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Abstract

Inspired by a concept in comparative genomics, we investigate properties of randomly

chosen members of G1ðm; n; tÞ, the set of bipartite graphs with m left vertices, n right vertices, t

edges, and each vertex of degree at least one. We give asymptotic results for the number of

such graphs and the number of ði; jÞ trees they contain. We compute the thresholds for the

emergence of a giant component and for the graph to be connected.

r 2005 Elsevier B.V. All rights reserved.
1. Introduction

Biologists use an Oxford grid to indicate the relationship between two genomes. It
is a matrix with gði; jÞ ¼ 1 if part of chromosome i in the species A is homologous to
part of chromosome j in species B. The corresponding Oxford graph is the bipartite
graph obtained by letting the chromosomes of species A be vertices on the left and
chromosomes of species B be vertices on the right and with an edge from i on the
left to j on the right if gði; jÞ ¼ 1. Fig. 1 gives the Oxford graph for the autosomes
(non-sex chromosomes) of elephant and humans.
see front matter r 2005 Elsevier B.V. All rights reserved.
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Fig. 1. Comparison of elephant and human genomes. Data from Yang et al. [10]: m ¼ 22, n ¼ 27, t ¼ 44,

a ¼ 1:126, b ¼ 1:654, and ab ¼ 1:863.
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Let G1ðm; n; tÞ, the set of bipartite graphs with m left vertices, n right vertices,
t edges, and each vertex of degree at least one. The graph in Fig. 1 is a member of
G1ð22; 27; 44Þ but is it a typical member of that set? To answer this question we will
examine properties of randomly chosen members of G1ðm; n; tÞ and of related
families of bipartite graphs. We begin by asking how many such graphs there are. To
answer this question we will investigate the model Grðm; n; tÞ: fix a vertex set L of size
m and R of size n, and pick t of the mn edges between L and R with replacement
(picking the same edge multiple times is allowed). As usual, we are interested in the
behavior of these random graphs as t, m, and n go to infinity; when using the
symbols �, �, and ! we are tacitly assuming the results hold as t, m, and n go to
infinity. Standard results for the birthday problem (see e.g. 11, p. 83) show that the
probability no edge is picked twice is � expð�t2=2mnÞ, which converges to a positive
limit if t=m ! r and t=n ! l, so not much is changed by picking with replacement,
except that the next question becomes much easier to answer.

Q. How big is Gr
1ðm; n; tÞ, the subset of Grðm; n; tÞ in which each vertex has degree

at least one?
To relate this to the classical occupancy problem, consider an m � n array of boxes

and throw in t balls. Let A be the event that each row has at least one ball and B be
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the event that each column has at least one ball. It is easy to see that (thanks to
sampling with replacement) the probability of B is not affected by conditioning on
the number of balls in each row, so A and B are independent. Using the multinomial
distribution

PðAÞ ¼
1

mt

X
	

t!

i1! 
 
 
 im!
,

where the sum is over all i1; . . . ; imX1 with i1 þ 
 
 
 þ im ¼ t. To evaluate the sum we
rewrite it as

t!eam

mtat

X
	

Ym
j¼1

e�a aij

ij !
¼

t!eam

mtat
PðZ1X1; . . . ;ZmX1;Z1 þ 
 
 
 þ Zm ¼ tÞ,

where Zi are independent Poisson with mean a.
It is easy to see that PðZ1X1; . . . ;ZmX1Þ ¼ ð1� e�aÞ

m. EðZijZiX1Þ ¼ a=
ð1� e�aÞ, so if we pick a so that a=ð1� e�aÞ ¼ t=m and let s2

a ¼ var ðZijZiX1Þ then

PðZ1 þ 
 
 
 þ Zm ¼ tjZ1X1; . . . ;ZmX1Þ�1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

am

q
.

A similar analysis applies to PðBÞ giving the following result.

Theorem 1. Let a=ð1� e�aÞ ¼ t=m and b=ð1� e�bÞ ¼ t=n and suppose that t=m ! l,
t=n ! r. Then

jGr
1ðm; n; tÞj ¼ ðnmÞ

tPðAÞPðBÞ�ðt!Þ2
ðea � 1Þma�tðeb � 1Þnb�t

2psasb

ffiffiffiffiffiffiffi
mn

p .

As a consequence of Theorem 1 and the birthday problem result we can calculate
jG1ðm; n; tÞj up to a constant factor.

Corollary 1. Under the assumptions of Theorem 1,

e�rlp lim inf
jG1ðm; n; tÞj

jGr
1ðm; n; tÞj

p lim sup
jG1ðm; n; tÞj

jGr
1ðm; n; tÞj

p1.

Even more important than allowing us to count the graphs, the proof of Theorem
1 allows us to relate our graphs to ones studied by Molloy and Reed [4] and Newman
et al. [7]. Let Y be a random variable with distribution given by

PðY ¼ kÞ ¼
1

1� e�a

e�aak

k!
; for kX1

and PðY ¼ kÞ ¼ 0 otherwise. We will say Y has a truncated Poisson distribution

with parameter a, or P̄ðaÞ for short. This distribution is the limiting degree
distribution of a graph from Gr

1ðm; n; tÞ if parameter a is chosen correctly. We
choose a by equating the means of the two distributions. The truncated Poisson
distribution has mean a=ð1� e�aÞ and the mean degree of a left (right) vertex is
t=m (t=n).

We can now define a new graph model that mimics the degree distribution of
vertices from Gr

1ðm; n; tÞ. Label the left vertices l1; l2; . . . ; lm and the right vertices



ARTICLE IN PRESS

J. Blasiak, R. Durrett / Stochastic Processes and their Applications 115 (2005) 1257–12781260
r1; r2; . . . ; rn. Let dðliÞ, i ¼ 1; . . . ;m be independent P̄ðaÞ random variables where
a=ð1� e�aÞ ¼ t=m; let dðriÞ, i ¼ 1; . . . ; n be independent P̄ðbÞ random variables
where b=ð1� e�bÞ ¼ t=n. Condition on the sum of the dðliÞ being t and condition on
the sum of the dðriÞ being t. Make a set L0 (R0) with dðliÞ (dðriÞ) copies of vertex li (ri).
Pair up elements in L0 with elements in R0 uniformly at random. Finally, collapse the
vertex copies into a single vertex and let the vertex pairings determine the edges of
the graph (which may have multiple edges between vertices). Call the resulting
random graph TPðm; n; tÞ. It is clear that the Gr

1ðm; n; tÞ and TPðm; n; tÞ random graph
models have the same degree distribution, and it is not surprising that models are, in
fact, the same.
Lemma 1. The models Gr
1ðm; n; tÞ and TPðm; n; tÞ are the same.

We give the proof in the appendix. To study the question of the existence of a
giant component in our graph, we begin with the general case in which the degrees of
the m left vertices have distribution pk and the degrees of the n vertices on the right
have distribution qk. If we examine the cluster of a given vertex v on the left then its
first generation members (at distance one from v) will have distribution pk, but the
number of children of a member of the first generation will not have distribution qk.
A vertex on the right with degree k is chosen in the first generation with probability
proportional to kqk. If we let n ¼

P
k kqk and q̄k ¼ ðk þ 1Þqkþ1=n then the number of

children of a child of v will have distribution q̄k and mean n̄ ¼
P

k kq̄k. Here we have
shifted the distribution by 1 to remove the edge that we arrived on (so that v is not
counted as its own grandchild). Readers who are used to the Erdös–Renyi random
graphs should note that if qk is Poisson(l), then q̄k is again Poisson(l).

Similar calculations apply to the third generation. The members of the second
generation have size-biased degree distributions p̄k ¼ ðk þ 1Þpkþ1=m where m ¼P

kkpk and this distribution has mean m̄. As the reader can probably guess by
analogy with branching processes,
Lemma 2. The condition for the existence of a giant component is m̄n̄41

Molloy and Reed [4], who wrote the condition in the equivalent formP
k kðk � 2Þpk40, proved this in the ordinary (unipartite case), essentially by

showing that the branching process analogy gives an accurate approximation of
cluster sizes. Newman et al. [7], motivated by studies of the structure of the world
wide web, collaboration graphs of scientists, and Fortune 1000 company boards of
directors, extended Molloy and Reed’s results to directed and bipartite graphs. Since
Newman, Strogatz, and Watts published in Physical Review E, they did not have to
prove their results. Instead, like physicists, they wrote generating function equations
that come from thinking of cluster formation as a branching process. As the reader
can see from the description, Lemma 2 is almost a known result. Since we need some
of the details in the proof of Theorem 4, we will give a detailed proof for the special
case that appears in Theorem 2.
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Our next step is to see what Lemma 2 says about our example. If pk is P̄ðaÞ then
m ¼ a=ð1� e�aÞ so

p̄k ¼
1� e�a

a
ðk þ 1Þe�a akþ1

ðk þ 1Þ!ð1� e�aÞ
¼ e�a ak

k!
, (1)

i.e., the Poisson distribution with mean a. A similar calculation shows q̄k is the
Poisson distribution with mean b, so the condition for the existence of a giant
component is ab41.

To compute the survival probability of the branching process, let f1, f2, c1, and
c2 be the generating functions of pk, qk, p̄k, and q̄k, respectively. Consider our
branching process, starting from one vertex on the left and conditioned on having
one individual in the first generation. We call this the homogeneous branching
process, because the different distribution at the first step has been eliminated. The
number of offspring this individual has in the third generation has generating
function c2ðc1ðzÞÞ. To check the order of the composition note that if N has
distribution q̄k (N is the number of vertices in the second generation) and X 1;X 2; . . . ;
are independent with distribution p̄k (X 1 is the number of children of a second
generation vertex) then

EðzX 1þ


þX N Þ ¼
X1
k¼0

PðN ¼ kÞc1ðzÞ
k
¼ c2ðc1ðzÞÞ. (2)

Let zR be the smallest solution of c2ðc1ðzÞÞ ¼ z in ½0; 1�, i.e., the extinction
probability of the homogeneous branching process. By considering the number of
individuals in the first generation, it follows that the extinction probability for the
branching process starting with one individual on the left is

xL ¼
X1
k¼1

pk z
k
R ¼ f1ðzRÞ.

We define zL and xR similarly.

Theorem 2. Let a=ð1� e�aÞ ¼ t=m and b=ð1� e�bÞ ¼ t=n and suppose that t=m ! l,
t=n ! r. When abo1 the largest cluster is Oðlogðm þ nÞÞ. A giant component appears

when ab41. The fraction of vertices it contains on the left and right are asymptotically

1� xL and 1� xR. The second largest component is Oðlogðm þ nÞÞ.

To illustrate the phase transition we will consider some examples. In the
human elephant comparison in Fig. 1, a ¼ 1:071 and b ¼ 1:593 so ab ¼ 1:707.
With a total of 49 vertices, it is hard to recognize a giant component, but there is
one component with 13 human and 19 elephant vertices. Fig. 2 gives a comparison
of human and colobine monkey, one of our fairly close primate relatives, which
has a ¼ 0:503, b ¼ 0:605 and ab ¼ 0:305. In agreement with subcritical designation,
there are 12 components with 2 vertices, three with 3 vertices, one with 4, and
one with 6. Fig. 3 gives a comparison of the human and cat genomes that
has a ¼ 1:151, b ¼ 0:802, and ab ¼ 0:925. Fig. 4 compares humans and dogs, an
example with a ¼ 2:873, b ¼ 1:477, and ab ¼ 4:245. The drastic difference in
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Fig. 2. Comparison of human and colobine monkey (Colobus guererza) genomes. Data from Bigoni et al.

[1]. m ¼ 22, n ¼ 21, t ¼ 28, a ¼ 0:581, b ¼ 0:685, and ab ¼ 0:397.

Fig. 3. Comparison of human and cat genomes. Data from Weinberg et al. [9] and Murphy et al. [6].

m ¼ 22, n ¼ 19, t ¼ 32, a ¼ 1:151, b ¼ 0:802, and ab ¼ 0:925.
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the graphs in Figs. 3 and 4 is somewhat surprising since the evolutionary distance
from humans to cats and dogs are the same. In the human–dog graph there is one
giant component and three components of size 2. To lead into our next topic we ask:
Does the number of small components in these random graphs agree with what
we expect?
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Fig. 4. Comparison of the human and dog genomes. Data from Breen et al. [3]: m ¼ 22, n ¼ 38, t ¼ 67,

a ¼ 2:873, b ¼ 1:477, and ab ¼ 4:245.
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To get prepared for our next result, which will help us answer this question, we will
give a second derivation of the threshold that is easy to believe but difficult to make
rigorous. Suppose we are interested in some property of G1ðm; n; tÞ. Define a and b by
a=ð1� e�aÞ ¼ t=m and b=ð1� e�bÞ ¼ t=n. Let GðM;N; pÞ be the random bipartite
graph in which there are M ¼ t=a vertices on the left, N ¼ t=b on the right, and
edges are independently chosen with probability p ¼ ab=t ¼ a=N ¼ b=M. M and N

are defined this way so that after removing isolated vertices from each side we get a
graph similar to one from G1ðm; n; tÞ. The calculation is not difficult: the number of
non-isolated vertices on the left, M, has expected value

EM ¼ Mð1� ð1� pÞN Þ � Mð1� e�aÞ ¼
t

a
ð1� e�aÞ ¼ m,

the number of non-isolated vertices on the right has EN ¼ n, and the number of
edges, E, has expected value EE ¼ MNp ¼ Nb ¼ t. Since all of the graphs in
G1ðm; n; tÞ have the same probability under GðM;N ; pÞ.

Lemma 3. The distribution of GðM ;N; pÞ conditioned on M ¼ m, N ¼ n, E ¼ t is

that of G1ðm; n; tÞ.

It is easy to show that when t=m ! r and t=n ! l, M, N, and E, will with high
probability differ from their expected values by oðnÞ. It is intuitively clear, but seems
hard to show, that the vector ðM;N;EÞ satisfies the local central limit theorem, so
the conditioning M ¼ m, N ¼ n, E ¼ t has probability Oð1=n3=2Þ and any property
of GðM;N; pÞ that has asymptotic probability 1� oðn�3=2Þ will be inherited by
G1ðm; n; tÞ. Once one believes this, the threshold result follows easily. GðM ;N; pÞ has
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a giant component if

1oMp Np ¼
t

a

t

b

ab

t

� �2

¼ ab.

For a new example, consider the number of ði; jÞ trees in the random graph, i.e.,
the number of trees with i vertices on the left and j vertices on the right. We let the
tree size stay fixed while taking m; n; t to infinity. Once one knows that the number of
labeled bipartite ði; jÞ trees is ij�1ji�1 (see e.g., [8]), the expected number of ði; jÞ trees
in GðM ;N; pÞ can be derived by a calculation analogous to the standard one for trees
in a unipartite random graph (see [2, Theorem 5.5]).

ij�1ji�1

i!j!

ðe�baÞjðe�abÞi

p
.

Based on the reasoning above we expect that the corresponding result will hold for
G1ðm; n; tÞ.

Theorem 3. In Gr
1ðm; n; tÞ, the expected number of ði; jÞ trees

EAi;j !
ij�1ji�1

i!j!

ðe�baÞjðe�abÞit

ab
.

Since the existence of ði; jÞ trees on disjoint sets of vertices are asymptotically
independent, we expect that the number of such trees will have asymptotically a
Poisson distribution, but we have not tried to prove that.

To see what Theorem 3 says, we will consider our four previous examples and a
comparison of the human and lemur genomes given in Fig. 5, which is somewhat
Fig. 5. Comparison of lemur (Eulemur macao macao) and human genomes. Data from Müller et al. [5]:

m ¼ 20, n ¼ 22, t ¼ 38, a ¼ 1:458, b ¼ 1:214, and ab ¼ 1:771.
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Table 1

Expected number of trees of various sizes compared with the number observed in our five examples

Human Example

1 2 3 4 5

Elephant Monkey Cat Dog Lemur

ab 1.71 0.30 0.93 4.25 1.77

EA1;1 3.06 9.23 4.53 0.86 2.63

obs 4 12 4 3 0

EA2;1 0.33 1.69 1.17 0.04 0.37

obs 0 2 2 0 0

EA1;2 0.83 1.26 0.57 0.28 0.57

obs 0 1 0 0 1
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surprising since this example has ab ¼ 1:771 but no (1,1) or (2,1) trees. Table 1
compares the expected and observed number of (1,1), (2,1) and (1,2) trees. In
general, there is good agreement between the observed and expected values. Two
notable exceptions are the number of (1,1) trees in examples 4 and 5 where the
expected values are 0.86 and 2.63 while the observed values are 3 and 0. If we assume
that the number of trees has a Poisson distribution then the probability of three or
more (1,1) trees in Gr

1ð22; 38; 67Þ is 0.097, while the probability of no (1,1) tree in
Gr

1ð20; 22; 38Þ is 0.072.
Our final problem is to determine when the graph will be connected.

For the Erdös–Renyi unipartite random graph GðN; pÞ in which there are N

vertices and edges are independently present with probability p, the transition
to connectivity occurs when p � ðlog NÞ=N. To see this we note that the number
of edges incident to vertex is asymptotically Poisson(Np). If we let p ¼ cðlog NÞ=N,
the probability of an isolated vertex is � 1=Nc, so the expected value is large
when co1 and goes to 0 if c41. Isolated vertices prevent connectivity, so a
second moment calculation shows that if co1 the probability of connectivity goes
to 0.

The result in the other direction is more difficult, since one must consider all of
the ways in which the graph can fail to be connected. A simple calculation (see
[2, p. 104]) shows that if p ¼ y=N and y ¼ oðN1=2Þ then the expected number of trees
with v vertices, Tv, has

EpðTvÞ�
1

y
vv�2

v!
ðye�yÞ

v.

From this we see that if y ¼ c log N and 1=2oco1 then asymptotically there are
isolated vertices, but no trees of size vX2. Bollobas [2, see Section 7.1], combines this
estimate with the fact that the largest tree in a supercritical random graphs has
Oðlog nÞ vertices to prove (see Theorem 7.3, p. 164) that if y ¼ log N þ x þ oð1Þ then
the probability GðN; pÞ is connected approaches expð�e�xÞ.
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Saltykov [8] has considered a question closely related to the connectivity
problem for the random bipartite graph GðM ;N ;TÞ in which there are M vertices
on the left, N vertices on the right, and T edges. Suppose MXN. Let a ¼ M=N and
b ¼ ð1� 1=aÞ log N. His main result asserts that if

ð1þ 1=aÞT ¼ ðM þ NÞflogðM þ NÞ þ x þ oð1Þg

then the number of isolated vertices has asymptotically a Poisson distribution
with mean

l ¼
e�xð1þ e�bÞ

1þ 1=a
.

Recalling a ¼ M=N, we see that the transition to connectedness occurs when
T�M logðM þ NÞ.

The corresponding result for our bipartite random graphs is

Theorem 4. Define c by t ¼ c mn
mþn

logðm þ nÞ and suppose m=n ! a, a positive finite

limit. The probability Gr
1ðm; n; tÞ is connected tends to 0 or 1 depending on whether c has

a limit o1 or 41.

Note that our threshold is asymptotically 1
1þa m logðm þ nÞ. The difference in

thresholds should not be surprising given the results for EpðTvÞ cited above. Our
threshold is for the disappearance of (1,1) trees rather than the absence of isolated
vertices, so this occurs at a smaller value of t.

The remainder of the paper is devoted to proofs. We take the results in the same
order as in the introduction.
2. Proof of Corollary 1
Corollary 1. Under the assumptions of Theorem 1,

e�rlp lim inf
jG1ðm; n; tÞj

jGr
1ðm; n; tÞj

p lim sup
jG1ðm; n; tÞj

jGr
1ðm; n; tÞj

p1.

Proof. The inequality jG1ðm; n; tÞjpjGr
1ðm; n; tÞj is trivial and proves the result

for lim sup. To prove the other result let E ¼ A \ B be the event that there
are no isolated vertices and let F be the event that all edges chosen are distinct.
Let P denote probabilities under Gr

1ðm; n; tÞ. From the thought experiment of
sampling with replacement until we have t distinct edges it is clear that PðEjF ÞXPðEÞ

because if a graph has no isolated vertices after the first t edges are chosen,
it will have no isolated vertices when t distinct edges are chosen. From this
we get

jG1ðm; n; tÞj

jGr
1ðm; n; tÞj

¼
PðE \ F Þ

PðEÞ
¼

PðEjF ÞPðF Þ

PðEÞ
XPðF Þ.

The result for lim inf now follows from the result for the birthday problem cited in
the introduction, which gives the limiting behavior of PðF Þ. &
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3. Proof of Theorem 2

Theorem 2. Let a=ð1� e�aÞ ¼ t=m and b=ð1� e�bÞ ¼ t=n and suppose that t=m ! l,
t=n ! r. When abo1 the largest cluster is Oðlogðm þ nÞÞ. A giant component appears

when ab41. The fraction of vertices it contains on the left and right are 1� xL and

1� xR. The second largest component is Oðlogðm þ nÞÞ.

The first step is to make the connection between the cluster size and the total
progeny in a branching process. To do this, we note that instead of making all of the
choices in pairing the duplicated left and right vertices at once, we can do them
sequentially. Suppose that we start with vertex l1. We then choose dðl1Þ times
without replacement from the duplicated set of right vertices R0. Let f 1ðrjÞ be the
number of times vertex rj is chosen and let J1 ¼ fj : f 1ðrjÞ40g. For each j 2 J1,
choose dðrjÞ � f 1ðrjÞ times without replacement from the duplicated set of left
vertices L0 minus the dðl1Þ copies of l1. Let f 2ðljÞ be the number of times vertex lj is
chosen, let J2 ¼ fj : f 2ðljÞ40g, etc. We continue this procedure until the cluster
containing l1 has been constructed. We then choose some vertex not in the cluster
containing l1, generate its cluster, and continue until the random graph has been
constructed.

From the construction it should be clear that if Y m
k ¼ jJkj is the number of

vertices in generation k (of a graph from TPðm; n; tÞ) then as m ! 1, fY m
k ; kX1g

converges to the branching process described in the Introduction. There are two
differences between the growing cluster and the limiting branching process. The first
is that the possible choices are dictated by the empirical sequence of degrees
dðl1Þ; . . . ; dðlmÞ and dðr1Þ; . . . ; dðrnÞ rather than the truncated Poisson distributions.
The second is that the set of available degrees changes as choices are made.

The first difference disappears as m ! 1 since by the law of large numbers, the
empirical distribution of degrees converges to the underlying theoretical distribution.
To estimate the effect of the second, let rk be a probability distribution on the
positive integers, let Z40, and let W ðoÞ be a nondecreasing function of o 2 ð0; 1Þ so
that the Lebesgue measure jfo : W ðoÞ ¼ kgj ¼ rk. We say that W is the mass function

of distribution r. If we remove an amount of mass Z from the distribution and
renormalize to get a probability distribution, then the result will be larger in
distribution than U ¼ ðW ðoÞjoo1� ZÞ and smaller in distribution than
V ¼ ðW ðoÞjo4ZÞ. Note that EVpEW=ð1� ZÞ.

Subcritical case: Suppose abo1. Pick Z40 so that ab=ð1� ZÞo1. Let p̂m
k and q̂m

k be
the empirical distributions of the degrees of vertices on the left and on the right, let
m	m and n	m be the means of these empirical distributions, and m̄	m ¼

P
kðk � 1Þp̂m

k =m
	
m

and n̄	m ¼
P

kðk � 1Þq̂m
k =n

	
m be the means of the size biased distributions. Since pk and

qk have finite second moments it follows from the law of large numbers and (1) that
m̄	m ! a and n̄	m ! b.

From the choice of Z it follows that if m is large then until a fraction Z of vertices
have been used up on either side, the growing cluster is dominated by a subcritical
branching process. To estimate the growth of the cluster, we take the approach of
Molloy and Reed [4] and expose the cluster of right vertices one at a time, i.e., we
pick one of the current set of active right vertices and go through two generations to
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identify the right vertices connected to it. The chosen right vertex is removed from
the set of active vertices and the new ones are added; we call this a step. Vertices in
early generations need not be exposed before vertices in later generations, as
described at the beginning of the section; any active vertex may be exposed at
each step.

To prove the lower bound on the critical value, we will show that if abo1 then for
large m the largest cluster is Oðlogðm þ nÞÞ. Pick a right vertex at random and let X be
�1 plus the number of right vertices that can be reached in two steps in the
branching process. Assuming cluster growth is a branching process, this represents
the change in the size of the set of active right vertices in one step of the construction.
Let S‘ ¼ S0 þ X 1 þ 
 
 
 þ X ‘, where X i are independent with distribution X. When
S0 ¼ 1, S‘ gives the size of the active set of vertices after ‘ vertices in the cluster have
been exposed. The random variable t ¼ inff‘ : S‘ ¼ 0g has the same distribution
as the total progeny of the homogeneous branching process starting from one
right vertex.

In the limiting branching process kðyÞ � EeyXo1 for all y. Since kð0Þ ¼ 1
and k0ð0Þ ¼ EXo0 in the subcritical case, there is a y40 so that kðyÞo1.
Therefore

Pðt4kÞpPðSkX1ÞpEeySk ¼ kðyÞk, (3)

so we have a bound on the total number of individuals in the branching process. To
extend the last result to the growing cluster, we begin by observing that if X̂ is the
corresponding quantity for the empirical distribution then the strong law of large
numbers implies E expðyX̂ Þ ! E expðyX Þ. If X Z is the distribution that dominates
choices made at any time before a fraction Z of the vertices have been used on the left
or the right, then (from the discussions earlier) E expðyX ZÞpE expðyX̂ Þ=ð1� ZÞ. So
if m is large and Z is small E expðyX ZÞo1. It follows from (3) that there is a g40
so that Pðt4kÞpe�gk. If we take k0 ¼ ð2=gÞ log n then Pðt4k0Þpn�2. This and
the corresponding argument for left vertices proves that the largest cluster is
Oðlogðm þ nÞÞ.

Supercritical case: Given distributions ~d and d̄, k ~d � d̄k ¼ ð1=2Þ
P

k j
~dk � d̄kj is the

total variation distance. If m is large and the fraction of vertices chosen on either side
is at most Z, then the cluster growth process dominates a branching process with
offspring distributions ~pk and ~qk with k ~p � p̄kp2Z and k ~q � q̄kp2Z where p̄ and q̄

are the size biased degree distributions. Let W p be the mass function of p̄. Among all
distributions ~p with k ~p � p̄kp2Z, the smallest one, p̄Z, is the distribution with mass
function W Z

p; W Z
pðoÞ ¼ W pðo� 2ZÞ; w 2 ð2Z; 1� and W Z

pðoÞ ¼ 0; w 2 ð0; 2Z�. Define
W q, W Z

q, and q̄Z in the analogous way.
If we let aZ and bZ be the means of p̄Z and q̄Z then the dominated convergence

theorem implies that as Z ! 0, we have aZ ! a and bZ ! b, so aZbZ41 for small Z.
Now if 0pzp1 we have

X
k

p̄
Z
kzk �

X
k

p̄kzk

�����
�����p
X

k

jp̄
Z
k � p̄kjp4Z ! 0.
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From this we see that if cZ
1 and cZ

2 are generating functions of p̄Z and q̄Z then,
uniformly on ½0; 1�, we have cZ

1 ! c1, c
Z
2 ! c2, and cZ

2ðc
Z
1Þ ! c2ðc1Þ. This uniform

convergence implies that the smallest fixed point of cZ
2ðc

Z
1Þ converges to that of

c2ðc1Þ, i.e., the extinction probability xZR ! xR as Z ! 0. In a similar way we can
conclude zZL ! zL, x

Z
L ! xL, and zZR ! zR.

To study the size of clusters, as in the previous proof, we expose them one right
vertex at a time. When we expose the grandchildren of an active vertex, one of them
might already be in the active set. We call such an event a collision. If a collision
occurs, instead of adding the grandchild to the active set (as is usually done), we
remove it from the active set. To show that this does not slow down the branching
process too much, we must bound the number of collisions. When we look at the left
vertex children of a right vertex, we cannot encounter one we have seen before,
because the first time a left vertex is visited, all of its other right vertex neighbors are
added to the active set and all collisions are removed. Note that p̄Z and q̄Z are
concentrated on f0; . . . ;Lg where L ¼ maxfW Z

pð1Þ;W
Z
qð1Þg. Thus until dn vertices

have been exposed on the right, the number of edges with an end in the active set is at
most dnL. The probability of picking one of these edges in the exposure of an active
vertex is at most dnL2=ðt � dnL2Þ � g.

Let Z be the number of grandchildren in the branching process in which the first
generation is according to q̄Z and the second according to p̄Z. Let Y be the
distribution of grandchildren in the branching process modified to correct for
collisions; Y ¼ Z � 2 
 Binomialðg;ZÞ. Therefore if d is small, EY ¼ aZbZð1� 2gÞ41.

Let X ¼ Y � 1 and define S‘ as before. Since EX40 the random walk has positive
probability of not hitting 0, so there is positive probability that the cluster growth
persists until there are at least dm left vertices or dn right vertices. To prove that we
will get at least one such cluster with high probability, it is enough to show that with
high probability all unsuccessful attempts will use up at most Oðlogðm þ nÞÞ vertices.
For this guarantees that we will get a large number of independent trails before using
a fraction d=2 of vertices on either side.

The random variable X is bounded so kðyÞ ¼ EeyXo1 for all y. kðyÞ is convex,
continuous and has k0ð0Þ ¼ EX40, kðyÞ�PðX ¼ �1Þ e�y ! þ1 as y ! �1, so
there is a unique l40 so that kð�lÞ ¼ 1. In this case E expð�lSkÞ is a nonnegative
martingale. Due to the possible removal of active vertices, the random walk may
jump down by more than 1, but its jumps are bounded so the optional stopping
theorem implies that the probability of reaching 0 from S0 ¼ x is pe�lx.

The last estimate implies that the probability that the set of active vertices grows to
size ð2=lÞ log n without generating a large cluster is pn�2. Routine large deviations
estimates for sums of independent random variables show that if C is large, the
probability that the sum of C log n independent copies of X is pð2=lÞ log n is at
most n�2. Thus the probability of exposing more than C log n vertices and not
generating a large cluster is p2n�2. Combining this with the estimate for left clusters,
we have our bound on unsuccessful attempts and can conclude that with high
probability there is a large cluster.

To finish up now, let � ¼ d=L2. Since the maximum degree of any vertex is L, we
can expose �n right vertices without using up dn vertices on either side. A routine
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large deviations estimate shows that

PðS�npð�nÞEX=2ÞpCe�cn.

Consider now two vertices i and j. If their clusters reach size C log n then the
probability one of them will fail to continue until �n right vertices have been exposed
is p4n�2. If the number of right vertices of their clusters reach size �n and they have
not already intersected, then with probability X1� 2Ce�cn each has an active set of
size Xð�nÞEX=2. The probability they will fail to intersect on the next step is
exponentially small. With probability tending to 1, all vertices in clusters larger than
C log n belong to the giant component, and therefore the second largest component
is Oðlogðm þ nÞÞ.

Our final task is to prove the claim about the fraction of vertices on the left and
right that belong to the giant component. Previous arguments have shown that if d is
small, the extinction probability for the comparison branching processes are � xL.
We have shown that membership in the giant component is essentially the same as
belonging to a component of size XC log n. Now, the probability of a collision
before reaching size C log n is at most

ðC log nÞ2
L2

n
, (4)

so if 1i2G is the indicator function that left vertex i is part of a component of size
XC log n then Eð1i2GÞ � 1� xL. When two clusters do not intersect, their growth is
independent so (4) implies that

var
Xm

i¼1

1i2G

 !
pCm þ m2ðC log nÞ2

L2

n
.

Chebyshev’s inequality implies

1

m

Xm

i¼1

1i2G � Pði 2 GÞ

 !
! 0

in probability and the desired result follows.

4. Proof of Theorem 3
Theorem 3. In Gr
1ðm; n; tÞ, the expected number of ði; jÞ trees

EAi;j !
ij�1ji�1

i!j!

ðe�baÞjðe�abÞit

ab
.

Proof. Let T be a fixed vertex labeled ði; jÞ tree (left vertex labels are some subset of
f1; 2; . . . ;mg of size i), let k ¼ jEðTÞj ¼ i þ j � 1, and let D be the event that it exists
as a component of our random graph. Let Cðm; n; tÞ be the number of edge-labeled
multigraphs belonging to Gr

1ðm; n; tÞ.

PðDÞ ¼
t

k

� �
k!

Cðm � i; n � j; t � kÞ

Cðm; n; tÞ
.
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The t
k

� �
k! term comes from all the ways of labeling the edges of the tree and dividing

the labels between tree and non-tree edges. From Lemma 1, we know

Cðm; n; tÞ ¼
X	

a

t!

a1!a2! . . . am!

X	
b

t!

b1!b2! . . . bn!
.

By symmetry it suffices to study the m part of the equation. From the proof of
Theorem 1, we have

X	
a

t!

a1!a2! . . . am!
�

ðea � 1Þmt!

at
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

am
p .

Thus Cðm � i; n � j; t � kÞ=Cðm; n; tÞ is the product of two symmetric terms; the one
containing m is

ðea0 � 1Þm�i
ðt � kÞ!ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ps2
a0 ðm � iÞ

p
a0t�k

ðea � 1Þmt!ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

am
p

at
;

,
(5)

where a0 is determined by a0=ð1� e�a0 Þ ¼ ðt � kÞ=ðm � iÞ.
The expression above is equal to

ea0 � 1

ea � 1

� �m�i
a

a0

� �t�k sa

sa0

ffiffiffiffiffiffiffiffiffiffiffi
m

m � i

r
ak

ðea � 1Þi
ðt � kÞ!

t!
.

Since i and k are fixed a0 tends to a and sa0 ! sa

sa

sa0

ffiffiffiffiffiffiffiffiffiffiffi
m

m � i

r
ea0 � 1

ea � 1

� ��i
a

a0

� ��k

! 1. (6)

To complete the proof, we will show that

ea0 � 1

ea � 1

� �m
a

a0

� �t

! 1. (7)

This enough since it implies

PðDÞ ¼
t

k

� �
k!

akðt � kÞ!

ðea � 1Þit!

bk
ðt � kÞ!

ðeb � 1Þj t!

�
aj�1bi�1

tk

ai

ðea � 1Þi
bj

ðeb � 1Þj
�
ðe�baÞjðe�abÞit

minjab
. ð8Þ

Multiplying this by ij�1ji�1 m
i

� �
n
j

� �
, the number of vertex labeled ði; jÞ trees on ðm; nÞ

vertices, and taking limits gives Theorem 3.
To prove (7) we use the definitions of a and a0 to get

ea0 � 1

ea � 1

� �m
a

a0

� �t

¼
t

m

m � i

t � k

a0

a

� �m

eða
0�aÞm a

a0

� �t

. (9)
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To simplify these terms, we compute a0 � a. Let f ðaÞ ¼ a=ð1� e�aÞ. The definition of
the derivative implies

a0 � a�
f ða0Þ � f ðaÞ

f 0
ðaÞ

¼
1

f 0
ðaÞ

t � k

m � i
�

t

m

� �
.

The next step is to note

t � k

m � i
¼

t

m
�

k

m
þ

ti

m2
þO

1

m2

� �
(10)

and conclude that

a0 � a�
1

f 0
ðaÞ

li � k

m
. (11)

Now the first term on the RHS of (9) is

m � i

m

� �m

1þ
k

t � k

� �m

1þ
a0 � a

a

� �m

¼ 1�
i

m
þ

k

t � k
þ

a0 � a

a
þ oð1=mÞ

� �m

� 1þ
1

m
�i þ

k

l
þ

li � k

af 0
ðaÞ

� �� �m

! exp ðli � kÞ �
1

l
þ

1

af 0
ðaÞ

� �� �
, ð12Þ

if t=m ! l. By (11) the second term on RHS of (9) converges to exp ðli � kÞ=f 0
ðaÞ

� �
.

For the third term we write

a

a0

� �t

¼ exp �t log 1þ
a0 � a

a

� �� �
.

Using (11) and expanding logð1þ xÞ ¼ x þOðx2Þ shows that the third term
converges to

exp
ðli � kÞð�lÞ

af 0
ðaÞ

þO
1

m

� �� �
! exp

ðli � kÞð�lÞ
af 0

ðaÞ

� �
.

Adding the three exponents gives

ðli � kÞ �
1

l
þ

1

f 0
ðaÞ

þ
ð1� lÞ
af 0

ðaÞ

� �
.

We want to prove this is 0, so we can ignore the factor in front. Combining the
fractions over a common denominator, discarding that denominator, and recalling
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l ¼ f ðaÞ we have

�af 0
ðaÞ þ ða þ 1� f ðaÞÞf ðaÞ.

To check that this is zero, we note that differentiating f ðaÞ ¼ a=ð1� e�aÞ gives

f 0
ðaÞ ¼

1

ð1� e�aÞ
�

ae�a

ð1� e�aÞ
2
¼

f ðaÞ

a
þ

1

a
ða � f ðaÞÞf ðaÞ (13)

and the proof is complete. &

5. Proof of Theorem 4

Theorem 4. Define c by t ¼ c mn
mþn

logðm þ nÞ and suppose m=n ! a, a positive finite

limit. The probability Gr
1ðm; n; tÞ is connected tends to 0 or 1 depending on whether c has

a limit o1 or 41.

We can assume without loss of generality that mXn and hence aX1. The first half
of the proof is to establish:

Lemma 4. Under the assumptions of Theorem 4, if c has a limit o1 then the

probability Gr
1ðm; n; tÞ is connected tends to 0.

Proof. Our first step is to show that the asymptotics in the previous section, which
were derived under the assumption that t, m, and n were all of the same order,
continue to hold under the assumptions of Theorem 4. To do this, it suffices to show
that (6) and (7) hold. We begin by noting that t=m ! 1 implies a ! 1 and
1� e�a ! 1, so a�t=m. To verify (6) we observe that since a ! 1, s2

a=a ! 1,
and sa=sa0 ! 1. In addition we will soon see that a0 � a ! 0, and therefore

ea0 �1
ea�1

� ��i

! eiða�a0Þ ! 1.

To prove (7), we begin, as before, by computing a0 � a. As we have already
noted

a�
t

m
¼

cn

m þ n
logðm þ nÞ !

c

1þ a
logðm þ nÞ. (14)

The fact that a�t=m and the definition of a implies that for large m

t

m
XaX

t

m
1� e�t=2m
� �

X
t

m
1� ðm þ nÞ��
ð Þ (15)

for some �40. Since a ! 1, we have f 0
ðaÞ ! 1. Using this with (11) and (10) it

follows that

a0 � a�
t � k

m � i
�

t

m
¼ �

k

m
þ

ti

m2
þO

1

m2

� �
. (16)

This leads to the asymptotic formula

a0 � a�
ci

1þ a
logðm þ nÞ

m
�

k

m
�

ai � k

m
. (17)
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Now we analyze the first term in the decomposition: using t=m�a and (17), (12)
becomes

1þ
1

m
�i þ

k

a
þ

ai � k

af 0
ðaÞ

� �� �m

! exp �i þ
i

f 0
ðaÞ

� �
! 1. (18)

The second and third terms in (9) are

eða
0�aÞm a

a0

� �t

¼ exp ða0 � aÞm � t log 1þ
a0 � a

a

� �� �
.

Expanding logð1þ xÞ ¼ x þOðx2Þ the exponent becomes

m �
t

a

� �
ða0 � aÞ � t O

a0 � a

a

� �2

(15) implies that the absolute value of the first term is

pðm þ nÞ�� t

a
ja0 � aj ! 0

by (16) and a�t=m. To prove that the second term tends to 0, we note that t=a�m

and use (17) and (14). Thus we have

eða
0�aÞm a

a0

� �t

! 1. (19)

Combining this with (18) gives (7).
Let T1;T2 be fixed disjoint trees of size ði; jÞ. Let Ai;j be the number of ði; jÞ trees

that are components of our random graph, with DT indicating whether T is a
component. Writing Ai;j ¼

P
TDT, squaring and taking expected value we have

EðA2
i;jÞ ¼

m

i

� � n

j

� �
ðij�1ji�1ÞEðDT1

Þ

þ
m

i

� � m � i

i

� �
n

j

� �
n � j

j

� �
ðij�1ji�1Þ

2EðDT1
DT2

Þ. ð20Þ

The last term counts the number of disjoint ði; jÞ trees; overlapping trees contribute
nothing to the sum. To calculate EðDT1

DT2
Þ, we note that calculations at the

beginning of this section have shown

Cðm � i; n � j; t � kÞ

Cðm; n; tÞ
�

ak

ðea � 1Þitk

bk

ðeb � 1Þj tk
,

so we have

PðDT1
¼ 1 ¼ DT2

Þ ¼
t

2k

� �
ð2kÞ!

Cðm � 2i; n � 2j; t � 2kÞ

Cðm; n; tÞ

�t2k a2k

ðea � 1Þ2it2k

b2k

ðeb � 1Þ2j t2k
,

where the t
2k

� �
ð2kÞ! term comes from all the ways of labeling the edges of the trees and

dividing the labels between the two tree’s edges and the other edges. Recalling (8),
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we have that EðDT1
DT2

Þ�EðDT1
Þ
2 and therefore (20) implies EðA2

i;jÞ�EðAi;jÞþ EðAi;jÞ
2.

We wish to show that EðA1;1Þ!1 so that we can conclude EðA2
1;1Þ�EðA1;1Þ

2 and apply the

second moment method.
To see this, observe that apt=m. Then the simplified expression for EðAi;jÞ when

i ¼ j ¼ 1 is bounded as follows:

EðA1;1Þ�e�ae�btXe�t=ne�t=mt ¼ ðm þ nÞ�ct

¼ ðm þ nÞ�1�c cmn logðm þ nÞ. ð21Þ

Since co1 and m=n ! a, a constant, this expression goes to infinity. Now applying
the second moment method yields PðA1;1 ¼ 0Þ ! 0 which tells us that the probability
of the existence of a ð1; 1Þ tree goes to 1, and gives the desired result. &

Before tackling the other direction we need a preliminary result

Lemma 5. Let Z have truncated Poisson distribution with mean l=ð1� e�lÞ.

PðZpl=2Þp expð�0:15lÞ. (22)

If L41= ln 2 then

PðZXLlÞp
1

1� e�l expðl� Ll ln 2Þ. (23)

Proof. Let Z0 be the Poisson distribution with mean l. The moment generating
function is EeyZ0

¼ expðlðey � 1ÞÞ, so if yo0

eyl=2PðZ0pl=2Þp expðlðey � 1ÞÞ.

Taking y ¼ � ln 2

PðZ0pl=2Þp exp �
l
2
ð1� ln 2Þ

� �
.

Since ln 2p0:7 and PðZpl=2ÞpPðZ0pl=2Þ the first result follows. For the second
we note that if y40

eyLlPðZ0
XLlÞp expðlðey � 1ÞÞ.

Take y ¼ ln 2 and note that since L40 we have

PðZXLlÞ ¼
1

1� e�l PðZ0
XLlÞp

1

1� e�l expðl� Ll ln 2Þ,

the desired result. &

Lemma 6. Under the assumptions of Theorem 4, if c has a limit 41 then the

probability Gr
1ðm; n; tÞ is connected tends to 1.

Proof. Under the assumptions of Theorem 4, a�ðcn=m þ nÞ logðm þ nÞ and
b�ðcm=m þ nÞ logðm þ nÞ. Let r ¼ lim cn=ðm þ nÞ and s ¼ lim cm=ðm þ nÞ. Without
loss of generality sXr, i.e., nXm. Our first step is to get an upper bound on the
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maximum degree of a vertex, D. By (23) with l ¼ s logðm þ nÞ

PðDXLs logðm þ nÞÞpc expðs logðm þ nÞð1� L ln 2ÞÞ ¼ cðm þ nÞs�sL ln 2

where c ¼ 1
1�ðmþnÞ�s. Taking L ¼ ð2þ sÞ=ðs ln 2Þ the right-hand side is p2ðm þ nÞ�2

for sufficiently large m þ n. Assume for the rest of the proof that DpL logðm þ nÞ.
The number of vertices in the first four generations is at most N ¼P4
i¼1 ðL logðm þ nÞÞi. We will show that with high probability, N is at least

Oððlogðm þ nÞÞ2Þ and this cluster will connect up to all others. Using the trivial
inequality tXmaxfm; ngXðm þ nÞ=2, the probability that two edges pick the same
vertex in the first four generations (call this a collision, as before) is

pN2 D

t
pN2 2L logðm þ nÞ

m þ n
.

This is too big to ignore but the probability of two or more collisions is

pN4 2L logðm þ nÞ

m þ n

� �2

pC
ðlogðm þ nÞÞ18

ðm þ nÞ2
,

so with high probability there is at most one collision in the first four generations of
the cluster containing any vertex.

Our assumptions imply r þ s41, so we can pick r0or and s0os with r0ps0

and r0 þ s0 2 ð1; 2Þ. Pick K so that Kr0ð0:15Þ42. If aX ln 2 (which will be true for
large m), then in the associated branching process (Zi ¼ the number of vertices in
generation i)

PðZ1pK þ 1Þ ¼
1

1� e�a

XKþ1

k¼1

e�a ak

k!
p2ðK þ 1Þ e�aaK ,

a�r logðm þ nÞ so if m is large

PðZ1pK þ 1Þpðn þ mÞ
�r0

By similar reasoning if m is large

Pð Z2pK þ 1jZ1 ¼ j Þpðn þ mÞ
�s0 for all jX1

From this it follows that

PðmaxfZ1;Z2gpK þ 1Þpðm þ nÞ�ðr0þs0Þ. (24)

So with high probability Z1 or Z2 is large and this implies Z4 is large with high
probability. For 2pip3 divide individuals in generation i into groups of size K.
Since the sum of independent Poisson distributions is Poisson and the truncated
Poisson distribution dominates the Poisson distribution, we may apply (22) to each
group of size K.

Pðchildren of groupoKr0 logðm þ nÞ=2Þ

p expð�0:15Kr0 logðm þ nÞÞp
1

ðm þ nÞ2
.
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Trivially, the number of groups in generation i is pðL logðm þ nÞÞi so

P Ziþ1o
Zi

K

Kr0 logðn þ mÞ

2

���� ZiXK

� �
p

ðL logðm þ nÞÞ3

ðm þ nÞ2
.

Using this with (24) we can conclude that there is a constant d40 for large m

Pð Z4odðlogðm þ nÞÞ2 Þp4ðm þ nÞ�ðr0þs0Þ.

This shows that with high probability all clusters have size at least dðlogðm þ nÞÞ2. It
follows from the proof of Theorem 2 that with high probability all clusters will grow
to size dn and connect. For readers who may be concerned with how the constants in
that proof depend on a and b we note that all we need is a lower bound on the
growth so for this phase of the argument, we can fix a0oa and b0ob with a0b041.
Theorem 2 does not apply when a and b are Oðlogðm þ nÞÞ, but all we need is a lower
bound, so it suffices to apply Theorem 2 with a0 and b0. &

Appendix

Proof. We will prove that the models Gr
1ðm; n; tÞ and TPðm; n; tÞ are the same by

looking at the distributions they induce on the set of edge labeled multigraphs. To do
this, we will have to augment the model descriptions to label the edges. If we pick
edges with replacement and label the edges in the order drawn then the set of
outcomes O, written as vectors of edges, has ðmnÞt elements and Grðm; n; tÞ is uniform
over the subset O0 in which each vertex has degree at least one.

To label edges in TPðm; n; tÞ, first generate L0 and R0, the duplicated sets of
vertices. Attach to the elements of L0 numbers chosen at random from f1; 2; . . . ; tg
and call these edge-labels. Do the same independently for R0. Connect the element
edge-labeled i in L0 and the element edge-labeled i in R0, and label this edge i.

Consider an outcome w0 2 O0 with degrees i1; . . . ; im and the left and j1; . . . ; jn on
the right. By calculations in the Introduction, the probability that a graph in TP will
have the same degrees as w0 is

t!

i1!i2! 
 
 
 im!

t!

j1!j2! . . . jm!

�
Sðm; tÞSðn; tÞ,

where Sðm; tÞ and Sðn; tÞ are normalizing constants that make the sum 1. Now w0’s
edge labels determine the edge labels incident to each vertex. For each left vertex i, let
EL

i be the set of edge labels incident to i in w0; similarly, let ER
j be the set of edge

labels incident to right vertex j. In order for TP to generate w0, for each left vertex i,
the labels of the set of vertices in L0 that collapse to i must be EL

i (but the order of the
labels among the collapsing vertices does not matter). A similar statement holds for
the right vertices. The probability that vertices are labeled as described is

i1!i2! 
 
 
 im!

t!

j1!j2! . . . jm!

t!
,

so the edge labeled graphs generated by TPðm; n; tÞ are also uniform on O0. &
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