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Abstract 

We give a deterministic algorithm for computing the diameter of an n-point  set in three dimensions with 
O ( n l o g  c n)  running time, where c is a constant. 
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1. Introduction 

We consider the following problem: Given an n-point set P in three-dimensional space, compute 
its diameter diam(P),  defined as the maximum distance between a pair of points in P. This problem 
was solved by Clarkson and Shor [4] by a randomized algorithm with optimal expected running time 
O(n log n). However, it seems quite difficult to construct a deterministic algorithm with a comparable 
asymptotic efficiency. 

Chazelle et al. [2] used Megiddo's parametric search [10] and further techniques to obtain a deter- 
ministic O(n 1+c) algorithm, where e > 0 is an arbitrarily small constant. In this paper, we improve 
this running time to O(npolylogn)  (we use polylog n as a generic notation for a function of the form 
(log n) e, c > 0 a constant). 

Our basic approach is the same as that of [2]. Also the basic scheme for achieving the improvement 
has appeared in previous works: while Chazelle et al. divide the problem into a constant number of 
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subproblems, we refine the "divide" step and use a larger number of subproblems (n" for a small 
but positive constant c0. With this change, some computations which are trivially done for a constant 
number of subproblems become more demanding. 

In order to apply parametric search in this situation, it is helpful to change the usual approach 
to parametric search. In many presentations and applications of the parametric search technique, the 
need for designing a parallel algorithm is emphasized. What is really required, however, is a sequen- 
tial algorithm, only with comparisons involving the value of the unknown parameter collected into 
"batches" of independent comparisons. This has already been pointed out by various authors, and we 
consider it an important part of the parametric search method, which is very easy to overlook. It is 
this slight shift of attention which enables us to solve problems which we could not overcome before. 

Theorem 1. Given a set P of n points in three-dimensional space, the diameter of P can be determined 
by a deterministic algorithm in time O(n polylog n). 

The algorithm is too complicated and has too large constants hidden in the asymptotic notation to be 
of any practical value; it is only a theoretical contribution to the problem of deterministic asymptotic 
complexity of the diameter problem. And, one must ask, are all these heavy tools really necessary, or 
are we just blinded by the various techniques available to overlook a simple elementary solution? 

2. Diameter and parametric search 

Let P be a given set of n points in 3-space. A quadratic algorithm for computing diam(P) is trivial. 
By computing a structure that allows point location in the (implicitely represented) furthest point 
Voronoi diagram of P,  it is possible to achieve running time O(n 4/3+c) [9]. Using randomization, 
Clarkson and Shor [4] have obtained an algorithm whose expected running time (over the internal 
randomizations that it performs) is O(n log n). They first transform the problem to the following ball 
problem: 

Given n unit-balls and n points in 3-space, determine whether any point lies outside the common 
intersection of the balls. 

This problem is then solved using a randomized incremental algorithm. In their algorithm, both the 
transformation to the ball problem, and the solution of the latter involve randomization. 

Chazelle et al. [2] considered the problem of making this algorithm deterministic. Fortunately, 
the transformation to the ball problem can be made deterministic by applying Megiddo's parametric 
search [10]. Unfortunately, this transformation adds some additional requirement on the solution of 
the ball problem, and Chazelle et al. [2] could only give a deterministic solution to the latter with 
running time O(r~l+~), for an arbitrarily small E > 0. As stated in the introduction, we will be able 
to get closer to the complexity of the randomized algorithm. Matching the randomized complexity 
remains a challenge for future research. 

Let us start by describing the application of parametric search (see for instance Megiddo's original 
work [10] or the paper of Chazelle et al. [2] for a more detailed explanation of the parametric search 
paradigm): We assume that we are given an algorithm A that solves the following "fixed-size" prob- 
lem: Given a set P of n points, and a parameter ~ > 0, determine whether diam(P) is less than, equal 
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to, or greater than 6. (Observe that this is a restricted version of the ball problem mentioned above, 
since we have to determine whether any point in P lies outside the intersection of the balls of radius 
6 around the points in P.) 

The algorithm A plays a dual role in the overall algorithm for diameter computation. First, it serves 
as an oracle which, given a specific value 6 ~ of 6, decides whether 6' < diam(P), 6* : diam(P) or 
6" > diam(P). Second, it serves as a so-called generic algorithm (let us remark that in general, these 
roles can be played by different algorithms in parametric search applications, but for us it is suitable to 
use A in both roles). For this second role, we require that ~4 uses the information about the parameter 
6 in a restricted manner. That is, we assume that 6 is not explicitly available to ,,4, but rather that A 
has access to an oracle that allows it to test whether 6 is less than or equal to some value 6* > 0. 
Note that this allows the algorithm A to test the sign of arbitrary polynomials of constant-bounded 
degree in 6 (it finds the roots of the polynomial, which is considered as a constant-time operation in 
the model of computation we use, and then it locates the position of 6 among them). When describing 
the algorithm A in the sequel, we will usually first explain its oracle function, with a specific value 
of 6, and then we will comment on the way the use of the actual value of 6 is restricted to a small 
number of oracle calls, in the generic algorithm role of A. 

Let us denote the number of calls to the oracle made by A for an input of size n in the worst 
case by Q(n), and the running time of A (with each oracle call charged by one time unit only) by 
T(n).  This makes sense for the case of explicitly given 6, when an oracle call is reduced to a single 
comparison of real numbers. 

We are now ready to apply parametric search to the diameter problem. We run our algorithm A in the 
generic role on the set P and with parameter 6 = diam(P). This definition of 6 may seem strange, since 
diam(P) is exactly what we intend to compute in the end, but recall that A cannot access 6 directly. The 
only thing it can do is to ask the oracle whether 6 ~< 6* for some specific values 6* > 0; these values are 
computed from P and the previous answers of the oracle. Since we can implement the oracle by A in 
the oracle role, it follows that the total running time of the generic A including the oracle calls is T(n)+ 
Q(n)T(n)  = O(T(n)Q(n)).  Finally, the generic algorithm ,,4 will stop and answer "EQUAL". This 
is not surprising, since this is the appropriate answer for 6 --- diam(P). However, it is not difficult to 
verify that in order to be able to answer "EQUAL", one of the calls to the oracle must also have returned 
"EQUAL". By keeping track of the values 6* used in the calls to the oracle, we find diam(P). (Actually, 
we can stop the whole computation as soon as a call to the oracle returns with answer "EQUAL".) 

We summarize our exposition of parametric search for the diameter problem in a lemma. 

Lemma 2. Let A be a deterministic algorithm for the ball problem on a set of  n points in three 
dimensions that uses at most Q(n) calls to the oracle describing the parameter 6 and with running 
time bounded by T(n). Then the diameter of  a set of  n points can be computed by a deterministic 
algorithm in time O(T(n)Q(n)).  

3. A deterministic algorithm for the ball problem 

We want to give a deterministic algorithm for the following (slightly generalized) problem: Given 
a set P of n points, a set Q of m points, and a parameter 6 > 0 (in the form of an oracle), determine 
whether Q c / f  := f]pcP B(p, 6), where B(p, p) denotes the ball around-p with radius p. 
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Note that the intersection set K is a convex body, bounded by spherical facets (supported by a ball 
B(p, 6) for some p E P). The facets are bounded by circular edges (circular arcs in three dimensions, 
arising as the intersection of the boundaries of two balls of radius 6). Since all balls have equal radius, 
the combinatorial complexity of K is only linear in n (see [4]). Furthermore, the facets o f / f  are 
"convex" in the following sense [4]: Let f be a facet of K,  x and y be points in the facet f .  Then 
the shorter one of the two great circle arcs connecting x and y lies completely in f (note that x and 
y cannot be antipodes of each other, unless there is only one ball). 

Clarkson and Shor's randomized algorithm [4] works as follows: It computes the body K by a 
randomized incremental construction, picks some point o in the interior of K,  and centrally projects 
the edges o f / (  from o on a unit-sphere around o. This results in a planar map for which a planar 
point location structure is constructed. It then locates every point of Q using this structure. On the top 
level of the algorithm, one has P = Q; the above generalized version of the ball problem will be a 
typical subproblem appearing in a recursion in our algorithm. 

The part which appears difficult to do deterministically is the construction of K.  Instead of an 
incremental construction, we will use a divide-and-conquer approach. It will also be convenient to 
combine the recursive construction of K with the location of the points of Q in K. 

In the first step, we will identify a subset R of P.  We will compute KR := ~pcn B(p, 6). The 
surface of KR consists of vertices, edges (circular arcs) and facets (portions of unit spheres bounded 
by circular arcs). The total number of these features is O([R]). We form a decomposition 7-(R) of KR 
into O(]R]) cells, each cell cr E 7-(R) being described by a constant number of real parameters. We 
call these cells (for a lack of a better name) bricks. A natural way to produce such a decomposition 
would be as follows: for every facet f of KR, choose a point vf E f ,  and subdivide f into "spherical 
triangles" by connecting vf to the vertices of f by great circle arcs. Then choose a point o in the 
interior of KR and for every spherical triangle ~- on the surface of tfR, connect each of its points 
to o by a segment, forming a brick ("spherical tetrahedron") corresponding to T. This is essentially 
the way which is used (and works) in Chazelle et al.'s method [2] (although their definition contains 
some formal imprecisions). It turns out, however, that this decomposition method is not good enough 
for our purposes, and we have to choose another one, analogous to the vertical decomposition in the 
plane. The precise definition will be given in Section 4, for the time being we suppose that we have 
the subdivision T ( R )  of KR into O(]RI) bricks of some kind. 

For every brick ~r E 7-(R) we compute the set Q~ of points in Q lying in or, and also the set P~ 
of p E P such that cr is not completely contained in B(p, 6). If any point of Q turns out to lie outside 
KR, we are done. Otherwise, we proceed by solving the subproblems defined by the sets P~, Qa and 
by 6 for every ~r E T(R) .  When the cardinality of either P~ or Q~ drops below some constant, we 
solve the problem naively. 

Thus, we obtain the following recursion for the time T(n, m) required to solve the ball problem: 

T(n,m) : S(n) + S'(n,m) + Z T(n~,ma). 
aET(R) 

Here, S(n) is the time required to compute a proper subset R, to triangulate it and to compute the 
subsets P~ for all a 6 T(R) .  S'(n, m) is the time necessary to compute the subsets Qa; and no and 
m~ are the cardinalities of P~ and Q~, respectively. Note that ~-'~a~T(R) m~ : m. 

Let r > 1 be a parameter bounded by a constant. Using E-net theory and results from [7], it is 
possible to find, in time S(n) = O(nlogr), a subset R C P of size O(rlogr) with the property that 
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n~ <~ n / r  for every a C 7-(R). With these values and S'(n, m) = O(m), the above recurrence solves 
to O(m log n + nl+e), for a constant e. > 0 which can be made arbitrarily small by increasing r. This 
is essentially the solution by Chazelle et al. [2]. 

To get rid of the polynomial factor O(n~), however, we want to find a suitable subset R of larger 
size, as in the following lemma. 

L e m m a  3. There exists a positive constant a, such that for an n point set P in three dimensions, and 
a parameter ~ > 0 given as an oracle, we can compute in time O(n log n) a subset R of  P, satisfying 
the following conditions: 

(i) I/~L ~ r : =  n ~, 
(ii) for all cr e T (R)  we have na <, cl (n/r) log r, and 

(iii) Y']~ET(R) na <~ CZn, 

for constants cl, c2 > 0. Furthermore we can compute the intersection I( R of the balls B(p, 5) and 
identify the sets Pa for all a E 7"(R) within the same time bound. The number of  calls to the oracle 
describing ~ is O(log 2 n). 

Given another m point set Q, we can compute Qa for every a E 7-(R) in O(m log n) time and 
with O(log m log n) additional oracle calls. 

This lemma will be proved in the next section. Using this result as the divide step of our algorithm 
for the ball problem, our recurrence becomes 

T ( n , m ) = O ( ( n + m ) l o g n )  + ~ T(na,ma);  
o'ET(R) 

with ~-~eT-(R) na <~ c2n and ~'~ET-(t~) ma = m. It is straightforward to check that the solution of 
this recurrence satisfies T(n,  m) E O((n + m)polylogn) (the power of the logarithm is determined 
by the constants a and c2). 

It remains to analyze the total number of oracle calls. We note that the computations in the sub- 
problems are independent of each other and they can thus be executed in a pseudoparallel fashion. 
Specifically, the depth of the recursion is O(log log n), and every subproblem appearing in the recur- 
sion needs at most O(log 2 n) oracle calls. Thus, the oracle calls in this computation can be grouped 
into O(logZ n log log n) rounds of independent calls (that is, the values of 5" for the calls in one 
round do not depend on the outcome of the other calls in that round). Using binary search, each 
round can be answered using only O(logn) actual oracle calls (this is the standard trick to reduce 
the number of evaluations of the oracle, when the generic algorithm is fully parallel [10]), resulting 
in O(log3 n log log n) calls altogether (this is a crude bound, a more refined analysis is possible). In 
view of Lemma 2, this proves Theorem 1. It remains to describe the "divide" step in detail. 

4. The divide step 

In this section we give a proof of Lemma 3. First we establish several auxiliary results. 

Canonical decomposition 
We will need that the decomposition 7-(R) of K n  defined in Section 3 is a canonical decomposition 

in the sense of [4,3]. Let f be a facet of KR and s = B(pl,  5) be its supporting sphere. We define the 
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poles of s as the points of s with the largest and with the smallest z-coordinate, and through every 
vertex v of  the facet f ,  we pass the great circle through v and the poles. 2 Each such circle intersects 
f in a connected arc, and these arcs subdivide f into "spherical trapezoids". If  f does not contain 
a pole, then these spherical trapezoids look analogously to trapezoids in the plane; if it does, then a 
spherical trapezoid has a bowtie shape--i ts  two sides formed by the great circle arcs cross at the pole. 

We then pick a point o in the interior of KR. A clever choice for o is the center of the smallest 
enclosing ball for the point set P,  which can be precomputed in linear time using a deterministic 
algorithm by Dyer [5]. Note that KR must contain this point, unless K is empty. In the latter case we 
are done. 3 

We extend all spherical trapezoids on the surface of KR to bricks by taking the union over all 
line segments connecting o with a point in the spherical trapezoid. This finishes the definition of the 
decomposition 7-(R) of KR. It is straightforward to check that this decomposition has O(IR]) bricks. 

Let ~ denote the set of all bricks that appear in a decomposition 7-(R) for some subset R _C P.  

L e m m a  4. The decomposition 7-(R) defined above is a canonical decomposition of KR in the fol- 
lowing sense: 
(i) Every brick cr is defined by at most five points, i.e., cr appears in 7-(U) for some subset U C P 

with IUI <~ 5. 
(ii) A brick o" E ~ appears in T(R)  exactly if the defining points are in R, and no point of P~ is in 

R. (Recall that P~ is the set of points p E P such that B(p, 6) does not contain ~r.) 

Proof.  Consider a brick ~r appearing in some decomposition T(R) for R c_ P.  It is completely 
defined by its spherical trapezoid, which lies in some facet f on the boundary of a sphere t3(pl, 6). 
The spherical trapezoid is defined by at most two arcs "7 bounding f and by at most two vertices 
on them. The bounding arcs "71, "72 are defined by intersections of B(pl, 6) with some balls B(p2, 6) 
and B(p3, 6) (if there is only one arc we may formally put P3 = P2). The vertices on the arcs are 
defined by intersections of "71 or "72 with some other two balls B(p4, 6) and B(ps, 6) (again, we may 
put P5 = p4 if there is only one defining vertex). We set U -- {P l ,P2 , . . .  ,P5}. Consider now the 
decomposition 7-(U). It is easy to check that a will appear in this decomposition, so we have proven 
(i) and can now define cr as a(6,pt,P2,...  ,P5) (note that although T(U) consists of several bricks, 
the ordered 5-tuple of points determines a unique or). To prove (ii), imagine that we start from the 
decomposition 7-(U) and then add the points of R \ U one by one. It is easy to check that the brick 
a does not disappear from the current decomposition by adding a new point p unless the complement 
of the ball B(p, 6) intersects or. [] 

Linearization lemma 
On several places of the proof of Lemma 3, we will deal with rather complicated predicates involving 

nonlinear polynomial inequalities. The main example will be the predicate "is cr contained in B (p, 6)?", 
where cr is a brick, p C P is a point and 6 > 0 is a real parameter. Using an observation of Yao and 
Yao [12], we can nevertheless deal with such predicates using techniques for "linear" objects (points 

2 If v happens to be a pole itself, we introduce no great circle for it. 
3 Dyer's algorithm is one of the sophisticated subroutines in our algorithm, but we can avoid this one rather easily. We 

formulate the algorithm with its use mainly for simplicity of exposition. 
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and hyperplanes), by "lifting" the problem into a suitable space of higher dimensions. A precise 
formulation is given in the following lemma. Let us call a subset of R a a linear cell, if it can be 
expressed as a union of O(1) sets, each of which is an intersection of O(1) halfspaces in R d. 

Lemma  5. Let H ( x l ,  X 2 , . . . ,  Xk, al,  a 2 , . . . ,  ae) be a first-order predicate in the theory of  real closed 
fields (one formed from polynomial inequalities using Boolean connectives and quantifiers). Then there 
exists a constant d (depending on H) and mappings 99, ~ as follows: 

• The mapping 99 assigns to every k-tuple x = ( X l , . . . ,  xk) a point 9~(x) E I~ a. The mapping is given 
by bounded-degree polynomials in xl , . . . , x~:. 

• The mapping ~ assigns to every g-tuple a = ( a l , . . . ,  ae) a linear cell '(J(a) C_ R d. The functions 
describing the coefficients in equations of  the halfspaces defining ~(a) are given by bounded-degree 
polynomials in al, a2, • • •, ae. 

• For any a, x, H(x ,  a) holds iff the point 99(x) belongs to the linear cell ~(a). 

Proof. The procedure for obtaining such mappings 99, ¢ is based on Yao and Yao's observation and 
it is discussed in [6]. First, we convert the formula for H into an equivalent quantifier-free formula 
(one composed of polynomial inequalities using Boolean connectives) using a quantifier elimination 
method, see, e.g., [11]. This formula can be rewritten as a disjunction of several conjunctions of 
polynomial inequalities. 

We view the polynomials occurring in these inequalities as polynomials in the x~ variables with 
coefficients being polynomials in the ai variables. We let M be the set of all monomials # = p(x)  
in xl,  • • •, xk occurring in these polynomials. Then we set d = ]M], we imagine that the coordinates 
in •a are indexed by the monomials of M, and we define the mapping ~ as follows: given a k-tuple 
X = ( X l , . . .  , X/c ) of real numbers, the point 99(x) = (Y~)~EM E R d is defined by yu = # ( X l , . . . ,  x~) 
(the value of the monomial # evaluated at the given k-tuple x). If we consider one polynomial 
inequality occurring in our formula, of the form ~-~EM 9,(a)#(x)  >~ 0 (each 9~ a polynomial in 
al, • • •, ae), it is satisfied for given x, a iff the point ~(x) lies in the halfspace 

{ (Yp)t~EM E ~d; E gu(a)Yu >~ O}. 
~EM 

A conjunction of several inequalities then corresponds to a membership of ~(x) in an intersection of 
several halfspaces, and a disjunction of several conjunctions corresponds to a union of several such 
intersections. The equations of the halfspaces are given by the g~ polynomials in the ai variables and 
they can also be read off from the formula. [] 

Point location method 
As a first application of the above linearization lemma, we will discuss a way the subsets P~ as in 

Lemma 3 can be computed efficiently, when we already have the decomposition 7-(R) of the body 
KR into bricks. 

A brick cr can be described by specifying 6 and a vector zl , .  • •, Zl5 of real parameters, expressing 
the five points defining or. We write c~ = ~r(6, z). A point p E ]t{ 3 is given by its three coordinates 
(ul, u2, u3). Then the predicate "or ~ B(p, 6)" can be written as a first-order predicate in the variables 
6, ui and zi (this is somewhat laborious but possible). Using Lemma 5 for this predicate, we get 
mappings 99, ~ as follows: 99 = 99(8, ul,  u2, u3) assigns to a value of 5 and a point p = (ul, u2, u3) a 
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point in R d (for some perhaps large but constant-bounded d), ¢ -- ¢(z)  assigns to a parameter vector 
z a linear cell in II~ d, and or(6, z) ~: t3(p, 6) is equivalent to ~(6, ul ,  U2, U3) E ¢(Z). 

We use these mappings for computing the sets P~ (given the set P and the decomposition T ( R ) )  
as follows. For every brick cr E T ( R ) ,  ~r = cr(6, z), we compute the set ¢(z)  (note that this is 
independent of 6). Then we preprocess the arrangement of these sets in R d for all o- E 7-(R) for fast 
point location. This can be done by preprocessing the full arrangement of all hyperplanes defining 
our sets for point location (several methods for point location in hyperplane arrangements are known, 
see, e.g., [1]). This yields a data structure with space and preprocessing time polynomial in IT(R)[, 
thus, for a small enough, no more than linear in n. The query time will be O(log n). Then, for every 
point p E P,  we locate the point ~(6,p) using this data structure, which tells us to which sets Po 
does p belong. The total time will be O(n log n). As for the oracle calls, each step of a point location 
query with some point p involves a comparison of the point ~(~,p) against some (explicitly known) 
hyperplane, and such a comparison can be decided by a bounded number of oracle calls. Since the 
n point location queries are independent and can be executed in a pseudoparallel fashion, the total 
number of oracle calls is O(log 2 n). 

A quite similar approach can be used to compute the subset Q~. Here we need a data structure for 
point location in the decomposition T ( R ) .  We apply Lemma 5 on the predicate "q E ~r" (for a point 
q and a brick cr -- cr(~, z)), and we build a point location structure in the same manner as above. The 
set Q~ can thus be detected in O(m log n) time with O(log m log n) oracle calls. Let us remark that 
an alternative--and perhaps more natural--way is to use a planar point location structure for point 
location in 7-(R), and then discuss how such a data structure is "parameterized" with 6, so that the 
preprocessing and point location queries only need a small number of oracle calls. 

Computing a good sample in polynomial time 
It remains to describe how to compute the "good" sample R. First we prove a weaker statement, 

namely that a suitable R can be found in polynomial time. 

Lemma 6. Let f be a set o f  n points, r < n be a given parameter, and let the parameter 6 > 0 be 
given as an oracle. We can compute in polynomial deterministic time a subset R of  P such that 

(i) IRI r, 
(ii) for all o- E T ( R )  we have no <~ cl (n / r )  log r, and 

(iii) Y'~oET-(R)no ~< c2n 
for constants cl, c2 > 0. The number of  calls to the oracle describing 6 is in O(log n). Within the 
same bounds we can compute the combinatorial structure of  KR. 

Proof. We appeal to the usual randomization results [4] to conclude that when an r-element subset R 
is chosen randomly from P,  the bounds in the lemma will hold with a positive probability. Applying 
derandomization techniques (i.e., the Raghavan-Spencer method) as in [3,7], we can then find a subset 
R that fulfills the requirements of the lemma in polynomial time. 

To be more specific, let us use the result from [3]. To this end, we consider the hypergraph (P, 8) ,  
where 8 is the set of all subsets S of P which can be defined as 

s =  P; B(;,6)}, 
for some brick a which occurs in the canonical decomposition T ( R )  for some subset R c_ P.  Lemma 4 
implies that the number of such a is only polynomial in [P[ (since each one is determined by an at most 
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five-element subset of P). Given this hypergraph (explicitly), [3] shows that a sample R satisfying 
(i)-(iii) can be computed in polynomial time. We thus only need to compute the hypergraph (P, 8 )  in 
polynomial time and with O(log n) oracle calls. This is not difficult, as we do not care for the exponent 
of the polynomial bounding the running time. Namely, we list all at most five-element subsets U of 
P,  and for every such U we determine the bricks in the canonical decomposition corresponding to it. 
For every such brick, we then compute the subset of points of P defined by it. All the comparisons 
involving 3 are independent and can be done in a single round, thus O(log n) oracle calls suffice to 
resolve all of them. The rest of the calculations only deals with the hypergraph and requires no more 
information about 6. 

The combinatorial structure of KR and its decomposition 7"(R) can be determined by one more 
round of polynomially many (in r) independent oracle calls. This proves Lemma 6. [] 

Computing an approximation 
Now that we can compute a suitable sample in polynomial time, we first compute a sufficiently 

small subset A of P that "approximates" P so well that it will be sufficient to apply Lemma 6 to A 
instead of P.  This trick has been used in several previous works [7]. 

We consider a set system (P, 8),  where $ is defined similarly as in the proof of Lemma 6; a set 
S c_ P belongs to 8 if it can be expressed as the subset of points of P whose balls of radius p do not 
completely contain a certain brick a. The difference to the above proof is that we consider all radii p 
simultaneously, instead of a single value p = & Hence the set system (P, 8)  does not depend on 3. 

A subset A C_ P is called a (l/r)-approximation for (P, 8),  if for any S E S we have 

IAOS[  ISI]~< 1 

[AI IPI. 7 
Suppose that A is a (1/r)-approximation for (P, 8),  where r := •a is as in Lemma 3. Let R C A be a 
subset with at most r elements satisfying the conditions (ii), (iii) of Lemma 3 with P replaced by A (and 
for some value of fi), that is, IA~I ~< cl(IAI/r)  logr  for every a E T (R)  and ~ c ' r ( R ) ] A ~ [  <~ c21AI, 

cl, c2 constants. For any brick ~, we have P~ E 8 (by the definition of the set system (P, 8)),  and 
A~ = A N P~. It is then straightforward to verify, using the definition of a (1/r)-approximation, that 
the subset R C A C P also fulfills the conditions (ii), (iii) of Lemma 3 for P,  only with somewhat 
larger constants cj, c2. 

To prove Lemma 3, we proceed as follows. First, given P,  we compute a (1/r)-approximation A 
for the set system (P, 8),  with IAI much smaller than ~ = ]PI. Then we apply Lemma 6 with A in 
the role of P ,  and we find a good sample R. By the above considerations, this R will also be good 
with respect to P.  However, since A is small enough, we can afford to spend time bounded by a 
polynomial in [A[. The proof of Lemma 3 is finished by computing the decomposition T ( R )  (all the 
combinatorial information needed for this can be gained by a single round of independent oracle calls, 
thus by O(log'r 0 actual oracle calls) and detecting the subsets P~ and Qo for every ~ E T(R) ;  this 
has already been discussed above. 

It remains to describe how the (1/r)-approximation A is computed. Here we again apply the 
"linearization" method, Lemma 5. Our predicate will be "~ ~ B(p,p)" ,  ¢ = or(p, z) a brick and 
p a point. This time, however, we will regard only the coordinates of the point p in the role of 
the zi variables in Lemma 5, both z and p will be regarded as the ai variables. We thus obtain a 
mapping ~o assigning to a point p ¢ IE 3 a point ~o(p) ¢ R d (for some constant d) and a mapping ~b 
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assigning to every z and p a linear cell in IRd, in such a way that for any p, p, z, a(p, z) f£ B(p, p) 
iff ~p(p) E ~(z ,p) .  Returning to our set system (P,$) ,  we see that every S E S can be expressed 
as those points of P whose ~-image lies in a certain linear cell in IR a. Since every linear cell can 
be written as a disjoint union of at most C simplices (C a suitable constant), it suffices to compute 
a (l/G'r)-approximation for the set {cp(p); p E P} with all its subsets definable by simplices. For 
this last problem, we can directly use the results of [8], and we get that if a > 0 is a small enough 
constant, our (1/r)-approximation A of size O(r 2 log r) can be computed in O(n logn)  time. This 
calculation does not involve the parameter ~ at all. This finishes the proof of Lemma 3. [] 

Note added in proof 

The current best result for the running time of a deterministic algorithm for the three-dimensional 
diameter problem is an O(n log 3 n) algorithm due to N.M. Amato, M.T. Goodrich and E.A. Ramos 
(in: Proc. 35th Annual IEEE Sympos. Found. Comput. Sci. (1994) 683-694). 
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