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Abstract

Background: This work seeks to develop a methodology for identifying reliable biomarkers of disease activity,
progression and outcome through the identification of significant associations between high-throughput flow
cytometry (FC) data and interstitial lung disease (ILD) - a systemic sclerosis (SSc, or scleroderma) clinical phenotype
which is the leading cause of morbidity and mortality in SSc. A specific aim of the work involves developing a
clinically useful screening tool that could yield accurate assessments of disease state such as the risk or presence of
SSc-ILD, the activity of lung involvement and the likelihood to respond to therapeutic intervention. Ultimately this
instrument could facilitate a refined stratification of SSc patients into clinically relevant subsets at the time of
diagnosis and subsequently during the course of the disease and thus help in preventing bad outcomes from
disease progression or unnecessary treatment side effects.
The methods utilized in the work involve: (1) clinical and peripheral blood flow cytometry data (Immune Response
In Scleroderma, IRIS) from consented patients followed at the Johns Hopkins Scleroderma Center. (2) machine
learning (Conditional Random Forests - CRF) coupled with Gene Set Enrichment Analysis (GSEA) to identify subsets
of FC variables that are highly effective in classifying ILD patients; and (3) stochastic simulation to design, train and
validate ILD risk screening tools.

Results: Our hybrid analysis approach (CRF-GSEA) proved successful in predicting SSc patient ILD status with a high
degree of success (>82 % correct classification in validation; 79 patients in the training data set, 40 patients in the
validation data set).

Conclusions: IRIS flow cytometry data provides useful information in assessing the ILD status of SSc patients. Our
new approach combining Conditional Random Forests and Gene Set Enrichment Analysis was successful in
identifying a subset of flow cytometry variables to create a screening tool that proved effective in correctly
identifying ILD patients in the training and validation data sets. From a somewhat broader perspective, the
identification of subsets of flow cytometry variables that exhibit coordinated movement (i.e., multi-variable up or
down regulation) may lead to insights into possible effector pathways and thereby improve the state of knowledge
of systemic sclerosis pathogenesis.
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Background
Much remains unknown regarding the etiology and
pathogenesis of Systemic Sclerosis (SSc) and its treat-
ment [1–6]. SSc pathogenetic processes involve develop-
ment of fibrosis, vascular injury and autoimmune
manifestations [6–9]. SSc patients are more susceptible
than the general population to a variety of malignancies
[10] and several possible clinical manifestations, notably
interstitial lung disease (ILD) which is a major cause of
death in SSc patients [11, 12]. In ILD, lung tissue be-
comes progressively hardened and replaced by scar tissue,
resulting in loss of respiratory function. Lung transplant-
ation is an option only in a minority of patients with se-
vere ILD [13, 14]. As in the case of other autoimmune
disorders, there are no curative therapies but only treat-
ments aimed at halting progression towards end-stage dis-
ease [1]. Due to limited knowledge about the role of
specific autoimmune effectors in the pathogenesis of SSc,
conventional treatments such as immunosuppressant
therapies are typically not targeted. They are also bur-
dened by significant attendant morbidity and mortality
[6, 15]. There are two main obstacles preventing a full
understanding of SSc and the development of effective
selective therapies. First, there is extreme heterogeneity
in clinical manifestations among different SSc patients
[12, 16]. The disease course is highly variable in terms of
onset, timing, intensity of symptoms, patterns of organ in-
volvement and response to therapy. The second major
challenge derives from the occult nature of early immune
effector pathways and the complex interaction of multiple
humoral or cellular mediators, making the identification
of the key drivers of clinical phenotypes difficult. Sub-
sumed within this challenge is the difficulty in measuring
and characterizing with precision the ongoing immune re-
sponse [15, 17–23]. The current state of knowledge pre-
cludes any expectation of a near-term cure [4, 24, 25].
Clinical information is obtained from the Johns Hopkins
Scleroderma Center, which actively follows more than
3000 patients. The biologic data is obtained via flow
cytometry, a laser-based method of counting and char-
acterizing selected cellular components in peripheral
blood. This work describes the development of a hybrid
generalizable method combining Conditional Random
Forests and Gene Set Enrichment Analysis for identify-
ing associations between flow cytometry data and inter-
stitial lung disease. It is essentially a variable sub-setting
method, but differs from existing approaches (e.g., step-
wise regression [26]) in its consideration of coordi-
nated multi-variable up or down regulation. A
clinically useful screening tool is developed that may
aid in developing early assessments of the elevated
risk of developing ILD, the activity of lung involve-
ment and the likelihood to respond to therapeutic
intervention.
Methods
Patients
The IRIS (Immune Response in Scleroderma Patients)
cohort, from which the data set derived, was established
to study longitudinally the ongoing immune response in
relationship with the evolving clinical phenotype in a
large number of well-characterized SSc patients. At each
patient’s visit, multiparameter flow cytometry is per-
formed to define the phenotype of circulating immune
cells and is entered into a general database together with
detailed clinical information. Patients evaluated at the
Johns Hopkins Scleroderma Center were included in the
IRIS cohort (after providing written informed consent) if
they met the American College of Rheumatology prelim-
inary criteria for the classification of SSc or had at least
three of five features of CREST syndrome (Calcinosis,
Raynaud’s phenomenon (RP), Esophageal dysmotility,
Sclerodactyly, Telangiectasias) [16]. The Johns Hopkins
Medicine Institutional Review Board approved the study.

Clinical phenotyping
Demographic and clinical data including age, sex, ethni-
city, smoking status, disease duration (from onset of
Raynaud’s and from first non-Raynaud’s symptom),
scleroderma subtype, specific organ involvement, use of
immunosuppressive agents and autoantibody status
(anti-topoisomerase-1, anti-centromere, anti-RNA poly-
merase III) were obtained at the time of each visit. Pul-
monary involvement was determined based on abnormal
pulmonary function tests (PFT), including measure-
ments of forced vital capacity (FVC) and single-breath
carbon monoxide diffusing capacity (DLCO), calculated
according to the American Thoracic Society recommen-
dations [27]. Spirometry values were referenced to those
of the National Health and Nutrition Examination Sur-
vey [28]. Values for DLCO were referenced to those re-
ported in [28, 29]. Presence of ILD was defined as a
FVC value less than 80 % of standardized predicted
value [30, 31] – but we note that there exist other
thresholds, most commonly, < 70 % [32, 33] – and con-
firmed in some cases by presence of fibrosis on high-
resolution computerized tomography of the chest.

Flow cytometry
Flow cytometry (FC) is a powerful tool used to analyze
multiple characteristics of individual cells within heteroge-
neous populations [34–36]. Through more than seven de-
cades of innovation [35, 37] flow cytometry has proven to
be exceedingly useful in biological and medical studies, es-
pecially in the field of immunology [38–41]. Peripheral
blood mononuclear cells (PBMC) were freshly isolated
from whole blood through density-gradient centrifugation
(Ficoll-Paque Plus, GE Healthcare). Cells were stained in
staining buffer (PBS, 0.5 % BSA, 0.1 % sodium azide) at
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room temperature for 25 min. Activation, polarization,
trafficking and naïve/memory state of CD4+ and CD8+ T
cells were evaluated using four functional panels of
markers. Within each functional panel, different T cell
subsets are connected to each other through a hierarchical
structure. Of the 158 SSc patients, 119 had a full comple-
ment of the data needed in these analyses.
Samples were analyzed with a standard manual gating

strategy. Automated gating strategies for the analysis of
complex multicolor flow cytometry data are of interest,
however, there is not yet uniform agreement of what the
best approach would be. In particular, the use of auto-
mated tools to analyze raw flow cytometry files is very dif-
ficult and prone to poor precision when acquisition of
data is performed at different time points over a 5 year
span, which is the case for our study. Moreover, reagents
used are from different batches and the FACS machine
undergoes different calibrations. Therefore, it is much bet-
ter to conduct manual gating in order to accommodate
for these variations. We favored a manual approach in this
study in order to maximize precision. Details of the four
panels and gating strategy are provided in Additional file 1:
Section 1 (Flow Cytometry Details and Supplementary
Results).
The FCS data, detailed description of the gating strategy

and description of antibodies and fluorochromes can be
found at https://flowrepository.org/id/FR-FCM-ZZLH.
The IRIS data set and the R code developed in this
work can be found in Additional file 2 (IRIS Data Set
and R Code).

Analytical tools – machine learning
Classification And Regression Trees (CART) is a modeling
approach for classification (binary response) and regres-
sion (continuous response). CART is a non-parametric
procedure (there is no reliance upon data distribution)
comprised of a sequence of recursive tests, with the out-
come of a current test determining the specifics of the
next test and terminated by stopping criteria. The first test
Fig. 1 CART Result. CART output showing splitting variables and their resp
is to identify which FC variable is most important in ac-
curately predicting ILD status and the value of that vari-
able (from among all the values in the data set). There
exist different metrics for importance depending upon
whether CART is used for classification or regression [42].
An additional complication is how large to grow the tree
(equivalently, how many splits to perform). A large tree
may over-fit the data whereas a small tree may fail to cap-
ture important structure in the data. A balance between
these two extremes is achieved through validation.
Graphically, this gives rise to a tree-like structure

shown in Fig. 1. For this example, FC expression act4103
at value 1.525 was identified as most important on the
basis of greatest decrease in “node impurity” as repre-
sented by the GINI index [42]. SSc patients whose
act4103 expression is less than 1.525 are split to the left
branch, those with act4013 expression greater than or
equal to 1.525 are directed to the right. The process is re-
peated (it is recursive) with the next most important vari-
able identified as memem4 at value 17.65, and so on. In
comparison with traditional regression, CART has advan-
tageous attributes beyond being independent of data dis-
tribution: (1) CART is relatively insensitive to outliers in
the input variables; (2) Stopping rules can be relaxed to
over-fit the data - the training tree can then be pruned
back to a level that maximizes validation performance;
and, (3) CART can re-use variables in different parts of
the tree and possibly uncover complex interdependencies
between sets of variables.
The Random Forest (RF) modeling approach [26, 43]

involves an ensemble of many regression or classification
trees. Each tree in RF differs from CART in the following
respects: (1) Random (bootstrap) sampling of the original
data is used to create training subsets (as opposed to using
the entire data set); and (2) The splitting variables at each
node in a tree are randomly chosen from a subset of
covariates as opposed to the pool of all covariates. The
output from an RF model is the average of the perform-
ance from all of the regression trees generated.
ective values

https://flowrepository.org/id/FR-FCM-ZZLH
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The Conditional Random Forests (CRF) modeling
approach is similar to RF in that it is also an ensemble
of trees - but with the following modification - the
variable selection process is separated from the split-
ting criteria and involves a hypothesis testing proced-
ure. The null global hypothesis - all stimulus variables
are independent of the response - is tested by examin-
ing the partial hypotheses that each stimulus variable
is independent of the response. Only when the null
global hypothesis is rejected does the variable selection
process continue. This modification requires that each
predictor variable selected as a splitting variable in
each tree to be strongly associated with the response
variable through hypotheses testing under an unbiased
conditional inference framework [44]. This process ex-
ploits the discriminatory power of predictor variables
when numerous covariates are highly correlated [45, 46].
Strobl et al. [47] showed that variable importance mea-
sures (VIM) based on this conditional permutation
scheme above better match the coefficients associated
with greatest predictor discriminatory power and that
VIM stability was improved over that of the unconditional
importance approach. We always performed multiple
CRF runs (typically 20 - each initiated by a randomly
generated seed) to enable computation of a mean variable
importance list VIL (CRF results are stochastic – the VIL
from one run to another can change).
Support Vector Machines (SVM) [48] is a non-

probabilistic binary linear classifier which takes predictor
data as input; the output is a prediction function. In this ap-
plication, flow cytometry data are the inputs with ILD sta-
tus (0 or 1) as the prediction output. FC data are
represented as points in space, with prediction arranged
(“mapped”) into categories (0 = non-ILD; 1 = ILD) separated
by as large a distance as possible. Extensions to nonlinear
partitioning are accomplished by expanding the predictor
variable space through so-called kernel functions [49, 50].
Fig. 2 GSEA Schematic. Hybrid Gene Set Enrichment Analysis modeling ap
Importance List. That list, along with a ranked list of FC variables (ranked by
are created top-down from the Variables Importance List
We did not pursue methods that involved composite
variables (e.g., weighted sums of flow cytometry expres-
sions as would be the case in Principal Component Ana-
lysis [51]) because of the difficulties presented when
attempting to hypothesize biological interpretations of
composite predictors. The performance measures used
to evaluate the methods were mean absolute and mean
squared predictions errors and Receiver Operating Char-
acteristics (ROC) curves [52–55].

Analytical tools - gene set enrichment analyses
Gene Set Enrichment Analysis [56, 57] was motivated by
gene expression studies which showed that analyses
involving the study of only one gene at a time were of
limited usefulness. Approaches examining sets (or cas-
settes) of genes showed greater ability to identify mean-
ingful associations between gene expression and disease
state. Gene sets became “FC sets” in this work, with ILD
being the phenotype. We form FC sets using the variable
importance list (VIL) obtained through CRF. The VIL
contains FC variables ordered by marginal greatest de-
crease in prediction accuracy [47] – our FC sets are
formed from the top down (i.e., FC set size G contains the
top G variables in the VIL). Having identified an FC set, a
random walk is then performed. This process, shown in
Fig. 2, involves first estimating correlation coefficients be-
tween response ILD and all (112) flow cytometry variables,
then ranking them from largest positive to largest nega-
tive. The FC set is then moved down the correlation-
ranked list from top to bottom, one variable per step, and
recording a running sum for each step. If a variable in the
correlation ranked list is encountered that is in the FC set,
the following quantity is added to the running sum:ffiffiffiffiffiffiffiffiffiffiffi

N−G
G

r

otherwise, subtract from the running sum
proach. Conditional Random Forests is first run to generate a Variable
correlation with the phenotype) constitute the input to GSEA. FC sets



Table 1 Mean absolute and mean squared errors

MAE MSE

CART 0.471 0.356

RF 0.482 0.246

CRF 0.492 0.248

SVM 0.502 0.253

mean 0.502 0.254
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ffiffiffiffiffiffiffiffiffiffiffi
G

N−G

r

where, G is size of the FC set and N is the total num-
ber of FC variables (112). Enrichment Score supremum
retains its original GSEA meaning – evidence of strong
coordinated movement (up or down regulation) of ex-
pressions (Subramanian et al. [57]). The ‘best’ FC set size
is associated with the largest ES.
Significance testing of ES values is accomplished em-

pirically through permuting phenotype [57]. For a given
FC set size (with enrichment score ES*) and correlation-
ranked FC variable list, GSEA is performed 10,000
times – each time with the phenotype permuted – and
the resulting ES supremum recorded. The p-value is
the number of ES scores larger than ES*, divided by
10,000. We experimented with different numbers of
permutations (up to 1,000,000) and settled on 10,000 as
a reasonable balance of significance level and computa-
tional effort.
Note that our approach involves two ranked lists. First

is the CRF variable importance list (VIL) used to form
FC sets. Alternatives to CRF_VIL for creating FC sets
are discussed in Results - Alternative Rules for Creating
FC Sets. Second is the ranked correlation list in GSEA
(signed Pearson product moment or Spearman correl-
ation with phenotype). An alternative to signed correl-
ation is an absolute value correlation list, whereupon
only up-regulation in the random walk is possible.

Analytical tools - stochastic simulation
CRF is a poor out-of-sample (i.e. out-of-bag, OOB) pre-
dictor in this application (described later in Results)
which necessitated an alternative method for prediction.
This gave rise to the development of screening tools via
stochastic simulation. The screening tools are very sim-
ple in construction. First, a subset of FC variables is
chosen to be included in the screening tool. This process
can be very computationally challenging in that we po-
tentially have N FC variables (N = 112) with which to
construct screening tools, but no a priori knowledge of
how many variables and which variables should be in-
cluded in the screening tool. A conservative but very
computationally expensive approach would involve full
combinatorial expansion, that is, we would evaluate

screening tools comprised of
N
1

� �
;

N
2

� �
;… ;

N
N

� �

FC variables. As explained below in GSEA results, the
computational challenge is, however, considerably less-
ened (the best screening tools were found with N =27 and
three to six FC variables chosen for all screening tools).
Nonetheless there now remains a critical randomization
step. A patient is declared ILD if any of their FC expres-
sions is above a positive or below a negative standardized
threshold. Standardized threshold deviates are computed
using the FC expression ranges obtained from the IRIS
data. In every screening tool realization (involving k FC
variables) 2 k thresholds (one lower, one upper threshold
per variable) are randomly generated using a uniform
generator [58] which is a reasonable way to explore a large
unknown parameter space.
We experimented with different metrics to assess

screening tool performance: (1) the ratio of number of
predicted ILD patients to the sum of correctly predicted
ILD and incorrectly predicted no-ILD patients; (2) the
ratio of the number of predicted ILD patients to the true
number of ILD patients (i.e., the True Positive Rate); (3)
The product of (1) and (2) (which penalizes screening
tools with good ILD prediction but poor no-ILD predic-
tion); and (4) One minus the fraction of total misclassi-
fied patients (the Overall Misclassification Rate, OMR)
that equally weights both forms of misclassification. We
decided on a two-level metric (OMR with TPR used
break ties if necessary) because we had discovered that
in some situations best screening tools were not unique.
Using the guidelines provided in [59] we randomly di-
vided our IRIS data (119 patients) into two groups: a
training data set (79 patients) and a validation data set
(40 patients).

Results
Data mining
Five classification methods were tested using training
data (Classification and Regression Trees - CART), Ran-
dom Forests (RF), Conditional Random Forests (CRF),
Support Vector Machines (SVM) and a mean-only
model) using 112 FC expressions as predictor variables
and ILD as response. The mean-only model simply uses
the mean value of the response in the training data as
the prediction. Table 1 shows the mean absolute and
mean squared errors of the five approaches.
RF and CRF perform best with the training data (by a

small amount) but their differences in MAE and MSE
are not statistically significant (p-value = 0.0996 for MAE
and p-value = 0.785 for MSE). The mean-only result
confirmed our understanding that this statistical estima-
tion problem is very flat (i.e., no single FC variable or
small subset of variables is highly associated with ILD
status). From their Receiver Operating Characteristic
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(ROC) curves, performance (Fig. 3) RF, SVM and CRF
emerged as the most effective classifiers. All consistently
yielded AUC (Area Under Curve) values of greater than
0.95 for the training set data.
Conditional Random Forest (CRF) was eventually

chosen over RF and SVM for several reasons. First, and
most importantly, the permutation computing scheme for
variable importance measures (VIMs) in CRF theoretically
provides a potentially better method for identifying truly
relevant predictors [47, 60]. Specifically, it enforces the re-
quirement that each predictor variable that is selected as a
split variable in each tree must be strongly associated with
response variables (through hypotheses testing under an
unbiased conditional inference framework). This is a ro-
bust way of enhancing the discriminant power of a pre-
dictor variable. In contrast, the VIMs of RF can be
unstable and suffer from ‘correlation bias’ due to effects
related to predictor correlation, including: (1) VIMs are
not necessarily aligned with the discriminant power of the
stimulus variable; (2) the size of the group of correlated
variables can have a pronounced effect [45, 46]; and, (3)
VIMs did not directly reflect the coefficients in the gener-
ating model [61]. Using this conditional importance meas-
ure, Strobl et al. [47] showed that VIMs based on the
conditional permutation scheme better reflect the pattern
of the coefficients associated with predictor discriminant
Fig. 3 ROC results for CRF, RF, SVM and CART. Receiver operating Characte
Support Vector Machines and Classification and Regression Trees
power and that the variability was lower than that of the
unconditional importance within each level of mtry
(where mtry is the parameter in R that sets the number of
variables to include in any random tree). Second, the con-
tingency tables of the fitted CRF, RF and SVM models sug-
gested that RF and SVM might be over-fitting. CRF
misclassified 5 patients out of 79 whereas RF and SVM
had 100 % predictive accuracy. Third, the Enrichment
Scores (ES) based on the variable importance list drawn
from CRF were always larger than those of RF and SVM
regardless of configuration settings, including the number
of trees and the number of covariates randomly selected
to split the node in each tree of the RF model [60]. The re-
sults are shown in Table 2. In application, the anticipated
benefits of conditional variable selection in CRF (through
specifying conditional = TRUE in the R package “party”
[60]) did not materialize. Extensive testing with and
without conditioning produced virtually identical vari-
able importance lists. We eventually chose not to in-
voke conditioning because it is computationally very
expensive.
Gene set enrichment analysis
FC set sizes (G) from 3 to 50 were tested (for a set size
of G and 112 FC variables in total, the random walk
ristic Curve results for Conditional Random Forests, Random Forests,



Table 2 RF and CRF parameters and best enrichment scores

mtry ntree RF CRF

5 1000 21.77 23.43

11 1000 20.76 22.34
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increases by
ffiffiffiffiffiffiffiffiffiffi
112−G

G

q
if a variable in the correlation

ranked list is in the FC set and decreases by
ffiffiffiffiffiffiffiffiffiffi

G
112−G

q
otherwise). The results are shown in Fig. 4. This is rep-
resentative random walk behavior for those FC sets that
subsequently performed well in screening tool training
and validation, exhibiting strong up-regulation produ-
cing the ES, then extended decline in displacement and
finally a moderate increase in displacement for FC vari-
ables negatively correlated with ILD. The maximum dis-
placements from zero (the enrichment scores, ES) for all
random walks for all G are plotted in Fig. 5. FC set size
(27) had the highest Enrichment Score (suprema of all
the random walks). Figure 6 shows the statistical signifi-
cance levels for each of the ES values. For the FC sets of
interest (i.e., those with the largest ES values) p-values
are typically less than 0.0001. Table 3 shows the variables
included in FC27, their mean VI values (i.e., act4103 is
responsible for the greatest decrease in classification
error; pol8cc5 follows, and so on) and their correlations
with the phenotype. Note that the VIL contains FC vari-
ables at the top of the list that are both positively and
negatively correlated with phenotype.
Alternative rules for creating FC sets
We further experimented with GSEA by modifying the
rule originally created for constructing FC sets. Instead
of working from the top down in the VIL, we formed
FC sets from variables with lower-ranking variable
Fig. 4 Example random walk. Gene Set Enrichment Analysis random walk f
importance values. Figure 7 shows the random walk
that resulted from an FC set comprised of the 20th to
30th ranked variables in the VIL. Figure 8 shows the
random walk using an FC set comprised of the bottom
ten ranked variables of the VIL. Low enrichment scores
and very irregular walks were the result. Another modi-
fication abandoned the CRF-created VIL altogether for
creating FC sets and instead used the sets in Table 4
comprised of possibly important markers, drawn from
prior experience (in essentially a hypothesis generation
process). The random walk for the CD4 FC set is shown
in Fig. 9. It has very irregular structure and a relatively
low enrichment score. Figure 10 shows the significance
levels for FC set sizes 5 to 11. No FC sets had statisti-
cally significant enrichment scores (p > 0.25). CD8 re-
sults were comparable.
Randomized screening tool design and testing for ILD vs.
no-ILD classification
In contrast to good training performance, CRF is a poor
out-of-sample (i.e. out-of-bag, OOB) predictor in this
application as shown in Fig. 11 (the predictive perform-
ance of CRF is no better than predicting ILD status by
flipping a coin) – which is why we created screening
tools in a different manner – via stochastic simulation.
Our design guidelines were simplicity and parsimony.
Randomly generated bounds for each FC variable were
derived from analyses using FC variable ranges obtained
from the training set data. We then addressed the issue
of which subsets of variables (from the set of 27 ‘best’
variables identified through GSEA) should be used to
construct screening tools. Experiments were conducted
to see whether full combinatorial expansion was neces-

sary, that is, did we need to evaluate tools with
27
1

� �
or a flow cytometry set comprised of 27 variables



Fig. 5 Plot of enrichment score versus FC set size. Gene Set Enrichment Analysis enrichment score plotted as a function of FC set size (obtained
top-down from the CRF Variable Importance List)
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through
27
27

� �
components (134,217,727 possible combi-

nations of variables; recall also that for each combination,
many random threshold realizations are generated). Ex-
tensive testing using full combinatorial expansion (which
consumed about 200,000 service units of compute time
on a very powerful parallel computer – Kraken [62]; a
typical run involved simultaneous execution of several
Fig. 6 Statistical significance levels of the ES values shown in Fig. 8. Statisti
thousand R instances) showed that the best performing
screening tools (those with the lowest OMR) were consist-
ently comprised of at least three and no more than six
FC variables, therefore all subsequent analyses involved

screening tools comprised of
27
3

� �
through

27
6

� �
(i.e.,

2,925 + 17,550 + 80,730 + 296,010 = 397,215) combinations
of FC variables. The best performing tool at this stage of
cal significance levels for the enrichment scores shown in Fig. 8



Table 3 Best FC set variables and definitions

FC Variable Mean VI Correlation

act4103 2.28E-03 0.233977426

pol8ccr5 2.24E-03 −0.286711053

act425tot 1.17E-03 0.220684788

act425lo 1.17E-03 0.22023626

pol8th17 1.00E-03 −0.157540769

mememra4 9.28E-04 0.248352001

act8103 8.45E-04 0.163452972

pol8ccr5cxcr3neg 7.95E-04 −0.226940337

pol8ccr4 4.24E-04 −0.157290699

act425103 4.00E-04 0.201942746

pol8th1th2ratio 3.77E-04 0.126269489

act810371 3.09E-04 0.21094877

memem4 3.06E-04 0.141766889

pol8x3r4ratio 2.41E-04 0.041171241

memem478 2.36E-04 0.122724989

mememra4k 1.73E-04 0.155600977

pol8th2 1.69E-04 −0.106939105

memem878 1.60E-04 −0.123626487

mememra478 1.19E-04 0.206671725

memem48 9.04E-05 0.043826522

act4dr 7.40E-05 −0.139383714

memem8 3.43E-05 −0.100496411

memcm478 −4.50E-06 0.094476259

memcm4k −2.96E-05 0.169922925

act8dr −4.01E-05 −0.179623785

traff4ccr3 −4.56E-05 0.138343962

pol4ccr6 −5.23E-05 0.181748831
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the analyses had an overall training misclassification rate
of 18.98 % (15 patients misclassified out of 79; 11 ILD, 4
no-ILD).
A refinement to screening tool design involved group-

ing (i.e., pre-partitioning) the 79 training patients into
sub-groups using CART and generating screening tools
separately for each sub-group. CART automatically se-
lects FC (“splitting”) variables and associated numerical
values of those variables that most successfully group
patients by ILD status. Figure 12 shows the CART pre-
partitioning results. We note that this adds considerably
to the computing burden – best screening tools now must
be identified for multiple groups within levels (with the
same splitting criteria subsequently used to pre-partition
patients into groups for validation). Randomized screening
tool design was then performed for each subgroup (there
are 14 shown in total in Fig. 12, but six are child nodes
whose parents have OMR= 0; these six node ID’s are
shown in black). This method substantially improved
screening tool performance. The pre-partitioned OMR
results using training data are shown in Table 5 (MC =
Misclassified).
Excepting the fourth level (where only one patient of

79 was misclassified) there was considerably more mis-
classification of ILD than no-ILD patients. The result
that only one patient was misclassified at the fourth level
of pre-partitioning is suggestive (but not proof ) of over
fitting, which is addressed below in validation. Additional
training filter details are provided in Additional file 1:
Sections 2 and 3.
Validation
The best training screening tools were then validated
using FC data from the 40 patients whose data was not
used in training. Without pre-partitioning (Level 0 in
Fig. 13) the overall correct ILD classification rate was
82.5 % (seven patients misclassified out of 40; 3 ILD, 4
no-ILD). Pre-partitioning the validation patients (using
the CART-derived variables and splitting levels devel-
oped for the training data) increases correct validation
classification to 95 % after two levels of pruning (two pa-
tients misclassified out of 40). This indicates that over
fitting was occurring in training for the deepest pre-
partitioning level (the training and validation curves in-
deed cross) as Fig. 13 attests. Notable also is the similar
OMR performance between training and validation for
no pre-partitioning (Level 0). As a corollary, the existence
of training over-fitting is also indicated by the result that
the best-performing training screening tools are not the
best-performing validation screening tools. Additional
validation filter details are provided in Additional file 1:
Sections 2 and 3.
Discussion
Hybrid approach
Several different data mining techniques proved effective
in classifying the ILD status of SSc patients in the train-
ing data set, given their FC data as predictors. CRF was
eventually chosen based mostly on its capability to deal
with the effects of correlated predictor variables. The ES
values associated with CRF-VIL FC sets (formed from
the group of variables at the top CRF variable import-
ance list) were consistently statistically significant based
on the GSEA permutation test. There exists a unique FC
set size associated with an Enrichment Score supremum.
Larger FC set sizes did not necessarily lead to greater
enrichment scores. These methods, however, did not
perform well in prediction (i.e., validation) which neces-
sitated the development of an alternative method for
screening tool design.



Fig. 7 Random walk for the FC set comprised of the 20th to 30th highest ranked variables. Random walk for the FC set comprised of the 20th to
30th highest ranked variables in the Conditional Random Forest variable importance list
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Other machine learning methods
There exist other machine learning approaches that have
not yet been evaluated. For example, Bayesian confidence
propagation neural network (BCPNN) was shown to be
effective in classification in some medical science applica-
tions [63, 64]. Also, the selection of phenotype can signifi-
cantly affect model performance. This was revealed in
poor classification and GSEA performance when using
pah_45 as phenotype.
Fig. 8 Random walk for the FC set comprised of the bottom ten ranked va
ranked variables in the Conditional Random Forest variable importance list
VIL robustness
In our ‘top-down’ analyses (forming FC sets beginning at
the top of the ranked correlation list in GSEA) all random
walks were up-regulated with relatively strong enrichment
scores. To test the robustness of this result, we instead
constructed FC sets comprised of variables with lower
ranked variable importance values, and in one case,
formed FC sets beginning at the bottom of the ranked list.
These tests typically yielded irregular down-regulated
riables. Random walk for the FC set comprised of the bottom 10



Table 4 Alternative FC sets

CD4 CD8

pol4th1 act8103

pol4th2 pol8cxcr3

pol4th17 pol8ccr4

pol4th1th17 pol8ccr6

act425lo act8dr

act425hi traff8cxcr6

act4dr traff8ccr10

traff4ccr10 memnaive8

traff4cxcr6 mem8cmefratio

memnaive4 mem8ememraratio

mem4cmefratio memcd8k
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random walks with much smaller enrichment scores.
There is strong evidence therefore that the CRF-derived
variable importance list, and forming FC sets top-down
from this list, plays an important role in good GSEA per-
formance. We note as well the possibility to create variable
importance lists (or their equivalent) with methods other
than CRF.

The GSEA ranked list
Thus far, the ranked lists of the GSEA test were based
on sorted, signed correlation coefficients. This is the ori-
ginal and most common approach in GSEA, but others
exist, for example, the absolute value of correlation coef-
ficients could serve as the ranked list. It follows in that
case that all random walks would be up-regulated.
Fig. 9 Random walk for the CD4 FC set. Random walk for the CD4 FC set,
GSEA – FC set determination
In the original genomics applications, gene sets for
GSEA were typically identified through some form of
hypothesis generation procedure – typically based on
biological insight (our rough equivalent would be insight
into possible SSc effector pathways). A reasonable alter-
native here is to define FC sets based on FC variables
considered to be potentially important biomarkers. Two
such FC sets (CD4-based and CD8-based) were created
and tested through GSEA. Performance was poor when
compared with the hybrid CRF-GSEA approach, but this
exercise was very limited in scope.
GSEA – permutation test
Gene Set Analysis (GSA) in general can be divided into
two major types based on the permutation schemes used
in their statistical tests: class label randomization and
gene randomization [65]. The GSEA algorithm in this
research, SAFE and SAM- CS [66, 67] belong to the first
category, while PAGE, T-profiler and Random Set [68–
70] are classified as gene-randomization. An important
factor in assessing the suitability of an approach is sam-
ple size (our data set contains 119 patients). Our results
were robust with respect to the number of permutations
used to estimate p-values. The alternative approach
(gene-randomization) is to permute FC variables, but
this will lead to nonconservative significance levels, i.e.
smaller p-values resulting in more false positives, be-
cause this approach does not account for stimulus (pre-
dictor) variable correlation [57].
comprised of possibly important markers



Fig. 10 Statistical significance of the ES vales in Fig. 13. Statistical significance of the enrichment scores for the CD4 GSEA results
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Randomized screening tool design
Randomized screening tool design is a novel and, we be-
lieve, generalizable mathematical tool used for pheno-
type classification. Its non-parametric nature allows
application in many other settings. This approach allows
for predictor variables and responses to be continuous,
binary or categorical. We also note that the need for
creating the randomized screening tool arose because
CRF performed poorly in prediction. If another machine
learning (or other) method performed well in predic-
tion, then the randomized screening tool would be
unnecessary.
Fig. 11 CRF, RF, CART, SVM Predictive Performance – ROC. CRF and the
other machine learning methods have poor predictive performance
While training screening tools performed very well
when classifying the entire data set (OMR = 0.1898),
the added step of pre-partitioning patients using CART
(and finding best training screening tools specific to
each CART group) significantly improved screening
tool performance. The splitting criterion used in CART
appears to be a good starting point for identifying sub-
populations of SSc patients. Our training screening
tool experiments consistently resulted in best screen-
ing tools having three to six components, with five
most often.

Validation
Validation was successful with a correct classification rate
of 82.5 % for the entire validation Data set (40 patients),
increasing to 95 % with CART pre-partitioning. There
exists a reasonable balance between training and valid-
ation error. We would expect that as more data becomes
available, screening tool performance will continue to im-
prove. This suggests another potentially important role for
our approach in better understanding the progression of
disease. We posit the scenario in which FC profile charac-
teristics may change with disease progression and that
these changes could be captured – reflected in changes in
screening tool design and performance. Selected FC vari-
ables and their expressions could be used as a basis for
partitioning patients into disease progression states, with
corresponding state-specific screening tool designs.

Biological interpretation
In FC27, the two FC variables (pol8ccr5cxcr3neg,
pol8ccr5cxcr3) identify Th1 polarized CD8 T cells. The



Fig. 12 CART Pre-partitioning result. Classification and Regression Trees pre-partitioning result. Patients are divided into groups, with screening
tools identified for each group (as opposed to finding best screening tools for the entire set of training patients)
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first (lacking CXCR3) is “protective”; the second (CXCR3)
is a “risk factor” for ILD. CXCR3 is a chemokine receptor
which has been shown to direct inflammatory cells
inside target tissue and drives acute inflammation
(synovial tissue in rheumatoid arthritis, liver in auto-
immune hepatitis, etc.). The variables memem8, mem-
emra87, memcm878 and memcm4 belong to the T cell
memory subset. It appears that ILD status is associated
with a shift of the CD8 T cells towards the activated
effector memory/terminally differentiated state. This is
Table 5 Pre-partitioned OMR results

CART Node # ILD # NoILD # MC # ILD MC # NoILD MC OMR

Level 0 38 41 15 11 4 0.1878

1-1 24 38 11 9 2 0.1774

1-2 14 3 0 0 0 0.0

Level 1 38 41 11 9 2 0.1392

2-1 17 37 9 8 1 0.1667

2-2 7 1 0 0 0 0.0

Level 2 38 41 9 8 1 0.1139

3-1 1 18 1 0 1 0.0526

3-2 16 19 5 2 3 0.1429

Level 3 38 41 6 2 4 0.0759

4-2 3 13 1 0 1 0.0625

4-3 13 6 0 0 0 0.0

Level 4 38 41 1 1 1 0.0127

Parent Node > Child Node; 1–2 > 2–3 > 3–4 > 4–5; 2–2 > 3–3 > 4–4; 3–
1 > 4-1
in keeping with the pro-inflammatory polarized status
observed.

Conclusions
IRIS flow cytometry data provides useful information in
assessing the ILD status of SSc patients.
Our hybrid analysis approach is: (1) Conditional Forest

classification to produce a variable importance list; (2)
Gene Set Enrichment Analysis to identify ‘best’ sets of
flow cytometry variables; (3) random screening tool gen-
eration and training to identify best screening tools on
the basis of their overall misclassification rate perform-
ance; and (4) validation. With the IRIS data set, it proved
successful in predicting SSc patient ILD status with a
high degree of success. The identification of subsets of
flow cytometry variables through our methodology may
also lead to insights into possible effector pathways and
Fig. 13 Screening tool performance: Training versus validation error
Screening tool training and validation performance showing that
over fitting in training was occurring. The best training screening
tools are not the best performing validation screening tools
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thereby improve the state of knowledge of systemic
sclerosis pathogenesis. HRCT confirmation of patient
ILD status is an important next step in developing add-
itional confidence with our approach (and the appropri-
ateness of the commonly used 80 % FVCstpp threshold
for presumptive ILD determination). The approach de-
scribed in this report perhaps could be used as a new
screening tool to identify relevant variables that account
for phenotypes in unrelated diseases.

Additional files

Additional file 1: Flow Cytometry Details and Supplementary
Results. (DOCX 1.93 MB)

Additional file 2: IRIS Data Set and R code. (ZIP 291 KB)
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