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We discuss in detail the regularity properties of a class of pseudodifferential 
operators on Iwz introduced by Grossmann, Loupias, and Stein, which are more 
regular and more symmetrical than usual pseudodifferential operators. Those 
operators that are self-adjoint form a suitable class of smooth observables for a 
nonrelativistic quantum theory. If their symbols are allowed to depend smoothly 
upon Planck’s constant fi, those operators provide the framework for regular 
asymptotics expansions as R + 0 of quantum mechanics around classical 
mechanics. 

This article studies the relevance of a ring of pseudodifferential operators on KY, 
introduced by Grossmann et al. [l], to the usual formulation of nonrelativistic 
quantum mechanics using self-adjoint operators on a Hilbert space. The symbols 
in [l] lead to operators more regular than the usual pseudodifferential operators 
[2, 31; they satisfy global L2 estimates, and some operators with real semi- 
bounded symbols admit Friedrichs extensions. When the symbols are allowed 
to depend explicitly and smoothly upon fi, the relationship between symbol 
calculus and the classical limit of quantum mechanics is recovered [l, 4, 51. 
Moreover, we thus obtain a framework for regular asymptotic expansions of 
quantum mechanics as fi -+ 0; the discussion of relevant physical examples is 
started in [5]. 

We use the following notation: Q = [WE is configuration space; our pseudo- 
differential operators will act on various function or distribution spaces Y(Q), 
L2(Q), Y’(Q),... (always complex-valued unless stated otherwise, and noted as 
in [6]); their symbols will be functions on the phase space X = Q @ P (P = Q*) 
which carries the canonical symplectic 2-form W; w(xr , x2) = qIp2 - qz p, 
(vector indices will usually be suppressed and Q will denote the scalar product). 
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PSEUDODIFFERENTIAL OPERATORS 105 

In any dimension n, we shall use multi-indices OL, j3 E Nn with the usual 
notation: 

lcxj =taj; 01 f B = (al + PI >..., %I i P,); 

if r E [w”, p = r;l . . . f-2; a,= = (apry = aqar;l . . . ayaY>. 

The Hilbert space L2(Q, dq) is represented by ~9 and its scalar product 
is represented by (, ). 

1. THE WEYL CORRESPONDENCE 

The starting idea in any pseudodifferential operator theory is to establish a l-l 
correspondence between polynomials on X and differential operators on 
Q: a(q, p) t+ &(q, -iajaq) and then to extend this correspondence to larger 
classes of functions; the function a is called the (full) symbol of the operator 6. 
The purpose of this correspondence is to study the operators d via their symbols. 

The symbol map is usually such that if ri has constant coefficients, ci = 
P(-ia/8qj), then its symbol is the same function as that of the scalar variables pj 
(a = P( pj)) (thus, since the symbol of -ia/aqj isp, , we can write3 for -i(a/aq)). 

The extension of the symbol map to differential operators with variable 
coefficients involves some arbitrariness. For operators on an affine space Q, 
the Weyl prescription [7] has important symmetry advantages. Given a Cm 
function a(q,p) polynomial in p, it defines d by its action on the functions 
u E C,,%(Q) as 

(h)(q) = (2n)-z lPXQ a (+ ) p) u(q’) eiP(*--y’) dp dq’. 

This formula defines a differential operator: Let 

4% PI = c 4) P and q’ = q + r. 
!al<*z 

Then 

(1.1) 

(h)(q) I= (2a)-z c sum(q + r/2) p%(q + r) eciPr dp dr, 
a 

(by parts) = (2~)-~ C J (--i $1” [a, (q + $1 u(q + r)] e--ipr dp dr 
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(by the Fourier inversion theorem), and the result has the formCi,is.7n c,(q) a,%(q) 
by the Leibniz formula. 

Equation (1.1) defines 6 as an integral operator of kernel 

(q 1 6 1 q’) = (27~-~ J’, a (+ , p) &P(~-Q’) dp. (1.2) 

Let q“ = (q + q’)/2, Y = q’ - q, corresponding to the decomposition Q @ Q = 
A @ R (A = diagonal subspace of Q @Q; R = antidiagonal subspace of 
Q @ Q). Equation (1.2) reads 

(q” - r/2 ) 6 1 q” + r/2) = (2~)-~ s, u(q”, p) e+pT dp; (1.2’) 

hence 

(P I 6 I 4’) = F4(% !I’), 

where 9 is a partial Fourier transformation between the conjugate spaces P 
and R, not acting on the space A. 

In the form (1.2), the Weyl correspondence can be considerably extended 
[S, 81: 9 is a continuous isomorphism of 

AqX) (=9’(Q) x Y(P)) onto Y’(Q x Q) (=9’(A) x Y’(R)); 

hence to any a E Y’(X) it associates an “operator” B of integral kernel in 
Y’(Q x Q): d makes sense as continuous sesquilinear form on Y(Q) x Y(Q): 
(u, V) + (V / Li j u), or equivalently as a continuous operator Y(Q) ---f Y’(Q). 

The map a - B was introduced by Weyl [7] to “quantize” classical 
observables; in this context we have here Planck’s constant A = 1, until stated 
otherwise. The map d + a is a Wigner transformation [9], and we call U(X) 
the Wzgner symbol of the operator 6. 

Mathematicians commonly associate with a given symbol u(x) a dz&ent 
operator a”, which is such that [l, 31 

(a%)(q) = (2~)-z jPxo u(q, p) u(q’) eiP(*-‘f) dp dq’ (U E CO”(Q)); 

hence 

Another most interesting operator prescription is the Wick (or “normal”) 
ordering a -+ :a: [lo, II]. Some properties of the correspondences a 4 aM 
and a + :a: are listed in the Appendix. 
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1 .I. Some Properties of the Weyl Correspondence [12, 131 

It is immediately checked that in the sense of operators on 9’(Q), 

I=4 (the identity operator), 

* 
Pj = 4.i (multiplication by the coordinate function qj), 

If T(p) + V(q) E O,V(X) we can define G+>) by Eq. (1.2) and 
T(j) + V(g) by the operator functional calculus [14]: These two definitions 
coincide (the latter is the Schrodinger quantization for Hamiltonians of the 
standard type p2/2m + V(q)). 

The most interesting are the various symmetry properties (not satisfied by 
other symbol maps). 

-For all m E N and 01, /3 E C, 

/\ 
(%I + PP)” = (4 + @)“I (1.3) 

and this property characterizes the restriction of the Weyl correspondence to 
polynomials (proof in [13]) 

-For all 01, /3 E R, 

exGq>p) = exp i(ag + @). (1.4) 

Proof. The operator (L$ + @) admits the Hermite functions as entire 
vectors [14]; for any finite linear combinations u and z, of such vectors, 
(u 1 exp i(wj + /3$) 1 V) is defined (as Cr (i”/m!)(u / ($ + /3$)” / v)), and 

(u 1 exp i(cxd + pj,> 1 21) = (u / eiaBj2 exp iad exp i/3$ / v) (cf. [71) 

=z eiQsi2 
i 

D u*(q) eieqv(q + p) dq 

= (2n)-1 Jx .F-l(v @ u*) ei(aq+Bf’) dx 

and this extends by continuity to u, 21 E Y (the closed linear span of the Hermite 
functions). 

Conversely, extending (1.4) by 1 inearity to superpositions of exponentials, 
one can recover the Weyl correspondence [l]. 
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- 2 = 6+ (in the sense of sesquilinear forms), since the kernel given by 
(1.2) trivially satisfies (4 1 $ / 4’) = (q’ / ri 1 q)*. By contrast, the mathe- 
maticians’ symbol for the adjoint of an operator is rather complicated [2, 31 
(see Appendix). 

In particular if a(x) is real-valued, the form li is symmetric (Hermitian). 
There is no known characterization of those real symbols for which a self- 
adjoint operator (densely defined) on the Hilbert space La(Q) can be associated 
to the form ci (a symmetric operator as simple as 444 has no self-adjoint extension 
[15]). We shall give a partial solution to this problem for a class of symbols. 

1.2. Metaplectic Covariance 

Let Mp(Z) +” Sp(X) denote the metaplectic representation of the symplectic 
group of X [16]: It is a double covering of Sp(X) by a subgroup of the unitary 
group of %; every % E Mp(&) is not only a unitary map on L”(Q) but it extends 
to a continuous isomorphism of Y’(Q) [17]. The Weyl quantization has the 
interesting covariance property 

W E Mp(Z), Va E Y’(X), %&a+ :z+, (1.5) 

which implies that Weyl quantizations with respect to different symplectic 
frames on X are isomorphically equivalent. 

With minor changes in notation, we have given a proof of Eq. (1.5) in [5]. 
Here we mention it only as another symmetry of the Weyl quantization, which 
is not shared by the other ordering procedures listed in the Appendix. 

1.3. Hilbert-Schmidt Operators 

The Fourier transformation s introduced above is a unitary map from 
La(X, dx/(2rr)l) ontoL2(Q x Q, dq x dq) by Parseval’s identity. But the operators 
with L2 kernels are the Hilbert-Schmidt operators [14] and they form a Hilbert 
space Z2(Z) for the norm 

(B, A),, = Tr B+A = 
s ox D (q I B I 4’) *(a I A I q’> 4 4’. 

Hence the Weyl correspondence restricted to L2(X, dx/(2rr)l) is a unitary map 
onto g2(&). 

2. AN ALGEBRA OF SYMBOLS 

Grossmann, Loupias, and Stein [l] have defined a space of symbols, denoted 
here GLS symbols, which give rise to pseudodifferential-like operators under 
Weyl quantization. We review and strengthen their results here. Symbols 
presenting some analogies have been defined by other authors [18]. 
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2.1. GLS Symbols of Order <m 

A GLS symbol of order <m is any function a E Cm(X) satisfying (for a real 
number m) 

where we let 11 x II2 = q2 + p2 (but any other quadratic norm on X would do). 
The space S, of these symbols can be topologized by the seminorms 11 a lla = 

sup,,x (I @+)I/(1 + II x l/2)(m-‘a’)‘2). it is then a FrCchet space. 
S, is stable under complex conjugition; any operator azU maps S, into S,-i,l 

continuously; multiplication of functions sends S, x S,, into Sm+m, . We have 
S,, C S, (a continuous inclusion) if m’ < m. The space S-, = nmpR S, (with 
the coarsest topology making all inclusions S-, C S, continuous) is the Schwartz 
space P’(X). We denote S = (JrnfR S,n the space of all GLS symbols. 

The main differences from the usual definitions of symbols [2, 31 are: (I) The 
latter involve a growth condition in the p coordinates only (while we take 
stronger growth conditions, isotropic in phase space and Sp(X)-invariant); 
(2) That growth condition is expressed [3] by an asymptotic series 

4% P> - g0 anz-kL P) (II P II - +a), 

where each u,-~ is positively homogeneous in p of degree =m -j, while 
our condition (2.1) is only an inequality. Here we can also define subspaces 
of symbols S, C S, by a condition stronger than (2.1): 

U(X) - $OumPj(s) in the sense that 

(II x II - +a>, 
n-1 

VolEN2i v EN ,n , u - c um-j ~o(ljX~l+-n-t4) 
j-0 

(2.2) 

where each u,Jx) is positively homogeneous in x of degree (m - j); but this 
requirement is too strong in view of realistic physical applications (see Section 4). 
(Note: By convention, any sum of the form Cy:,, (...) has value 0.) 

2.2. Symbols Defined by Asymptotic Series 

We say that the symbol a E S, admits an asymptotic expansion Cj”=, a,+ with 
arnei E S,-j , if for all n E N, (a - Cyz,’ U,-~) E S,-, ; this is denoted a - 
Cj u,-~ (more general descending asymptotic expansions could be allowed). A 
given symbol admits an infinity of expansions of this form, but the converse is 
more interesting: to find a symbol having a given expansion. 
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THEOREM 2.2.1. (i) Given any sequence {u,-~ E Snz-j}isN there exists a E S,, 
such that a N Cj anzej . 

(ii) The set of symbols a such that a - Cj a,+ is the class of a modulo S-, . 

Proof. Let {Aj}iBN be a sequence of positive numbers increasing to fco, 
and let x E Cm@) be a monotonic function such that x(r) = 0 for Y < 1 and 
x(r) = 1 for r > 2. We define 

a(x) = f x ( y) 4-j(x) = jgo arm-i(x). 
jdJ 

In any compact subset of X this sum is actually finite, so it defines a Cm 
function a(x). Now we must control the behavior of a(x) when 11 x 11 -+ +co 
for a suitable choice of the sequence {Xj}. For any (Y E N2z andj E N, 

3 [x (Jp) am-$(x)] = ; * (@x) (y) a+~um-j(x), 
.a 

by the Leibniz formula; estimate (2.1) then yields 

In the RHS we can replace each /I x //IBi/hlsl by 21@ (obvious if / /3 ; = 0; if 
I /3 / > 0, it is due to (@x)(11 x II/h) = 0 if I/ x // > 2h). We now choose 

let ~(11 x ij/Aj) a,+(x) = a,+(x). Whenever j 01 1 < j, 

j iPa,-j(x)j < Aj I/ x Ilnz-j-lQi < 11 x llm--j--l~lfl, 

since the left-hand side vanishes when /I x // < Xi . The series xi 3ampj(x) is 
thus uniformly bounded by a geometric series if 11 x 11 > 1 + E, and we have 

@a,(x) + f +a&x) 
j=l 

where we have used (2.1) for a,(x) (=a,(~) for j/ x/I > 24,). So we have 
a(x) E S, . The same argument shows that 

n-1 

a(x) - C a&x) E S,_, . 
j=O 
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Now: 
n-1 n-1 n-1 

a(x) - C a,-,(x) = ( a(x) - C am+ 

1 
+ C (a,4 - %-J 

j=O 0 0 

and the second term vanishes identically for 11 x 11 > 2h,-, , owing to the form 
of the cutoff function x. Hence a - z:j”r,’ a,-, E S,,,+, , proving (i). 

(ii) a - Cj &m-j means that for all n, a - C,“r,’ am-j E S,-, , which is 
equivalent to (u - Cyci a,+) - (a - CFii urnej) E S,-, , or (u - a) E S,-, 
for all n, i.e., a - a E S-, . 

This motivates the following: 

DEFINITION 2.2.2. We say that a, - a2 if a, - a2 E S-, ; the class of a E S, 
in the quotient space S, = S,jS-, , or asymptotic class of a, is denoted a”; 
we let S = S/S-, = lJnz S,m. (In this language, Theorem 2.2.1 just states 
that any formal series Cj”=, amPi with u,-~ E Smwj defines a (unique) element 
of &.) 

2.3. Quantization of Symbols 

Every GLS symbol a(x) is an element of O,(X) C P’(X); hence by Weyl 
quantization it defines a continuous map ci: 9’(X) + Y’(X); we call Sm (resp. S) 
the image of S, (resp. S) under _. The properties of the operators d E S are 
discussed in Section 3, but we give a preliminary result here. 

THEOREM 2.3.1. (i) 6 maps 9’(Q) into Y(Q) continuously; hence by duality 
it extends to a continuous operator 9”(Q) + Y’(Q) (also denoted h). 

(ii) If a E S,,, with m < -1, d maps &’ = L2(Q) into itself, and 6 E Y2(A“). 

(iii) If a E S-, , r2 maps Y’(Q) into Y(Q) continuously. 

Proof. (i) Let a E S, and u E S(Q). In the sense of distributions, 

(Wq) = (2+ JpxQ dp dr a(q + 42, P> 44 + r) eeipT 

-1 
- dp dr I(q, p, r) eeipr 

PxQ 

and Bu E Y(Q) if every distribution @P(du) is actually a bounded function. Since 
8@u) = (277-1 J- p d dr a,fl(a(p + y/2, p) . u(q + r)) e--ipT is a sum of integrals 
of the same type as (2.3), it suffices to prove that q”(&)(q) is a bounded function 
of q. 

To do this, we shall exploit the oscillatory character of the integrand (due 
to e-in,7) as lip 11 and II r Ij --f co, by the well-known method of successive 
integrations by parts. 

580/29/r-8 
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First, for any integer k, 

h(q) = jQ dr I(q, p, Y) epipr = jQ dr ({(t Ipbr!,k (1 + 11 p /I”)” e-ipr 

= 
s 

Q dr (;f’ipb;,$ [(l - O,)k emiPr] = Jo dr(1 - L3,)” (~(~~9rl~2), e+r 

(by parts, using the rapid decrease of all araI(q,p, Y) as I/ Y 11 + co). We take k 
large enough to let (1 - d,)“(l(q, p, Y)/(I + 11 p ]I”)“) = J(q, p, Y) be absolutely 
integrable in p; this is possible because a(x) satisfies condition (2.1). 

Then, for any integer k’ we get, similarly, 

s 
dp dr J(q, p, Y) e--@? = 

s 
J(4, P9 y) _’ 

PXQ PXQ 
dP dY(l - Ap)“’ (1 + ,, y I,“)“, e “‘. (2.4) 

Thus we have reduced ourselves to (definite) integrals of the form 

j K(%P, y) dP dy = j 4 dy a'(q + f-/2, p)(a64(q + y> e+Pr 
(1 + 11 p [I”)“(1 + I/ r ~I”)“’ (a' E S,), 

since (2.4) is a sum of such terms. 
We now bound the integrand IQ, p, Y) from above. If Q’ E S, , let m, = 

max-+/.T 01; by (2.1): I a’@, P)i < @[Cl + II q II2 + UP 112)m+l < W + II 4 II”)“+ 
(1 + l/p I12)“+]. Also, for every NE kJ: j 8%(p)/ < C&l + II q/12)+. Lemma 
2.3.2 (below) then yields, for Ij q 11 or II Y ]I + co, 

I a’(q + 42, P>I G w + II q ll”)“‘(l + II y ll”)“+(l + II P l12)m+l> 

hence, 

I @+z -t y)I < q&3(1 + II q II”)-“(1 + II y l12)r; 

I wq, p, y)l < qG3(l + II 4 l12)“+-v + II P l12P-v + II y l12)m++N--K’ 

* s K dp dy < @[CL41 + II q II”>-“] for all ME N, 

by a suitable choice of N (>M + m,) and of k and k’ (depending on N). More 
generally we would obtain, for all M, 01, 

I(1 + II 4 Il”)“q@(q)l G G.?, = c * “~P$” + II Q l12Y@f4491z, 

for some N, ,/I; hence 9 +a 9 is continuous. 

The adjoint operator of 9’ +“? 9’ is then an extension of d to a continuous 
operator Y’ --+’ 9’. 
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Proof of (ii). T rivial, since m < --I implies S, CL2(X), and by Section 1.3 
Weyl quantization sends L2(X) onto P(A“). 

Proof of (iii). If a E S-, = P’(X), th e k ernel of a is in Y(Q x Q) by Fourier 
transformation, it then defines a continuous sesquilinear functional on Y(Q), 
i.e., a continuous map P”(Q) - Y(Q). Operators of this type are thus “infinitely 
regularizing.” 

The proof of (i) required the following: 

LEMMA 2.3.2. For all q, r 6 Q, 

(1 + I/ q + r !12)*l < 2(1 + II q l12)*Y1 + II r II”). (2.5) 

Proof. For (+ 1) we have 

(1 + 11 q + r 11”) < 2(1 + II q II2 + II r II”> < 2(1 + II P llY1 + II r II”). 

For (- 1) the result follows from 

(1 + II q + r II”) 3 1 + (II 4 II - II r II>” > i ( : T 1: $)y 

since 

31 + (II 4 II - II r IIW + II r II”) - (1 + II 9 II”) 
= 1 + (II 4 II - 2 II r II)” + 2 II r IIVI 4 II - II r II)” > 0. 

2.4. The Twisted Product of Symbols 

By Theorem 2.3.1(i), the operator product a& of two GLS operators makes 
sense as a continuous mapping Y(Q) + Y(Q). B$ has a kernel in P’(Q x Q), 
and by isomorphism (1.2) there is a unique c E Y’(X) such that e = 26. c is 
called the twisted product of a and b; it can be computed by expressing (ci6)u = h 
(for u E Y(Q)) via the transformation g (Eq. (1.2)). By a straightforward 
computation, 

c(x) = 9-l((q I Bb j q’)) = .9--l [s,dq”(q / 6 1 q”)(q” I b 1 q’)] 

= 9-l (s, 4”(~4(q, d’PWq”~ q’)) 
--- 7F2z s 4, dp, dq2 dp2 4q + q1 , P + P,) b(q + q2 , P + p2) e2i(‘1DZ-02r)1) 

XI 

=77 -22 

s 
dx, dx, a(x + x1) b(x + x2) e2iw(r1*“2), (24 

XZ 

which illustrates the special role played by the symplectic form w of X in the 
Weyl correspondence [l, 8,9]. The integral (2.6) is defined in the sense of 
distributions. 
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THEOREM 2.4.1. (i) S is an associative *-algebra for twisted multiplication, 
which is a continuous map from Sm, x Sm, into S,,, (for any m, , m2 > -a). 
The twisted product c of a and b E S is given by Eq. (2k). 

(ii) c(x) admits the asymptotic expansion (GroenewoZd [19]) 

44 - go $ ($” [( 4$Dz - %2asJQ4x + x1) b(x + ~Jlz~=x,=o (2.7) 

denoted c(x) N a(x)[exp(i/2)(3,8, - a*,a’,)] b(x). 

(iii) If a or b is a polynomial in x, expansion (2.7) is a jinite sum which is 
exactly equal to c(x). 

COROLLARY 2.4.2. (i) S is a Lie algebra for the twisted commutator (a, 6) + 
((a, b}} = c dejined by 

c” = [a, b]_k, and wnl > snJ: c s7nl+mz-2 * 

(ii) {{a, b}}(x) N a(x)[2 sin((8,8, - L?,d,)/2)] b(x). (2.8) 

(iii) If a or b is a polynomial in x of degree <2, 

{{a, b}} = {a, b} (the ordinary Poisson bra&et). 

(The operation {{, }} is the Moyal bracket [20].) 

LEMMA 2.4.3. For any polynomial Q(xl , x2) there exists a deferential operator 

pa1 9 a,J (with constant coeficients) such that 

Q(x1 , x2) e2iw(%4 - p(azl , a,& e2iwh%)a 

Proof. For convenience we denote Y = X2; let y = (xr , xa) E Y. The 
statement to be proved is invariant by linear transformations of Y; but there 
exists such a transformation under which e2iw(zl%) becomes a nondegenerate 
gaussian exp(i& qyj2) (Vj: cj = &l) (this follows solely from the non- 
degeneracy of the 2-form CO). Then it is known that the Hermite-like polynomials 

! i exp -i~tiy,2)alue,p(iC~iy~~~ CXEN*~ 

generate all polynomials in y; hence the result. 

Proof of Theorem 2.4.1. (i) We need only prove the continuity of the 
mapping (2.6): (a, b) + c from Sm, x SwL, into S,I+,z ; the other algebraic 
properties are those of the corresponding operator multiplication. We thus 
want 

@c(x) = T-21 
s 

dx, dx, azU[a(x -1 x1) b(x + x2)] e2iw(m’,3cz) (2.9) 
x2 
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and 

bounded by some seminorms of a and b. 
We shall prove both statements by defining the RHS of (2.9) as an oscillatory 

integral (the derivation under Sin (2.9) is then legitimate). The proof is essentially 
the same as for Theorem 2.3.1. By the Leibniz formula, the RHS of (2.9) is a 
sum of terms of the form 

s 
dx, dx, aza(x + x1) aFb(x + x2) e2iw(21~02) (011 + a2 = 4 

= dx, dx, 
s 

??a@ + x1> a2b(x + x2) [Pkl,kz(aol , aaz) e2i"("l~"z)] 
(1 + II Xl ll”)“l . (1 + I/ x2 /l2)kz 

(2.10) 

for all k, , k, E N, where Pk ,k is the polynomial in a, and azz such that 
Pk,,k,(aol, &.) e2iw%+%) = (1 $ !l xi 112)k1(1 + I/ x2 j12)kze2iw(zl*zz) (by Lemma2.4.3). 

In the sense of distributions, (2.10) means 

and this integral converges for k, and k2 large enough, since a and b are GLS 
symbols. Since the derivations ax and a, can only improve the behavior of the 
integrand L(x, x, , x2), the latter ian be bknded by 

o a24x + 4 
[ 

?3(x + x2) 

(1 + II Xl II”)“1 * (1 + II 3% l12)k, 1 
G o [ II a /Ia1 II b ILU + II x + x1 l12fm1-‘n1’)i2 

(1 + II Xl II”)“1 

x (1 + II x + x2 ll(m2-‘n20’2) 
(1 + II x2 II”)“2 1 

and using Lemma 2.3.2, 

< O[ll a /Ial 11 b ll,,(l + (j x l/2)(m1+m2-‘n’)‘2 

This upper bound is also (xi , x,)-integrable for k, and k, large enough, so 
that we get (with m: m, + m2) 

II c IIQ = s;P (1 + /, ;$z-:,,,,, < corm x m=,{ll a llul * II b II,,>. Q-E.D. 1 2 
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The proof of (ii) essentially amounts to a stationary phase expansion of integral 
(2.6) around the critical point xi = xa = 0 (we recall (cf. Lemma 2.4.3) that 
eziW%+J is a Gaussian phase function around y = (x1 , xs) = 0). 

We first replace a(x + xi) b(x + x2) by its Taylor polynomial to some order R: 

The remainder RJx, y) has the form 

for some 0 E [0, 11; 

hence by Lemma 2.3.2, I R&, y)l < 0(II x Ilm+--l I/y 11”) for some k > 0; 
similarly, 1 a,sR,(x, y)\ < O((l x (Inz-+lsl-l (1 y (Ik(a)) for some k(p), because azsRn 
is the remainder of the Taylor expansion in y of a,s(a(x + xi) 6(x + x.J). By 
the same argument as that in the proof of(i), all this implies 

s x2 R,(x, y) e2i0(x1 &) dx, dx, E S,,,-n-1 . 

It remains to compute v-z1 Jj(x, y) eaiw(%+z) dy forfpolynomial iny of degree 

<n. For each monomial ys (p E N4z), j ( ya/fl!) e siw%+) dy is the coefficient of 

(it)* in 

=e 4/2M#~~ #<J e2iW(X~+#P,/2.za-#fE1/2) dy 

(where 5 = (& , 5-,) = (t;i , rll , C2 , r12) E R4z is dual to Y = (pr , Pr , q2 , Pz), and 
#: X* -+ X is the isomorphism such that [ . x E w(#[, x) vx E X Vg E X*). 
Hence, 

By linearity we get for any f(x, y) polynomial in y of degree IZ: 

T-2z 
s 

f(X, y) e2iw(=l.“z) = ,61?n b [-is]’ [e--(i’2)(c1ns-c2”1)] * ayBf(x,y),=o 
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which is formally equal (by Taylor’s formula) to 

[e-(i’2)(c1nz-6”1) le=-ia,] * fuxo = exp(i/2)(4$,, - a,,a,J f(X, Y),=o 

Summing up: For each n E N we have 

7r-zz s fix, dx, a(x + x1) zJ(x + x2) e2iw(zl*zJ 
=57 -2z s dir1 dx,[a(x + x1) b(x + %Jn e2iw(zlBQ) (mod &+n-ll 

- %2%l)kM~ + 4 0 + ~2)1EI’rF0 
[mod S,-,-J 

= ,;,, ck@) [mod &-n-11. 

Hence the twisted product satisfies c(x) -c& ck(x) with ck E A’,-,, , in the 
sense of Section 2.2. 

This is precisely what is meant by Eq. (2.7). Q.E.D. 

(iii) If ( ) a x is a p ly o nomial, a(x + x1) is a polynomial in x, , and c(x) is the 
sum of the finite series 

= (by parts) rr-” c “‘f$(“’ j dx, dx, 
+,+ * . 

- %2%l)nk4~ + Xl) @ + ~2)lr,--2,=0 

(a finite sum) Q.E.D. 
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Remarhs. A formal proof of (ii) (which also works for any stationary phase 
expansion) is to expand eziwtz J ) 2 1 a /( v)” in a series of distributions 

understood as the formal Fourier transform of the Taylor series 

that series is then substituted into (2.6) to yield expansion (2.7). 

-The use of a different symbol map (see Appendix) leads to a different 
(less symmetrical) operation on symbols corresponding to operator multipli- 
cation. 

The proof of Corollary 2.4.2 is straightforward. 

PROPOSITION 2.4.4. The following subspaces of S are s&algebras for twisted 
multiplication: 

-the subspace S defined by condition (2.2), 
-the subspace of polynomials in x, 
-the subspace of symbols a(q, p) polynomial in p, i.e., symbols of standard 

partial di$ferential operators on Y(Q) (resp. polynomial in q). 

PROPOSITION 2.4.5. S-, is a two-sided ideal of S, hence s” = S/S-, is an 
algebra for “twisted multiplication modulo S-,” (defined by (2.7) [l]. 

We omit the proofs (elementary). 

2.5. The Inversion of Symbols 

We seek conditions under which the inverse 2-l of a GLS operator a^ E S 
exists in S and can be computed. We shall actually solve this problem modulo 
S-, . If 6-l = 6, the asymptotic class 6 of the symbol b is the inverse for twisted 

n 
multiplication mod S-, of (z in the sense that 

We look for 6 in the form of a descending expansion 6(z) = Cj”=, b-,,(x) with 
b-,,(x) E S,T-,~ (for some m’) computed recursively so as to satisfy (theparametrix 
method): 

ab, = 1, 
ab-, + (i/2) a(a*,a’, - 8,8,J 6, = 0, 

i-l 
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where ZZ?‘~(X, a,) is the differential operator on X defined by 

d&x, a,>24 = a [A (;,” (a$, - a,a,y] 24. (Vu E 9); 

i.e., 

&&(x, a,) = c J- (‘)s (-1)“” @$$a) ag’a,Y. 
,v,+,v*,=k r!r’! 2 

(2.12) 

We can thus choose 

b,(x) = L 
U(X) ‘***’ 

b-,,(x) = - (2.13) 

THEOREM 2.51. A su@cient condition for the existence in J!? of the asymptotic 
inverse b” is that bezj E S,r-,j for some m’ E 1w (then 6 = CT=, bm,-2j E 3,~). This is 
realized under the following condition: a(x) # 0 for all x, and 

vcd E N21, I w4 < c, I 44 II x /I+ for // x 11 + co. (2.14) 

Remark. This condition states not only that a(x) should not vanish for finite x, 
but that it should not tend to 0 too rapidly as // x /I + co. This condition is not 
necessary: Given any expansion of d such as a” = C,” u,-~(u,,+~ E Sm+.), the 
previous method can be adapted in an obvious way provided a,(x) # 0 (Vx) 
and i &~,,~_,(x)i < cj, 1 u,(x)] // x Il-lal-j (Vj E N, V’OI E N”“), the latter condition 
being satisfied, for instance, if a,, is homogeneous of degree m (then, moreover, 
b” E S-J. 

Proof of the theorem. Condition (2.14) with 1 011 = 1 implies /I a,(log I u(x)l)I[ < 
m’/ll x I/ for m’ = maxl,l=r {cm}; hence 1 l/a(x)1 < 0(lI x II”‘) as I/ x 11 + co. A 
repeated use of Eqs. (2.12)-(2.13) 11 a ows us to show recursively on j and j 011 
that 

QjeN, ‘da E w, 1 @-2j(x)l < Cj, j bo(x)j 11 X 11-‘m’-2’; 

hence 

1 Pb-,,(x)j < @((I x jlm’--la+-$j) and bLzj E Sm9-2j . Q.E.D. 

This almost settles the question of the existence of the inverse operator k-l. 
For if b(x) is any GLS symbol admitting the previously found 6 as an asymptotic 
class, we have 

sb a+? for some EES-, 

+ d-1 = b(Q + ?)-l. 
(2.15) 

Operator e is compact on 8; except if by accident (-1) happens to be an 
eigenvalue of e, (Q + t)-’ exists (by the Fredholm alternative). Writing 
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(Q + q-1 = 21 + d: Y -+’ Y is continuous; hence by the relation & = 4 - k, 
Y’ -+d Y is continuous, so that do S-, => ri-l = 6(Q + cf) E sm, and its 
symbol class is 6. 

Remark. Procedure (2.13) can be simplified by noting that S6 = II * & = II ; 
hence Eq. (2.11) implies 

cZ[exp - (i/2)(J$, - a’,B,)]b” = 1. 

System (2.1 l)-(2.16) splits as 

(2.16) 

n[cos((8,2, - &a’,)/2)]b” = 1, (2.17+) 

C[sin((a’J, - a’,a*,)/Z)]b” = 0. (2.17-) 

Equation (2.17+) alone determines the bMzj by separate recursions on even and 
odd j: 

hence all bpzj with j odd are actually zero, and Eq. (2.17~) then yields an infinite 
set of identities satisfied by the beJj . 

2.6. The Twisted Square Root of a Symbol 

In Section 2.7, we shall seek conditions under which a GLS operator J E 3 
is positive. For this it is natural to check whether d admits a symmetric operator 
square root B = 66, with b E S real-valued. We can solve this problem mod S-, 
along the same lines as those in Section 2.5: 

THEOREM 2.6.1. Ij a E S, satisjies (2.14) and Q(X) > 0 for all x, there exists 
a real-valued b” E sm,, such that 

d = b[exp(i/2)(J,J, - a’,B,)]b”. 

Proof. Since all J(J,a, - 8,J,)2k+1 6 = 0, by symmetry, 

ii = 6[cos(B,B, - a’,8*)/2)]6. 

We try b” = Cj”=, bpaj with bpJj E S,-,i . We can choose b,(x) = (~(x))i’~, and 
bpdj recursively as the solution of the equation 
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b-4j is real-valued, and condition (2.14) implies recursively on j and 1 01 I: 

I 3b-,,(x)i < q, / b,(x)1 . II x 11-‘+4+ 

hence 
I atib-,,(x)l < @‘(II x IIm/2--loil-4j) and ikSm,2. 

If b E S,,, is any real symbol of asymptotic class b”, then 

d=666+? for some real-valued c E S-, . (2.18) 

Remark. As in Section 2.5, we can relax the hypothesis of Theorem 2.6.1: 
If d = C,” a,+ with am-j E Smej, the previous method of finding b can be 
adapted if we only require: a,(x) > 0, a and all a,-j real-valued, and 

I @a,&)l < cj, I am(x)I II x ll++j (Vi 4. 

2.7. Some L2 Properties of GLS Operators 

We begin by introducing a class of comparison operators: the powers of the 
quantized harmonic oscillator. Let H = h with h(x) = 11 x j12/2 = &(q2 + p”). 
Then for all n E Z: (1 + H)” E S,, and its symbol behaves like (1 + [I x 11”/2)” x 

(1 + o(l)) as 11 x 11 --+ co. The proof is tedious but simple, using Theorems 2.4.1 
(for n > 0) and 2.5.1 (for n < 0). 

We now consider A E Z?m as a (possibly unbounded) operator on &’ = L2(Q). 

THEOREM 2.7.1. (i) If m < 0, A is compact. 

(ii) If m < -1, A is of Hilbert-Schmidt class. 

(iii) If m < -21, A is of trace class. 

Proof. (ii) see Theorem 2.3.l(ii). (i) If m < 0, some power Ak E s&, (with 
k E N, k > l/j m I) is Hilbert-Schmidt by (ii); hence A is compact. (iii) If 

m < -21, A is the product B(B-lA) with B = m E S,,, and B-l E 

L/2 > hence B-lA E $,,,, ; both B and B-lA are Hilbert-Schmidt, so that A is 
of trace class. 

THEOREM 2.7.2. (i) If a E S, is a semibounded function: a(x) 3 M > - 00 
and satisjies (2.14), then J is a semibounded symmetric operator for which the 
Friedrichs (self-adjoint) extension exists. 

(ii) The operators in &, are bounded. 

(iii) Forallm~[Wandn~Nwithn>m/2:IfA~&,A(l+H)-%isa 
bounded operator; hence A is deJned on the dense domain of H” in 3. 
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Proof. (i) We let M > 0 (the general case follows trivially). Then, 
hypothesis (2.14) is automatically satisfied if a E S, (this is needed for proving 
(ii)). Using Theorem 2.6.1, we can write Eq. (2.18): d = J2 + E in the sense of 
continuous operators 9 + Y, with b and c real-valued, c E S-, . Then d 
is a densely defined symmetric operator on &?, whose associated quadratic form 
is semibounded (J2 defines a positive form and c is a symmetric bounded operator 
by Theorem 2.7.1(i)). The Friedrichs extension theorem [21] then holds and 
defines a semibounded self-adjoint extension A of 8: A > -11 c^ // II. 

Note that a(z) > 0 does not imply that A is a positive operator; as a one- 
dimensional counterexample, let U(X) = p2q2 + E with 0 < E < $; then 
6 = (~2)~ + (c - $)Q admits (e - $, + 00 as spectrum and is not a positive ) 
operator. Our proof provides no estimate for the lower bound of 6 in the general 
case. The result is mainly useful as a criterion of self-adjointness. (Note: 
Berezin and Shubin [31] prove that if a(x) is real-valued and if a(x) & i satisfies 
(2.14), then B has deficiency indices (0,O); hence its closure is self-adjoint.) 

(ii) If a E S 07 then Re a(x) is bounded above and below; (i) then implies 
/-A n 

that Re a is a bounded operator, and similarly for Im a; hence d is bounded. 

(iii) If a E S, and n > m/2, u(Q + H)-” E So and is a bounded operator 
by (ii). 

We can somewhat refine the result of (iii). For each 7~ E Z, let A$ be the Hilbert 
space obtained by completion of the domain of (1 + H)n in 2 for the inner 
product (u, V) -+ (u, v), = ((1 + H)%, (1 + H)“v). We obtain a sequence of 
spaces 

(k > 0), where Sk and Xk are dual of each other for the inner product of 2. 
Moreover, 9’(Q) = nkceZ Sk and its topology is given by the directed family of 
seminorms ]I Iln ; hence Y’(Q) = uleEZ Xk [14,22]. 

PROPOSITION 2.7.3. Let A E S, . For every n E 7 with n > m/2, and for all 
k EZ, A is a continuous map Sk- tik-,. 

Proof. It suffices to show that A is bounded on the domain of (1 + H)” in 
8, which is dense in &‘k for the topology of Sk . For any vector u in the domain, 
Au = (1 + H)“-“[(l + H)k--n A(1 + H)-“I(1 + H)” u. But (1 + H)” is an 
isometry of Hk into &‘, [(1 + H)k--n A(1 + H)-‘“1 E So ; hence it is a bounded 
operator on &‘, and (1 + H)n--k is an isometry of X into Sk-, . 

Letting k ----f +co (resp. - co) we would recover the continuity of A from 9’ 
to 9 (resp. Y’ to Y). 
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3. ASYMPTOTIC QUANTUM MECHANICS AND ADMISSIBLE OPERATORS 

We refer to “asymptotic quantum mechanics” when dealing with power series 
expansions of quantum mechanical quantities in Plan&s constant fi. The 
mathematical structure of quantum mechanics [23] depends explicitly on 
&E R+\(O), which can be considered as a variable parameter of the theory. 
Although fi is a constant in nature, this viewpoint can be useful because certain 
quantum mechanical quantities tend as fi --f 01. to their “analogs” of classical 
Hamiltonian mechanics [24], and in many physical instances the actual value of fi 
is relatively so small as to make a perturbative computation “around” classical 
mechanics a sensible operation. The works of Maslov [25], Leray [26], and 
Duistermaat [27] have brought out the analogy between these small+? expansions 
and the ordinary asymptotic expansions in pseudodifferential operator theory. 
A specific pseudodifferential algebra can be introduced [4, 51 to deal directly 
with &expansions. It is analogous to the GLS algebra, but with additional 
requirements on the explicit behavior in fi of the symbols. We thus need to 
rewrite Sections 1 and 2 showing the explicit dependence in fi everywhere 

(fi > 0). 

3.1. The Weyl Quantization 

It associates to a classical function a(g, p) the integral operator on &’ = L”(Q) 
of kernel (cf. Eq. (1.2)): 

(q / 6, 1 q’) = (S&a)(q, q’) = (2~rh)-~ jP a((q + q’)!2, p) eipcq-q’)ln dp. (3.1) 

The conditions of validity and the properties of this Weyl quantization are 
the same as those in Section 1 (up to some normalization constants); in particular, 
flfi is a continuous isomorphism Y’(X) + 9”(Q x Q) and also an isometry 
.P(X, dx/(2&)l) -L2(Q x Q) q 9”(&‘). The coordinate functions become 
quantized as 

4j = 4i (multiplication by qj), 

hence they generate the well-known Schrodinger representation of the canonical 
commutation rules: [(ij , jk]- = ifi &Ii (=ih sjkT). The other properties listed 
in Section 1 stay unchanged. 

3.2. Admissible Symbols 

An admissible symbol of order <m (m E [w) is any Cm function a E Cm 
([0, fi,,) x X) (for some unspecified 0 < A, < GO) such that for all j E N the 
mapping fi + (8/M) a(& .) is Cn from [0, fia) into Sr,t-2j (note that regularity 
in fi is required up to A = 0). 

58+9/I-9 
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The space of such symbols is denoted OZm ; we put on it the topology of uniform 
convergence on compacts of [0, a,) of every derivative 8a/%j in SmPaj . We have 
&c C GYm if m’ < m; we let rX-, = &, GYm and GY = WV, &&. 

The Taylor series at fi = 0 of a symbol a E 6& , 

m 
~(h, -> - C ap, aj E Sm-2j , (3.2) 

0 

defines an asymptotic expansion both in the sense of Section 2.2 and in the sense 
of functions of ti as r5 + O+; for all n E N, 

stays in a bounded set of &,-an as fi + O+. 
The leading term u,(x) is the principal symbol. 
The asymptotic study for fi --f 0 will identify as zero any symbol admitting 

the expansion C,” 0 . ~5~ in the sense of (3.2). We are thus led to define: 

-The subspace JV of negZigibZe symbols as the space of symbols a E GY 
such that a N 0 in the sense of (3.2); i.e., a(ti, .) E S-, and for all n E N: a(&, .)/#P 
stays in a bounded set of S-, as fi ---f 0. 

-The quotient spaces a?,, = g&v-, a-, = a?JJv-, a = ajJv of 
asymptotic classes of symbols modulo JV; the class of a is noted Z. Note that 
here we let the space J+‘” (and not K,) play the same role as the space S-, in 
the GLS case. 

THEOREM 3.2.1. Every formal series C,” a@ with a$ E SrnPzj deJines an element 
of LIfm uniquely. 

The proof can be done similarly to the proof of the analogous theorem, 
Theorem 2.2.1. 

3.3. Quantization of Admissible Symbols 
- 

For every 0 < fi < hi, , a(A, .)* is an operator in S, with all the properties 
listed in Section 2.3; we call it an admissible operator. 

Many important operators of quantum mechanics are indeed admissible 
operators: for instance (I = 3), the components of the angular momentum 
$ x 6, the squared angular momentum (Q x 6)” (it has the symbol 

/\ 
(q x p)” - 3fi2/4), and all Hamiltoniansj2/2 + V(q) with polymonial interaction 
potentials. Nonpolynomial potentials (I/ E C-(Q) are never admissible (I/ $ S) 
[33] ;r but this restriction disappears if we replace condition (2.1) by: 
3m, n E R! Vu, p E Nz, 1 c?,~~,~z(x)~ < C&l + 11 q 1/)“-1*1 (1 + lip Il)n-lBi 

1 We thank J. Chazarain for calling OUT attention to this fact. 
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3.4. The Twisted Multiplication of Admissible Symbols 

As in Section 2.4, it is defined so as to correspond to the operator multipli- 
cation under the now h-dependent Weyl quantization. 

THEOREM 3.4.1. (i) ed is an associative *-algebra for twisted multiplication, 
which is a continuous map from GYm, x G& into 6Yml+,9 (for all ml , m2 3 -CO): 
(a, b) - c, given by 

c(fi, x) = (r?ip2’~ dx, dx, a(h, x + x1) b(X, x + x2) e2iw(z1Bzz”*. (3.3) 
X2 

(ii) c admits the asymptotic expansion in GY: 

c(h, x) - C(A, x)[exp(ifi/2)(8n,dn, - jn,Ja,)] &(A, x). (3.4) 

(Its principal symbol is c,,(x) = a,,(x) b,,(x).) 

(iii) If a or 6 is polynomial in x, expansion (2.7) is a finite sum which equals 
c(x) exactly. 

The proof is identical to that of Theorem 2.4.1. All other statements in 
Section 2.4 have easy to find analogs; in particular, d is a *-algebra for the 
“twisted multiplication modulo N” defined in Eq. (3.4). 

3.5. The “Twisted Inverse” of an Admissible Symbol 

Here we can make a stronger statement than the analog of Theorem 2.51: 

THEOREM 3.51. Let a E 02, a N x.,” a,@ in the sense of Section 3.2, with 
aO(x) # 0 for a21 x and aO(x) satisfying, as /I x I/ + 03, 

va E w, 1 @aj(x)l < cia 1 a,(x)1 11 x ji--/a:--2j. (3.5) 

Then for all h small enough, a, admits an operator inverse of the form Jfi , with 
b E GF! of principal symbol 1 /uO(x). 

Proof. We begin, as in Theorem 2.5.1, by computing the asymptotic class 
6 = C,” bjhj using the parametrix method; in particular, b,(x) = l/at,(x). 
Condition (3.5) is needed to keep a&x) from tending to zero too fast as 11 x jj + CO 
and it guarantees that for some m’ E IR and all j E N : bj E S,,L,~ . For any b E 6Y 
having this asymptotic class 6, we then have 

ii,& = II + E, for some c E JV, 

hence: 

"-1 
a* = &(O + tjj-'. (3.6) 
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The new fact here is that not only is efi (E sew) a Hilbert-Schmidt operator 
for all fi, but its operator norm is a rapidly decreasing function of fi as H + 0, 
since for all n E N, 

This guarantees that for fi smaller than some (undetermined) upper bound, 
the operator inverse (21 + E&l exists (and can be computed by its Neumann 
series or by the Fredholm method); also, (‘U + P&l = Ii + a,-, with d E JV; 
hence 6-i given by (3.6) is an admissible operator with 6 as asymptotic class. 

Q.E.D. 

Remark. The reader can check that condition (3.5) is preserved under twisted 
multiplication and twisted inversion. (The role of this condition is suggested 

by its implication that, in the sense of operator theory, 6x- aTfi) is a regular 

perturbation of aqfi , namely, that Gx - a:;i) (aTfi)-l E 3, and its operator 
norm is C(fi)). 

3.6. Some L2 Properties of Admissible Operators 

We consider for every fi E (0, fiO) fixed, and for a E 02,, , the operator d, on 
Sf? = L”(Q). Since a(K, .) E S,,, , Theorems 2.7.1 and 2.7.2 hold without 
modification, but we can also strengthen point (i) of Theorem 2.7.2. 

THEOREM 3.6.1. Let a E GT, a - 1,” aj@ in the sense of Section 3.2, with 
a,,(x) > 0, a(fi, x) and aj(x) E IR for all I E X, j E N. If a satisjies (3.9, then for 
all h small enough, B, is a positive operator. 

Proof. We begin by assuming that a,,(x) 3 K > 0. Then (a - k/2) E 02 
also satisfies (3.5) (use ~ aO(x)’ < 2 1 a”(x) - k/2 1) and has a positive principal 
symbol. As in Theorem 2.6.1, we can compute a real-valued symbol b - C,” b,@ 

with bj E S,rL:2P2j (if a E &,) such that (a - k/2)n = b,b, + e, with c E M 
real-valued. Then d, = Jfi2 + (k/2)21 + tfi , with & symmetric and es self- 
adjoint with operator norm = o(P): for fi small enough this norm is <k/2, and 
then ii, is a positive operator. 

If inf rGX {a,(x)> = 0, we know by condition (3.5) that a”(x) 3 K iI x lI--m’ 
still holds for some m’ E R. Fix n E N, n > m’/4; let h(x) = (/ x II2 and d$ine the 
operator -3’ = (1 + !z,Jn Li,(l + A,$. By Theorem 3.4.1, A’ = afir with 
a’ E OF?, a’ -I:,” a’,hj, and a’,, r= (1 -+ 11 x lj2)2n a,,(x). We can check that a’ 
satisfies the hypothesis of Theorem 3.6.1 (using the fact that (3.5) is satisfied 
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by a and by (1 + h), and is preserved under twisted multiplication), and also 
a’,(x) 3 k > 0. By the previous argument afi + is a positive operator for small fi, 
but then so is 6, = (1 + &-, a’,( 1 + hn)en. 

4. ADMISSIBLE FUNCTIONALS AND PHYSICAL APPLICATIONS 

Assume that we are interested in the spectrum and in the eigenfunctions of a 
given self-adjoint admissible operator A = Li, . It is convenient, in order to have 
the discrete and continuous spectra on the same footing, to work in the “Dirac 
formalism,” i.e., with Gelfand triplets [28]. Since the algebra of admissible 
operators admits Y(Q) as a common dense invariant domain such that 9 +A Y 
is continuous (Theorem 2.3.1), we can use the Gelfand triplet Y(Q) CL2(Q) C 
F’(Q): The “eigenfunctions” of the continuous spectrum are tempered distri- 
butions (those of the discrete spectrum lie in L2(Q)). 

Is it then reasonable to devise a regular perturbation scheme to compute the 
eigenfunctions of A in power series of A ? Even if we ignore the difficulties linked 
with the discrete spectrum (which becomes continuous in the classical limit 
fi = 0), the answer is certainly no; even in the simplest case (cf. the WKB 
method), the eigenfunctions exhibit very bad caustic singularities. An alternative 
approach eliminates this difficulty: We associate to every u E Y’(Q) the linear 
functional on GpI_, (for fixed H > 0), 

c 6 Kc - (u(q) 0 ~*(P’>, (%C)(% q’)), 

in the sense of the inner product between Y”(Q x Q) and Y’(Q x Q). Let 
pU(fi) = (2&)-I g-fir(u @ u*) E Y’(X). By the Parseval identity for distri- 
butions, 

<u 0 u*, v&D ‘( Y 0x0 XYP(OXO) = Mfi), 4% ~DwwxspLr) ) (4.1) 

(pU is the “Wigner function” of the distribution u [9]). 
In many solvable cases, (p,(fi), c(A, .)) (of Eq. (4.1)) is a continuous linear 

functional of c(fi, .) E S-, (for ~5 # 0) whose value is a Cm function of A (up to 
h = 0). Since 65-, consists of the Cm maps ~5 + c(& .) E Y(X), an equivalent 
statement is that pU must be a Cm map: fi E [0, hi,) + p,(h) E Y’(X); we call all 
such Cm maps fi E [O,,$,) -+ p(A) E Y’(X) a d missible functionals (acting on a-,); 
they form the space Y’(X). 

Twisted mu/ttiplication extends to a mapping GPG x $’ + 2’ by duality [8]: 
If a E GY, b E Y’, the twisted product of a and b is the functional d E CT-, - 
(b, e)Y,(x)xY(x) , where e E a-, is the twisted product/\of a* by d: Efi = &+& . 
Equations (3.3) and (3.4) remain true when a E a, b E 9” [5]. 

A reasonable perturbative scheme is then to compute the “coefficients” 
pn E Y’(X) such that pU(fi) N C,” p,Hn (in the weak sense) as fi + Of. 
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Unfortunately we have no theorem stating that for a given admissible operator, 
suitable eigenfunctions u E 9”(Q) d e fi ne functionals pJfi> that are admissible 
(we know this to be true only for some exactly solvable cases; see examples 
below). What we know is that in many other cases the eigenvalue equations for 

pu, AP, = PJ = EP, > can be formally solved to any order An, yielding very 
reasonable coefficients pn E Y’(X); no singularities are ever encountered. 
Moreover, in completely integrable situations the equation pJ+i) N C,” p,A” 
can then be solved algebraically ( g a ain formally, to any order) to yield an 
eigenfunction u of the Maslov (WKB) type U(Q) = a(& Q) eis(a)lft (away from 
caustics); in the case of discrete eigenvalues corresponding to this situation, 
they, too, can be computed. 

This whole scheme uses properties of admissible functionals which follow by 
duality from those of admissible operators; we refer the reader to [5] for details. 

Here are two explicit examples of admissible functionals in one dimension: 

-if u is the ground state of the harmonic oscillator 

II x IC __ = 
2 

- F $ + f (of eigenvalue i), 

then 

-If IC is the eigenfunction of the “Airy operator” 

with “eigenvalue” 0 (in the continuous spectrum), 

whereas the function u itself (u(q, fi) = 2+1/3(2~)1/2 ~-1i6Ai(-2+1/3fi-2/3q)) has a 
caustic singularity at q = 0 and cannot be regularly expanded in powers of fi. 

In conclusion, although the mathematical theory is not yet complete, the 
theory of admissible operators and functionals seems to lead to methods for 
solving pseudodifferential equations asymptotically that are more regular, and 
probably more general, than the usual methods. 
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APPENDIX: OTHER SYMBOL MAPS 

Different correspondences between symbols and operators can be viewed as 
different prescriptions for ordering the noncommuting operators qi and -i(a/@J 
in a formal expression given as a(q, -2Zjaq). 

The usuaE ordering in mathematics associates to a function a(x) an operator uM 
such that [Z, 31 

(aMu) = (2+ 1,, a(q, p) ~(4’) eiP(g-g’) dp dq’. 

If u(z) = b(q) c(p), then uM = b(g) c(--ia/aq); this ordering puts all differen- 
tiations to the right. In particular, as compared with Eq. (1.4), [exp i(aq+#)]M = 
exp(k@) * exp(@“). Note that for any u(x) = f(q) + g(p), uM z 5, in parti- 
cular qjM = qj and pjM = --ia/@, (on C,,m(Q)). 

The adjoint (a”)’ (in the sense of forms) arises from the symbol 

b(q, p) = (2~))~ jp,, u*(q + r, p’) ei(p-P’)r dp’ dr. C-42) 

In the sense of oscillatory integrals, the mapping u*(x) + b(x) defined by (A2) 
is a continuous isomorphism of S, (same style of proof as that for Theorem 2.4.1) 
Equation (AZ) admits the formal asymptotic expansion 

The mapping a + uM is l-l from S,, onto S, ; for every a E S, , uM = 2 
with the symbol a’ E S, defined by 

a’($ P) = (2+ I,,, a (q - ; , pr) &-P’)r dp’ dr, (A3) 

and (A3) defines a continuous isomorphism S, + S,, ; the inverse formula of 
(A3) is 

u(q, p) = (25~~~ J^,,, u’ (q f i , p’) ei(p-p’)r dp’ dr. (A4) 

The corresponding asymptotic formulas are 

4s PI - a (4 + k 4, P) = .zi $ (+)‘“’ 4” a,a 47, PI, 

a(q, P) - a’ (q - ; 6 , p) = .$ A (+)“’ aaa aDa a’(q, p). (A5) 

Thus the Weyl ordering and this ordering lead to the same operator spaces. 
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But the operator relation cM = a”bM d e fi nes a symbol multiplication (a, b) -+ c 
which is different from twisted multiplication (Eqs. (2.6 and 2.7)): 

41, P) = PY 1, 41, P + P’) b(q + q’, P) e-ip’g’ dp’ dq’ 646) 

-4, P - iw b(q + 41, P),~=~ = & -& (+=I a9= u(q, P) vb(q, p) 

= u[exp( -23,8,)]b. 

An inverse ordering (putting all differentiations to the left) can similarly be 
defined. The two orderings clearly do not share the Weyl ordering’s invariance 
property with respect to linear symplectic automorphisms of X. 

A B&k (or ‘hwmul”) ordering can be associated to every Euclidean structure 
on X. By a symplectic automorphism, any positive definite quadratic form on X 
can be put in the “normal” form h(x) = +Ci wi(qi2 + pi”) (all wj > 0). We 
introduce the isotropic coordinates yi = (qj + ipj)/21iz, zj = (qj - ipj)/21/z; 
the quantized operators si (resp. &) are the creation (resp. annihilation) operators 

n 
of the harmonic oscillator h(x). The Wick quantization of a classical function 
expressed as a(~, 2) is an operator :a: such that if a(~, Z) = C b,(z) c~(x) then 
:a: = C bj(a) cj(z”). This prescription determines :a: for all polynomials u(x, z), 
for instance. To quantize general functions, in a class of symbols for instance, 
the most convenient way is to define :a: as a pseudodifferential operator on 
analytic functions U(Z) in the Bargmann-Fock-Segal (or holomorphic) represen- 
tation [29], where :zj: is multiplication by zj and :z,: = a/+ ; then Wick 
ordering in this representation is analogous to the mathematical ordering (all 
differentiations a/&, pushed to the right). But since the Bargmann function 
spaces have a quite different structure, this analogy is rigorous in a nontrivial 
way; here we simply give the formal analogs of Eqs. (A2’) and (A7) wtihout 
their rigorous derivation: 

-For the adjoint :a(~, z):+ = :a*(.%, a):, 
-for the product of “normal” symbols (in the sense that :c: = :a:&), 

c(z, Z) - u(x, Z)[exp(&8z)] b(z, Z); 

i.e., 

This last formula is known as Wick’s theorem for normal-ordered products [lo]. 
It is an exact relation for polynomials. 

Further properties of Wick orderings are discussed in [ 111. 
Some other quuntizution procedures, with their associated symbols calculus, 

are discussed in [30]. 
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Geometric quantization [32], when performed in the canonical coordinates 
(q, p) of X, also associates an operator a0 on C,,m(Q) to suitable functions a(x), 
According to Gawedzki [32, p. 2151: aQ = (a - (i/2) a4asa)” (with our 
notation), hence formally: aQ = G;with a’(q,p) =CiElaz (l/oI!)(i/2)1011a,“(a,na(q,p), 
by (A5), and aQ = B only for a(x) polynomial of degree <2; otherwise the 
algebraic structure is not very attractive. 

Note added in proof. When this manuscript was completed we received an article 
(previously unknown to us) by Berezin and Shubin [31] which deals with the same 
spaces of symbols and gives several of the results proved here in Section 2. We have 
nevertheless kept our text unchanged with the idea that more detailed proofs than those 
in Ref. [31] might be useful. 
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