnetic interaction
parameter b for different values of Prandtl number Pr. It is evi-
dent that skin friction coefficient increases by an increase in b
whereas depreciates for Pr. Also by increasing the value of
Prandtl number Pr there is an increase in Nusselt number, as
the fluid with large Prandtl number Pr has higher heat capacity

and hence increases the heat transfer rate seen in Fig. 8(b).
Fig. 9(a) and (b) illustrates the effect of suction parameter S

on skin friction coefficient and Nusselt number with the vari-
ation of b: From Fig. 9(a) it can be observed that the graph
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Figure 9 (a) Skin friction coefficient and (b) Nusselt number with the variation of ferromagnetic interaction parameter b for different

values of S > 0 .
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of skin friction coefficient increases for b > 2 and decreases for
b < 2. Also for S > 0 the rate of heat transfer is enhanced,

whereas the reverse trend is occurred for b as shown in
Fig. 9(b).

6. Concluding remarks

Fourth-fifth order Runge-Kutta numerical method with shoot-
ing technique and series solution based on GA and NM is

employed on incompressible boundary layer flow and heat
transfer of a Jeffrey fluid past a linearly stretching sheet with
the effect of magnetic dipole for two types of heating process,

namely prescribed surface temperature (PST) and prescribed
heat flux (PHF). The results of several physical parameters
such as ferromagnetic interaction parameter (b), Deborah

number (c1), ratio of relaxation to retardation times (k2), suc-
tion/injection parameter (S), Prandtl number (Pr) on velocity
and temperature profiles are examined and discussed graphi-
cally in details. Finally, some important observations based

on the present study are as follows:

� Ferromagnetic interaction parameter b decreases velocity

and increases temperature.
� The effect of Prandtl number Pr is to decrease the temper-
ature for both PST and PHF cases.

� The influence of suction/injection parameter is to decrease
the thermal boundary layer thickness.

� Skin friction coefficient is an increasing function of b, k2, S
and decreasing function of c1, Pr.

� Local Nusselt number has increasing effect with increase in
Deborah number, suction/injection parameter and Prandtl
number, while opposite nature is seen for surface

temperature.
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