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Abstract

Let G be a linear algebraic group defined over a fieldk. We prove that, under mild assumptions
k andG, there exists a finitek-subgroupS of G such that the natural mapH1(K,S) → H1(K,G)

is surjective for every field extensionK/k. We give several applications of this result in the c
wherek an algebraically closed field of characteristic zero andK/k is finitely generated. In partic
ular, we prove that for everyα ∈ H1(K,G) there exists an abelian field extensionL/K such that
αL ∈ H1(L,G) is represented by aG-torsor over a projective variety. From this we deduce
αL has trivial fixed point obstruction. We also show that a (strong) variant of the algebraic fo
Hilbert’s 13th problem implies that the maximal abelian extension ofK has cohomological dimen
sion� 1. The last assertion, if true, would prove conjectures of Bogomolov and Königsmann, a
a question of Tits and establish an important case of Serre’s Conjecture II for the groupE8.
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1. Introduction

The starting point for this paper is the following theorem, which will be proved in S
tions 2 and 3.

1.1. Theorem. Let G be a linear algebraic group defined over a fieldk. Assume that on
of the following conditions holds:

(a) char(k) = 0 andk is algebraically closed, or
(b) char(k) = 0 andG is connected,
(c) G is connected and reductive.

Then there exists a finitek-subgroupS of G, such that the natural mapH 1(K,S) →
H 1(K,G) is surjective for every field extensionK/k.

Here, as usualH 1(K,G) is the Galois cohomology setH 1(Gal(K/K),G); cf. [Se1].
Recall that this set does not, in general, have a group structure, but has a mark
ment, corresponding to the trivial (or split) class, which is usually denoted by 1. G
a field extensionL/K we will, as usual, denote the image ofα under the natural ma
H 1(K,G) → H 1(L,G) by αL.

In the course of the proof of Theorem 1.1 we will construct the finite groupS explicitly
(see the beginning of Section 2); it is an extension of the Weyl groupW of G by a finite
abelian group. Moreover, ifG is split andk contains certain roots of unity thenS can be
chosen to be a constant subgroup ofG; see Remark 3.1. We also note that Theorem 1.
can be deduced from the results of Bogomolov (see [CS, Lemma 7.3]); we are grat
J.-L. Colliot-Thélène for pointing this out to us. We will include a self-contained proo
Theorem 1.1(a) in Section 2.

In Section 4 we will discuss Theorem 1.1(a) in the context of invariant theory. In
ticular, we relate it to a result of Galitskii [Ga] and use it to give a simple proof of
no-name lemma, thus filling a small gap in the existing literature; cf. [CS, Section 4]

Our other applications of Theorem 1.1 are motivated by the following question, im
in the work of Tits [T2].

1.2. Problem. Let G be a connected algebraic group defined over an algebraically c
field of characteristic zero,K/k be a field extension andα ∈ H 1(K,G). Is it true thatα
can always be split by (i) a finite abelian field extensionL/K or (ii) by a finite solvable
field extensionL/K?

Tits [T2, Théorème 2] showed that Problem 1.2(ii) has an affirmative answer for
almost simple group of any type, other thanE8. (He also showed that for every suchG, the
solvable field extensionL/K can be chosen so that each prime factor of[L : K] is a torsion
prime ofG.) Note that if Problem 1.2(ii) has an affirmative answer for fieldsK of cohomo-
logical dimension� 2, then we would be able to conclude, using an argument origin
due to Chernousov, thatH 1(K,E8) = {1}, thus proving an important (and currently ope
case of Serre’s Conjecture II; for details, see [PR, Chapter 6] or [Gi, Théorème 11].
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We will say thatα ∈ H 1(K,G) is projective if it is represented by a torsor over a
irreducible complete varietyX/k. In other words,k(X) = K , andα lies in the image of the
natural mapH 1(X,G) → H 1(K,G), restricting a torsor overX to the generic point ofX.
(Note that after birationally modifyingX, we may assume it is smooth and projectiv
The split element ofH 1(K,G) is clearly projective, and it is natural to think of projecti
elements ofH 1(K,G) as “close” to being split. The following result may thus be view
as a “first approximation” to the assertion of Problem 1.2.

1.3. Theorem. Let k be an algebraically closed field of characteristic zero,G/k be a
linear algebraic group,K/k be a finitely generated field extension, andα ∈ H 1(K,G).
Then there exists a finite abelian extensionL/K , such thatαL is projective.

Note that the groupG in Theorem 1.3 is not assumed to be connected; in particula
case whereG is finite (Proposition 6.1) is key to our proof. On the other hand, in the
whereG is connected, Theorem 1.3 does not imply an affirmative answer to Problem
Indeed, while it is natural to think ofαL as “close to split,” it may be not be literally spl
even in the case whereG is connected and simply connected. To illustrate this point
will use a theorem of Gabber [CG] to construct a smooth projective 3-foldX/k and a non-
trivial classα ∈ H 1(k(X),G2) such thatα is projective; see Proposition 7.1. (HereG2
denotes the (split) exceptional group of typeG2 defined overk.)

It is also natural to think ofα ∈ H 1(K,G) as being “close to split” ifα hasfixed point
obstruction; for a precise definition, see Section 8. We will show that ifα is projective
then it has trivial fixed point obstruction; see Proposition 8.1. Combining this result
Proposition 7.1 yields another “approximation” to the assertion of Problem 1.2.

1.4. Corollary. Letk be an algebraically closed field of characteristic zero,G/k be a linear
algebraic group,K/k be a finitely generated field extension, andα ∈ H 1(K,G). Then
there exists a finite abelian extensionL/K , such thatαL has trivial fixed point obstruction

In Section 9 we will use Theorem 1.1(a) to relate Problem 1.2 to a (strong) varia
Hilbert’s 13th problem (Problem 9.3). We will show that if Problem 9.3 had an affirma
answer then so would Problem 1.2 (and, in fact, a much stronger assertion would the
see Theorem 9.4 and Remark 9.5).

2. Proof of Theorem 1.1(a)

We begin with the following observation. Letk be a field of characteristic zero,G/k be
a linear algebraic group, andRu(G) be the unipotent radical ofG. Recall thatG has a Levi
decomposition,G = Ru(G) >� Gred, whereGred is a reductive subgroup ofG, uniquely
determined up to conjugacy. As usual, we shall refer toGred as aLevi subgroupof G.

2.1. Lemma. Let i:Gred ↪→ G be a Levi subgroup ofG. Then for any field extensionK/k,
the natural map

i∗ :H 1(K,Gred) → H 1(K,G)

is a bijection.
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Proof. Let π :G → G/Ru(G) be the natural projection. By the Levi decompositio

Gred
i

↪→ G
π→ G/Ru(G) is an isomorphism betweenGred andG/Ru(G). Thus

H 1(K,Gred)
i∗−→ H 1(K,G)

π∗−→ H 1(K,G/Ru(G))

is a bijection betweenH 1(K,Gred) andH 1(K,G/Ru(G)). By [Sa, Lemma 1.13],π∗ is
also a bijection. Hence, so isi∗. �
2.2. Remark. Lemma 2.1 tells us that if the natural map

H 1(K,S) → H 1(K,Gred)

is surjective then so is the natural map

H 1(K,S) → H 1(K,G) .

In particular, in the course of proving Theorem 1.1(a) and (b) we may replaceG by Gred
and thus assume thatG is reductive.

We now proceed with the proof of Theorem 1.1(a). Letk be an algebraically closed fie
of characteristic zero andG be a linear algebraic group defined overk. As usual, we will
identify G with its group ofk-pointsG(k). In view of Remark 2.2, we will assume thatG

(or equivalently, the connected componentG0 of G) is reductive.
Let T be a maximal torus ofG and setN = NG(T ) andW = NG(T )/T . ThenW is a

finite group andN is an extension ofW by T . Let µ = nT be the group ofn-torsion points
of T , wheren = |W |. Consider the exact sequences

1→ T → N → W → 1 and 1→ µ → T
×n→ T → 1.

The first sequence yields a class inH 2(W,T ). Sincen · H 2(W,T ) = 0, the second se
quence tells us that this class comes fromH 2(W,µ). In terms of group extensions,
means that there exists an extensionS of W by µ such thatN is the push-out ofS by the
morphismµ ↪→ T . In particular,S is a finite subgroup ofN of order|W |rank(G)+1. We will
now prove the following variant of Theorem 1.1.

2.3. Proposition. AssumeG is reductive andS is the finite subgroup ofG constructed
above. Then the mapH 1(K,S) → H 1(K,G) is surjective for any field extensionK/k.

Proof. We claim that the natural mapH 1(K,N) → H 1(K,G) is surjective for every field
extensionK/k. Indeed, letK be an algebraic closure ofK . For any[z] ∈ H 1(K,G) the
twisted groupzG

0 is reductive and has a maximal torusQ. Viewing Q andT as maxi-
mal tori in G0(K), we see that they areK-conjugate; the claim now follows from [Se
Lemma III.2.2.1].



V. Chernousov et al. / Journal of Algebra 296 (2006) 561–581 565

n

t

l be

s

y

It remains to prove that the mapH 1(K,S) → H 1(K,N) is surjective. We will do
this fiberwise, with respect to the mapp∗ :H 1(K,N) → H 1(K,W). Let [a] = p∗([b]) ∈
H 1(K,W). A twisting argument [Se1, I.5.5], shows that the map

H 1(K, bT ) −→ p−1∗
([a])

is surjective; herebT denotes the torusT , twisted by the cocycleb. On the other
hand, consider the mapq∗ :H 1(K,S) → H 1(K,W) induced by the natural projectio
q :S → W = S/µ. Since H 2(K,µ) → H 2(K,T ) is injective and∂([a]) = 0, where
∂ :H 1(K,W) → H 2(K,T ) is the connecting morphism, we conclude that[a] ∈ Imq∗.
It now suffices to prove that the map

H 1(K, bµ) −→ H 1(K, bT )

is surjective. The cokernel of this map is given by the exact sequence

H 1(K, bµ) −→ H 1(K, bT )
×n−→ H 1(K, bT ).

The torus bT is split by the Galois extensionL/K given by [a] ∈ H 1(K,W) =
Homct(Gal(K/K),W)/ Int(W), the degree of this extension dividesn. The restriction–
corestriction formula×n = CorLk ◦ ResLk and the fact thatH 1(L,T ) = 0 (Hilbert’s The-
orem 90) imply that the map×n :H 1(K, bT ) → H 1(K, bT ) is trivial. We conclude tha
the mapH 1(K, bµ) → H 1(K, bT ) is surjective. Hence, the mapH 1(K,S) → H 1(K,N)

is surjective as well. �

3. Proof of Theorem 1.1(b) and (c)

In view of Remark 2.2 part (b) follows from part (c). The rest of this section wil
devoted to proving part (c). We will consider three cases.

Case 1. Let G be a quasi-split adjoint group. We denote byT a maximal quasi-split toru
in G, N = NG(T ) andW = NG(T )/T . For every rootα ∈ Σ = Σ(G,T ), whereΣ is the
root system ofG with respect toT , the corresponding subgroupGα � G is isomorphic
(over a separable closure ofk) to either SL2 or PSL2.

Let Tα = T ∩ Gα and letwα ∈ NGα(Tα) be a representative of the Weyl group ofGα

with respect to the maximal torusTα given by a matrix

(
0 1

−1 0

)
.

By Galois’ criteria for rationality, the groupL generated by allwα is k-defined. One easil
checks that the intersectionL ∩ T belongs to the 2-torsion subgroup ofT ; in particular,L
is finite.



566 V. Chernousov et al. / Journal of Algebra 296 (2006) 561–581

l

d
onical

e

,

e

f

Let µ = nT be then-torsion subgroup ofT wheren is the cardinality of the Wey
groupW . Consider the subgroupS of N generated byL andµ. Now, arguing as in the
proof of Proposition 2.3, and using the fact thatT and T/µ are permutation tori (an
hence both have trivial Galois cohomology in dimension 1), one checks that the can
mapH 1(K,S) → H 1(K,N) is surjective for every extensionK/k. In the course of the
proof of Proposition 2.3 we showed thatH 1(K,N) → H 1(K,G) is surjective. Then the
composite mapH 1(K,S) → H 1(K,N) → H 1(K,G) is surjective as well.

Case 2. Let G be an adjointk-group. Denote byG0 the quasi-split adjoint group of th
same inner type asG. One knows (see [T1]) thatG = a(G0) is the twisted form ofG0 for
an appropriate cocyclea ∈ Z1(k,G0). If S0 is the subgroup ofG0 constructed in Case 1
we may assume without loss of generality thata takes values inS0. Let S = aS0 and
consider the diagram

H 1(K,S0)
π0

H 1(K,G0)

H 1(K,S)

fS

π
H 1(K,G).

fG

HerefS andfG are natural bijections. Sinceπ0 is surjective, so isπ .

Case 3. Let G be a connected reductivek-group. It is an almost direct product of th
semisimplek-groupH = [G,G] and the centralk-torusC of G. Let Z be the center ofH .
Clearly, we haveC ∩ H � Z. Consider the groupG′ = G/Z and a natural morphism
f :G → G′. By our construction,G′ is the direct product of the torusC/C ∩ H and the
adjoint groupH ′ = H/Z.

Let S′ be the subgroup constructed in Case 2 forH ′ and letµ = n(C/C ∩ H) be then-
torsion subgroup of the torusC/C ∩H , wheren is the degree of the minimal extension ok
splittingC. Then for any extensionK/k a natural morphismH 1(K,µ×S′) → H 1(K,G′)
is surjective. We claim thatS = f −1(µ × S′) is as required, i.e.,H 1(K,S) → H 1(K,G)

is surjective.
Indeed, the exact sequences 1→ Z → G → G′ → 1 and 1→ Z → S → S′ → 1 give

rise to a commutative diagram

H 1(K,Z) H 1(K,G)
g1

H 1(K,G′)
g2

H 2(K,Z)

H 1(K,Z) H 1(K,S)
h1

π

H 1(K,µ × S′)
h2

π ′

H 2(K,Z)

id

Hereg2, h2 are connecting homomorphisms. Let[a] ∈ H 1(K,G) and[b] = g1([a]). Since
π ′ is surjective, there is a class[c] ∈ H 1(µ × S′) such thatπ ′([c]) = [b]. Sinceh2([c]) =
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g2π
′([c]) = 0, there is[d] ∈ H 1(K,S) such thath1([d]) = [c]. Thus two classes[a] and

π([d]) have the same image inH 1(K,G′). By a twisting argument, one gets a surject
mapH 1(K, dZ) → g−1(g1([a])). SinceZ ⊂ S and hencedZ ⊂ dS, we have[a] ∈ Imπ .
This completes the proof of Theorem 1.1.

3.1. Remark. Our argument shows that ifG is split andk contains certain roots of unit
then the subgroupS in parts (b) and (c) can be taken to be a constant group.

More precisely, in part (c),k needs to have a primitive root of unity of degreen =
|W(Gss)| · |Z(Gss)|, whereW(Gss) andZ(Gss) denote, respectively, the Weyl group a
the center of the semisimple partGss of G.

The same is true in part (b), except thatG needs to be replaced byGred= G/Ru(G) in
the above definition ofn.

4. Theorem 1.1 in the context of invariant theory

For the rest of this paperk will be an algebraically closed field of characteristic ze
K will be a finitely generated extension ofk andG will be a linear algebraic group de
fined overk. In this section we will introduce some terminology in this context, discus
invariant-theoretic interpretation of Theorem 1.1(a) and use it to give a simple proof
no-name lemma. The third author would like to thank V.L. Popov for helpful sugges
concerning this material.

4.1. (G,S)-sections

Recall that every element ofH 1(K,G) is uniquely represented by a primitive gen
ically free G-variety V , up to birational isomorphism. That is,k(V )G = K , the rational
quotient mapπ :V ��� V/G is a torsor over the generic point ofV/G, and this torsor is
α; see [Po, 1.3]. (Here “V is primitive” means thatG transitively permutes the irreducib
components ofV . In particular, ifG is connected thenV is irreducible.)

If S is a closed subgroup ofG andα ∈ H 1(K,S) is represented by a generically freeS-
varietyV0, then the image ofα in H 1(K,G) is represented by theG-varietyG∗S V0, which
is, by definition, the rational quotient ofG × V0 for the S-action given bys : (g, v0) 	→
(gs−1, s · v0). We shall denote the image of(g, v0) in this quotient by[g, v0]. Note that a
rational quotient is, a priori, only defined up to birational isomorphism; however, a re
model forG ∗S V0 can be chosen so that theG-action onG × V0 (by translations on th
first factor) descends to a regularG-action onG ∗S V0, making the rational quotient ma
G × V0 ��� G ∗S V0 G-equivariant (viag′ · [g, v0] 	→ [g′g, v0]); see [Re, 2.12]. IfS is a
finite group andV0 is a quasi-projectiveS-variety (which will be the case in the sequ
then we may takeG ∗S V0 to be the geometric quotient for theS-action onG × V0, as
in [PV, Section 4.8].

Now let V be aG-variety. AnS-invariant subvarietyV0 ⊂ V is called a(G,S)-section
if

(a) G · V0 is dense inV and
(b) V0 has a dense openS-invariant subvarietyU such thatg · u ∈ V0 for someu ∈ U

impliesg ∈ S.
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The above definition is due to Katsylo [Ka]; sometimes a(G,S)-section is also called
standard relative section(see [Po, 1.7.6]) ora relative sectionwith normalizerS (see [PV,
Section 2.8]). AG-varietyV is birationally isomorphic toG ∗S V0 for someS-varietyV0
if and only if V has a(G,S)-section; see [PV, Section 2.8]. In this context Theorem 1.
can be rephrased as follows:

Theorem 1.1′. Every generically freeG-variety has a(G,S)-section, whereS is a finite
subgroup ofG.

Recall that a subvarietyV0 of a generically freeG-varietyV is called aGalois quasisec
tion if the rational quotient mapπ :V ��� V/G restricts to a dominant mapV0 ��� V/G,
and the induced field extensionk(V0)/k(V )G is Galois. IfV0 is a Galois quasisection the
the finite groupΓ (V0) := Gal(k(V0)/k(V )G) is called the Galois group ofV0; see [Ga] or
[Po, (1.1.1)]. (NoteΓ (V0) is not required to be related toG in any way.) The following
theorem is due to Galitskii [Ga]; cf. also [Po, (1.6.2) and (1.17.6)].

4.2. Theorem. If G is connected then every generically freeG-variety has a Galois quasi
section.

A (G,S)-section is clearly a Galois quasisection with Galois groupS. Hence, Theo-
rem 1.1′ (or equivalently, Theorem 1.1(a)) may be viewed as an extension of Theorem
Note that the Galois groupΓ (V0) of the Galois quasisectionV0 constructed in the proof o
Theorem 4.2 is isomorphic to a subgroup of the Weyl groupW(G); cf. [Po, Remark 1.6.3]
On the other hand, the groupS in our proof of Theorem 1.1(a), is an extension ofW(G)

by a finite abelian group. Enlarging the finite groupS may thus be viewed as “the price
be paid” for a section with better properties.

4.3. The no-name lemma

A G-bundleπ :V → X is an algebraic vector bundle with aG-action onV andX such
thatπ is G-equivariant andg restricts to a linear mapπ−1(x) → π−1(gx) for everyx ∈ X.

4.4. Lemma (No-name lemma). Letπ :V → X be aG-bundle of rankr . Assume that th

G-action onX is generically free. Then there exists a birational isomorphismπ :V

���

X × Ar of G-varieties such that the following diagram commutes

V
φ

π

X × Ar

pr1
X

(4.5)

HereG is assumed to act trivially onAr , andpr1 denotes the projection to the first facto
In particular, k(V )G is rational overk(X)G.

The term “no-name lemma,” due to Dolgachev [Do], reflects the fact that this r
was independently discovered by many researchers. In the case whereG is a finite group,
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Lemma 4.4 (otherwise known as Speiser’s lemma, see [Sp]) may be viewed as a
ment of Hilbert’s Theorem 90. In this case there are many proofs in the literature
e.g., [EM, Proposition 1.1], [L, Proposition 1.3], [Sh, Appendix 3] or [CS, Section 4].
algebraic groupsG Lemma 4.4 was noticed more recently (the earliest reference we
is [BK]). This fact is now widely known and much used; however, as Colliot-Thélène
Sansuc observed in [CS, Section 4], a detailed proof has never been published. W
now use Theorem 1.1(a) (or equivalently, Theorem 1.1′ above) to give a simple argume
reducing the general case of the no-name lemma to the case of a finite group.

Proof of the no-name lemma. By Theorem 1.1′ X has a(G,S)-sectionX0 for some
finite subgroupS of G. ThenV0 = π−1(X0) is a (G,S)-section forV ; cf. [Po, (1.7.7),
Corollary 2]. In other words,X 
 X0 ∗S G andV 
 V0 ∗S G, where
 denotes birationa
isomorphism ofG-varieties.

Note thatV0 is anS-vector bundle overX0. Since we know that the no-name lemm

holds forS, there is anS-equivariant birational isomorphismφ0 :V0

��� X0 ×Ar such that

the diagram ofS-varieties

V0
φ0

π

X0 × Ar

pr1

X0

(4.6)

commutes. Taking the homogeneous fiber product of this diagram withG, we obtain

V 
 V0 ∗S G
φ

π

(
X0 × Ar

) ∗S G 
 X × Ar

pr1

X 
 X0 ∗S G,

whereφ = φ0 ∗S G. �
4.7. Remark. The above argument can be naturally rephrased in cohomological t
Let K = k(X)G = k(X0)

S . Then Lemma 4.4 is equivalent to the following assertio
(i) k(V )G = K(t1, . . . , tr ) and (ii) αV is the image ofαX under the restriction ma
H 1(K,G) → H 1(K(t1, . . . , tr ),G).

Diagram (4.6) tells us that (i)′ k(V0)
S = K(t1, . . . , tr ) and (ii)′ αV0 is the image ofαX0

under the natural mapH 1(K,S) → H 1(K(t1, . . . , tr ), S). (i) follows immediately from
(i) ′, and (ii) follows from (ii)′ by considering the natural diagram

αX0 ∈ H 1(K,S)

res

H 1
(
K(t1, . . . , tr ), S

) � αV0

res

αX ∈ H 1(K,G) H 1
(
K(t1, . . . , tr ),G

) � αV .
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5. Preliminaries on G-covers

LetG be a finite group. We shall call a finite morphismπ :X′ → X of algebraic varieties
aG-cover, if X is irreducible,G acts onX′, so thatπ maps everyG-orbit in X′ to a single
point in X, andπ is aG-torsor over a dense open subsetU of X. We will express the las
condition by saying thatπ is unramifiedoverU . Restrictingπ to the generic point ofX,
we obtain a torsorα ∈ H 1(k(X),G) over Speck(X). In this situation we shall say thatπ

representsα. If a coverπ :X′ → X is unramified over all ofX, then we will simply say
thatπ is unramified.

Recall thatα ∈ H 1(K,G) is calledunramifiedif it lies in the image ofH 1(R,G) →
H 1(K,G) for every discrete valuation ringk ⊂ R ⊂ K andprojective, if it is represented
by an unramifiedG-coverπ :X′ → X over a complete (or equivalently, projective) va
etyX.

5.1. Lemma. Let G be a finite group,K be a finitely generated extension of an alg
braically closed base fieldk of characteristic zero, andα ∈ H 1(K,G). Then the following
assertions are equivalent:

(a) α is represented by a projectiveG-varietyV (in the sense of Section4), such that every
element1 �= g ∈ G acts onV without fixed points,

(b) α is projective, and
(c) α is unramified.

Note that condition (b) can be rephrased by saying thatα has trivial fixed point obstruc
tion; see Section 8.

Proof. (a) ⇒ (b). TheG-action onV has a geometric quotientπ :V → X, whereX is
a projective variety; cf., e.g., [PV, Section 4.6]. We claim thatπ is a torsor overX. In-
deed, we can coverV by G-invariant affine open subsetsVi . The quotient varietyX is
then covered by affine open subsetsXi = π(Vi), moreover,πi = π|Vi

:Vi → Xi is the geo-
metric quotient for theG-action onVi ; see [PV, Theorem 4.16]. It is thus enough to sh
thatπi :Vi → Xi is a torsor for eachi. This is an immediate corollary of the Luna Sli
Theorem; see, e.g., [PV, Theorem 6.1].

(b) ⇒ (c). Supposeα is represented by aG-torsorV → X, whereX is a projective
variety with k(X) = K . We want to prove that for any discrete valuation ringR ⊂ K the
classα belongs to the imageH 1(R,G) → H 1(K,G).

Indeed, the ringR dominates a point inX; denote this point byD. Consider the canon
ical map SpecR → X sending the closed point in SpecR to D and the generic point o
SpecR into the generic point ofX. Take the fiber product(SpecR) ×X V . It follows im-
mediately from this construction that theG-torsor

(SpecR) ×X V → SpecR

is as required, i.e., its image under the mapH 1(R,G) → H 1(K,G) is α.
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(c) ⇒ (a). LetV be a smooth projectiveG-variety representingα and letπ :V → X be
the geometric quotient. Note thatX is normal. We want to show that every 1�= g ∈ G acts
on V without fixed points. Assume the contrary:gv = v for somev ∈ V . By [RY2, Theo-
rem 9.3] (withs = 1 andH1 = 〈g〉), after performing a sequence of blowups with smo
G-invariant centers onV , we may assume that the fixed point locusV g of g contains a
divisor D ⊂ V . If R = OX,π(D) is the local ring of the divisorπ(D) in X thenα does not
lie in the image of the natural morphismH 1(R,G) → H 1(K,G), a contradiction. �
5.2. Remark. Our proof of the implication (b)⇒ (c) does not use the fact thatG is a finite
group. This implication is valid for every linear algebraic groupG.

6. Proof of Theorem 1.3

Let S be the finite subgroup ofG given by Theorem 1.1(a). Thenα ∈ H 1(K,G) is the
image of someβ ∈ H 1(K,S). Examining the diagram

H 1(X,S) H 1(L,S) � βL

H 1(X,G) H 1(L,G) � αL,

whereX is a complete variety andL = k(X), we see that if Theorem 1.3 holds forS then
it holds forG.

From now on we may assume thatG is a finite group. In this case Theorem 1.3 can
restated as follows.

6.1. Proposition. LetG be a finite group,k be an algebraically closed base field of chara
teristic zero,K/k be a finitely generated extension, andα ∈ H 1(K,G). Then there exist
an abelian field extensionL/K such thatαL is represented by an unramifiedG-cover
π :Z′ → Z, whereZ andZ′ are projective varieties.

The rest of this section will be devoted to proving Proposition 6.1. We begin wit
following lemma.

6.2. Lemma. Let G be a finite group. Then everyα ∈ H 1(K,G) is represented by aG-
coverπ :X′ → X such that

(a) X′ is normal and projective,
(b) X is smooth and projective,
(c) there exists a normal crossing divisorD onX such thatπ is unramified overX − D.

Proof. Supposeα is represented by aG-Galois algebraK ′/K . We may assume with
out loss of generality thatK ′ is a field. Indeed, otherwiseα is the image of som
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α0 ∈ H 1(K,G0), whereG0 is a proper subgroup ofG, and we can replaceG by G0
andα by α0.

Choose a smooth projective modelY/k for K/k and letφ :Y ′ → Y be the normal-
ization of Y in K ′. Then Y ′ is projective (see [Mu, Theorem III.8.4, p. 280]), and
uniqueness of normalization (see [Mu, Theorem III.8.3, pp. 277–278]),G acts onY ′ by
regular morphisms, so thatk(Y ′) is isomorphic toK ′ as aG-field (see [Mu, pp. 277–278])
We have thus shown thatα can be represented by a coverφ :Y ′ → Y satisfying conditions
(a) and (b). We will now birationally modify this cover to obtain another coverπ :X′ → X

which satisfies condition (c) as well.
The coverφ is unramified over a dense open subset ofY ; denote this subset byU .

SetE = Y − U , and resolveE to a normal crossing divisorD via a birational morphism
γ :X → Y . Now consider the diagram

X′

π

Y ′

φ

X
γ

Y,

whereX′ is the normalization ofX in K ′. By our constructionX is smooth andX′ is
normal. Moreover, sinceγ is an isomorphism overU , π is unramified overX − D =
φ−1(U), as desired. �

We are now ready to complete the proof of Proposition 6.1. Our argument will be
on [GM, Theorem 2.3.2], otherwise known as “Abhyankar’s lemma,” which describe
local structure of a covering, satisfying conditions (a)–(c) of Lemma 6.2, in the étale t
ogy. We thank K. Karu for bringing this result to our attention.

Let π :X′ → X be aG-cover of projective varieties representingα and satisfying con
ditions (a)–(c) of Lemma 6.2. Denote the irreducible components ofD by D1, . . . ,Ds .

SinceX is smooth, eachx ∈ X has an affine open neighborhoodUx where eachDj is
principal, i.e., is given by{ax,j = 0} for someax,j ∈ OX(Ux) (possiblyax,j = 1 for some
x and j ). By quasi-compactness, finitely many of these open subsets, say,Ux1, . . . ,Uxn

coverX. To simplify our notation, we setUi = Uxi
andaij = axi ,j .

Now letbij be an|G|th root ofaij in the algebraic closure ofK = k(X) andL = K(bij ),
wherei ranges from 1 ton andj ranges from 1 tos. Supposeγ :Z → X is the normal-
ization ofX in L andZ′ = X′ ×X Z. Since we are assuming thatk is algebraically closed
of characteristic zero (and in particular,k contains a primitive|G|th root of unity),L/K

is an abelian extension. It is also easy to see from our construction thatZ andZ′ are pro-
jective,Z is normal, and the natural projectionπ ′ :Z′ → Z is aG-cover, which represent
αL ∈ H 1(L,G). To sum up, we have constructed the following diagram of morphism

Z′

ψ

X′

π

Z
γ

X.
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It remains to show that theG-coverψ is unramified. Suppose we want to show thatψ is
unramified atz0 ∈ Z. Since the open setsU1, . . . ,Un coverX, x0 = γ (z0) lies in Ui for
somei = 1, . . . , n. By Abhyankar’s lemma [GM, Theorem 2.3.2], there exists an abe
subgroupH 
 Z/n1 × · · · × Z/nsZ of G (possibly withnj = 1 for somej ) and a (Kum-
mer)H -Galois cover

Vi = {
(x, t1, . . . , ts) | tn1

1 = ai,1, . . . , t
ns
s = ai,s

} ⊂ Ui × As ,

such that theG-coversπ :X′ → X andφ :G ∗H Vi → Ui are isomorphic over an éta
neighborhood ofx0 in X. (Here the natural projectionVi → Ui is anH -cover,G ∗H Vi →
Ui is theG-cover induced from it; for a definition ofG ∗H Vi , see Section 4.)

Now recall that by our construction the elementsbij ∈ L = k(Z) satisfyb
|G|
ij = aij ∈

OX(Ui). In particular, they are integral overUi and thus they are regular function
γ −1(Ui). Sincenj divides|G| for everyj = 1, . . . , s, the pull-back ofφ to Z splits over
an étale neighborhood ofz0; hence, so doesψ = pull-back ofπ . In other words,ψ is
unramified atz0, as claimed. This completes the proof of Proposition 6.1.�

7. An example

It is well known that there exist non-trivial projective elements inH 1(K,PGLn) for
everyn � 2 (for suitableK). In this section we use a variant of a construction of Coll
Thélène and Gabber [CG] to show that, for certainK , such elements exist inH 1(K,G2)

as well.

7.1. Proposition. Letk be an algebraically closed base field of characteristic zero such
trdegQ(k) � 3. (Note that the last condition is satisfied by every uncountable field.) Then
there exist a smooth projective3-fold X/k with function fieldK = k(X) and a projective
non-trivial classα ∈ H 1(K,G2).

Note that no such examples can exist ifX is a curve or a surface, since in this ca
H 1(k(X),G2) = {1}; see [BP].

Proof. Let E1, E2, E3 be elliptic curves. Fori = 1,2,3 choosepi, qi ∈ Ei so thatpi � qi

is a point of order 2. (Here� denotes subtraction with respect to the group opera
on Ei .) Then 2pi − 2qi is a principal divisor onEi and pi − qi is not; see, e.g., [S
Corollary 3.5]. Thus 2pi − 2qi = div(fi), wherefi �= 0 is a rational function onEi , which
is not a complete square. Adjoining

√
fi to k(Ei), we obtain an irreducible unramifie

Z/2Z-coverπi :E′
i → Ei . (Note that by the Hurwitz formula,E′

i is also an elliptic curve.
Now setX = E1 × E2 × E3 andK = k(X), S = (Z/2Z)3, and consider the eleme

β ∈ H 1(k(X),S), represented by theS-cover

π = (π1,π2,π3) :E′
1 × E′

2 × E′
3 −→ E1 × E2 × E3 = X.

Sinceπ is an unramified cover,β is projective.
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We now recall that the exceptional groupG2/k contains a unique (up to conjugac
maximal elementary abelian 2-groupi :S = (Z/2Z)3 ↪→ G2. Setα = i∗(β) ∈ H 1(K,G2).
Sinceβ is projective, so isα. It thus remains to show thatα �= 1 in H 1(K,G2) (for a
suitable choice ofEi andE′

i ).
The cohomology setH 1(K,G2) classifies octonion algebras or equivalently, 3-f

Pfister forms; cf. [Se2, Theorem 9]. By [GMS, Section 22.10], the map

H 1(K,S) = (
K×/

(
K×)2)3 i∗−→ H 1(K,G2)

is non-trivial; hence, it sends(a1, a2, a3) ∈ (K×/(K×)2)3 to the class of the 3-Pfister form
〈〈a1, a2, a3〉〉; see [GMS, Theorem 27.15]. By our construction,β ∈ H 1(K,S) corresponds
to (f1, f2, f3) ∈ (K×/(K×)2)3. Thusα = i∗(β) is non-split inH 1(K,G2) if and only if
the 3-fold Pfister form〈〈f1, f2, f3〉〉 is nonsplit or, equivalently, if(f1) ∪ (f2) ∪ (f3) �= 0
in H 3(k(X),Z/2Z); see [EL, Corollary 3.3].

Since we are assuming that trdegQ(k) � 3, we can choose elliptic curvesE1, E2 andE3
so that theirj -invariants are algebraically independent overQ. We now appeal to a theore
of Gabber ([CG, p. 144]), which says that(f1) ∪ (f2) ∪ (f3) �= 0 in H 3(k(X),Z/2Z).
Hence,α �= 1 in H 1(K,G), as claimed. This completes the proof of Proposition 7.1.�

8. The fixed point obstruction

We now recall the notion offixed point obstructionfrom [RY3, Introduction]. Suppos
α ∈ H 1(K,G) is represented by a generically free primitiveG-varietyV (as in Section 4)
We shall say that a subgroup ofG is toral if it lies in a subtorus ofG and non-toral
otherwise. IfV (or anyG-variety birationally isomorphic to it) has a smooth point fixed
a non-toral diagonalizable subgroupH ⊂ G, then we shall say thatV (or equivalently,α)
hasnon-trivial fixed point obstruction; cf. [RY3, Introduction]. Note that after birationall
modifying V , we may assume thatV is smooth and complete (or even projective, s
e.g., [RY2, Proposition 2.2]), and that the fixed point obstruction can be detected o
such model. In other words, ifV andV ′ are smooth complete birationally isomorphicG-
varieties thenV H = ∅ if and only if (V ′)H = ∅ for any diagonalizable subgroupH ⊂ G;
see [RY1, Proposition A2]. IfV H = ∅ for every diagonalizable non-toral subgroupH ⊂ G

(andV is smooth and complete), then we will say thatV , or equivalentlyα, hastrivial
fixed point obstruction.

If α is split (i.e.,α = 1 in H 1(K,G)) then by [RY2, Lemma 4.3]α has trivial fixed
point obstruction. We will now extend this result as follows.

8.1. Proposition. If α ∈ H 1(K,G) is projective thenα has trivial fixed point obstruction.

Proof. Let G be a smooth projectiveG × G-variety, which containsG as a dense ope
orbit. (Here we are viewingG as aG × G-variety with respect to left and right mu
tiplication.) To constructG, we use a theorem of Kambayashi, which says thatG can be
G×G-equivariantly embedded intoP(V ) for some linear representationG×G → GL(V );
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see [PV, Theorem 1.7]. Taking the closure ofG in P(V ), andG × G-equivariantly resolv-
ing its singularities, we obtainG with desired properties.

For g ∈ G, we will write g1 · g · g−1
2 instead of(g1, g2) · g; the reason for this notatio

is that forg ∈ G, (g1, g2) · g = g1gg−1
2 ∈ G.

Sinceα is projective, it can be represented by aG-torsorπ :Z → X over a smooth pro
jective irreducible varietyX. (HereK = k(X).) We will now construct a smooth comple
G-varietyZ representingα (i.e., birationally isomorphic toZ) by “enlarging” each fibe
of π from G to G.

Let Ui → X, i ∈ I be an étale covering which trivializesπ . Thenπ is described by
the transition mapsfij :Uij × G → Uij × G on the pairwise “overlaps”Uij ; here eachfij

is an automorphism of the trivialG-torsorUij × G on Uij . (G acts trivially onUij and
by left translations on itself.) These transition maps satisfy a cocycle condition (for
cohomology) which expresses the fact that they are compatible on triple “overlaps”Uhij .
It is easy to see thatfij is given by the formula

fij (u, g) = (
u,g · hij (u)

)
, (8.2)

for some morphismhij :Uij → G. (In fact, hij (u) = pr2 ◦fij (u,1G), where pr2 :Uij ×
G → G is the projection to the second factor.) Formula (8.2) can now be used to e
fij to aG-equivariant automorphism

fij :Uij × G −→ Uij × G,

whereG acts onG on the left. Sincefij satisfies the cocycle condition andG is dense inG,
we conclude thatfij satisfy the cocycle condition as well. By descent theory, the trans
mapsfij patch together to yield a varietyZ and a commutative diagram of morphisms

Z

π

Z

π̄

X

which locally (in the étale topology) looks like

Ui × G

π

Ui × G

π̄

Ui

(The mapsπ andπ in the second diagram are projections to the first component.) It is
easy to see thatZ is smooth and proper overX andZ ↪→ Z is aG-equivariant open embed
ding. Indeed, these properties can be checked locally (in the étale topology) onX, where
they are immediate from the second diagram. Note also that sinceZ is proper overX,
andX is projective overk, Z is complete as ak-variety.
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Having constructed a smooth complete modelZ for α, we are now ready to show th
α has trivial fixed point obstruction. Suppose a diagonalizable subgroupH of G has a
fixed point inz ∈ Z. We want to show thatH is toral inG. Indeed, letF be the fiber ofπ
containingz. By our constructionF 
 G asG-varieties (hereG is viewed as aG-variety
with respect to the leftG-action). We conclude thatH has a fixed point inG. SinceG has
G as aG-invariant dense open subset, it is split as aG-variety (i.e., it represents the trivia
class inH 1(k,G)), [RY2, Lemma 4.3] now tells us thatH is toral. This shows thatα has
trivial fixed point obstruction, thus completing the proof of Proposition 8.1.�
8.3. Remark. The fact thatG acts onG both on the right and on the left was crucial in t
construction ofZ in the above proof. The action on the right was used to glue the trans
mapsfi,j together, and the action on the left to define aG-action onZ. If G could only act
on G on one side, we would still be able to constructZ as a variety; however, we wou
no longer be able to define aG-action on it, extending theG-action onZ.

8.4. Corollary. There exist non-split elementsαn ∈ H 1(Kn,PGLn) (n = 2,3, . . .) andβ ∈
H 1(K,G2) with trivial fixed point obstruction, for some finitely generated field extens
Kn/k andK/k.

Proof. Chooseαn andβ so that they are non-split and projective; cf. Section 7.�
8.5. Remark. By [RY3, Theorem 4] for every prime numberp there exists a non-spl
α ∈ H 1(K,PGLp) such thatK is a purely transcendental extension ofk andα has trivial
fixed point obstruction. Suchα are necessarily ramified and hence, cannot be projec
Thus the converse to Proposition 8.1 is false.

9. Problem 1.2 and Hilbert’s 13th problem

9.1. An algebraic variant of Hilbert’s 13th problem

Hilbert’s 13th problem asks, loosely speaking, which continuous functions inn vari-
ables can be expressed as compositions of functions inn − 1 variables. In this form the
problem was settled by Arnold [Ar] and Kolmogorov [Ko], who showed that any cont
ous function inn variables can be expressed as a composition of continuous functio
one variable and the addition functionf (x, y) = x + y. The algebraic variant of Hilbert’
13th problem, where “continuous functions” are replaced by “algebraic functions,” rem
open. In modern language the problem can be stated as follows; cf. [AS,Di].

Let E/F be a finite separable field extension (or, more generally, an étale algebr
assume thatF contains a copy of the base fieldk. Then theessential dimensionedk(E/F)

(or simply ed(E/F), if the reference tok is clear from the context) is the minimal valu
of trdegk(F0), where the minimum is taken over all elementsa ∈ E and over all subfields
k ⊂ F0 ⊂ F such thatE = F(a) andF0 contains every coefficient of the characteris
polynomial ofa; cf. [BR1,BR2]. For example, ifE/F is a non-trivial cyclic extension o
degreen andk contains a primitiventh root of unity then edk(E/F) = 1, since in this cas
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we can choosea so thatan ∈ F . Note also that ed(E#/F ) = ed(E/F), whereE# is the
normal closure ofE overF ; cf. [BR1, Lemma 2.3].

We will now say thatE/F has level� d if there exists a tower of finite field extensio

F = F0 ⊂ F1 ⊂ · · · ⊂ Fr (9.2)

such thatF ⊂ E ⊂ Fr and edk(Fi/Fi−1) � d for every i = 1, . . . , r . For example, ifk
contains all roots of unity then every solvable extensionE/F has level� 1 (because we ca
take (9.2) to be a tower of cyclic extensions). The algebraic form of Hilbert’s 13th pro
then asks for the smallest integers(n) such that the level of every degreen extensionE/F

is � s(n). (Here we are assuming that the base fieldk is fixed throughout.) Not much i
known abouts(n) (see [Di]); in particular, it is not known ifs(n) > 1 for anyn. It is thus
natural to ask, if, perhaps,s(n) = 1 for all n; this equality may be viewed as an algebr
analogue of the above-mentioned theorem of Arnold and Kolmogorov; cf. [Di, p. 90
fact, in the absence of evidence to the contrary, one can even ask for a particular
tower (9.2), showing thats(n) = 1, namely for a tower (9.2), whereFr−1/F is solvable (or
even abelian) andFr/Fr−1 has essential dimension 1. Equivalently, we have the follow

9.3. Problem. Let k be an algebraically closed field of characteristic zero,S be a finite
group andK/k be a field extension. Is it true that for everyα ∈ H 1(K,S) there exists
(i) an abelian extensionL/K such that ed(αL) � 1? or (ii) a solvable extensionL/K such
that ed(αL) � 1?

HereαL is represented by anS-Galois algebraL′/L and ed(αL) denotes the essenti
dimension ofL′/L. Equivalently, ed(αL) is the minimal value of trdegk(L0) such that
αL lies in the image of the natural mapH 1(L0, S) → H 1(L,S) for some intermediat
field k ⊂ L0 ⊂ L. (Note, that, since the base field is assumed to be algebraically c
ed(αL) = 0 if and only ifαL is split.)

We do not know whether or not the assertions of Problem 9.3 are true (cf. Remar
However, using Theorem 1.1 we will show that, if true, they have some remarkable c
quences.

9.4. Theorem. Letk be an algebraically closed field of characteristic zero. and letK/k be
a field extension. Denote the maximal abelian and the maximal solvable extensionK

byKab andKsol, respectively.

(i) If Problem9.3(i) has an affirmative answer thencd(Kab) � 1.
(ii) If Problem9.3(ii) has an affirmative answer thencd(Ksol) � 1.

9.5. Remark. The inequality cd(Kab) � 1 is only known in a few cases; in particular, f
K = a number field, orK = a p-adic field by class field theory and forK = C((X))((Y ))

by a theorem of Colliot-Thélène, Parimala and Ojanguren [COP, Theorem 2.2]. If it
established, it would immediately imply an affirmative answer to Problem 1.2. An
important consequence would be a conjecture of Bogomolov [Bog, Conjecture 2],
asserts that cd(K(p)

) � 1, whereK(p) is a maximal prime-to-p extension ofK . On the
ab
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other hand, an affirmative answer to Problem 9.3(ii) would imply that cdp(K(p)) � 1,
wherep is a prime number andK(p) is thep-closure (i.e., the maximalp-solvable ex-
tension) ofK , thus giving an affirmative answer to a question of J. Königsmann; cf. [
Question 5.3].

9.6. Remark. The third author would like to take this opportunity to correct a misst
ment he made in [BR1, Introduction]. The identityd ′(6) = 2, which is attributed to
Abhyankar [A] at the bottom of p. 161 in [BR1], would, if true, give a negative ans
to Problem 9.3(ii) for the symmetric groupG = S6. In fact, the version of Hilbert’s 13th
problem considered in [A] is quite different from ours; the base extensions that are al
there are integral ring extensions, rather than field extensions. For this reason the
d ′(6) = 2 does not follow from the results of [A] and, to the best of our knowledge, P
lem 9.3 is still open, even in the case whereS is the symmetric groupS6.

9.7. Proof of Theorem 9.4

We begin with some preliminary facts. Recall that a fieldF has cohomological dimen
sion � 1 if and only if the Brauer group Br(F ′) is trivial for any separable finite fiel
extensionF ′/F ; see [Se1, Proposition II.3.5]. It will be convenient for us to work w
étaleK-algebras, rather than just separable field extensions ofK . Recall that aK-étale
algebra is a finite productE = K1 × K2 × · · · × Kn of finite separable extensionsKi/K .
The Brauer group ofE is Br(E) = ⊕

i Br(Ki); an element of this group is represented
an n-tupleA = (Ai/K,i)i=1,...,n of central simple algebras. Note thatA is an Azumaya
algebra overE. Given a fieldF , we have

cd(F ) � 1 ⇐⇒ Br(E) = 0 for any étale algebraE/F ; (9.8)

see [Se1, Proof of Theorem III.2.2.1] or [FJ, Lemma 10.11].

9.9. Lemma. The following are equivalent:

(a) cd(Kab) � 1,
(b) For any étale algebraE/K , the restriction mapBr(E) → Br(E ⊗K Kab) is trivial.

Moreover, the lemma remains true ifKab is replaced byKsol.

Proof. (a)⇒ (b). This case immediate from (9.8).
(b) ⇒ (a). Let B/Kab be an étale algebra. There exists a finite abelian subexte

K ′/K of Kab/K and an étale algebraB ′/K ′ such thatB ′ ⊗K ′ Kab= B. We have

B = lim−→
′

B ′ ⊗K ′ L,
K ⊂L⊂Kab
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where the limit is taken on subfieldsL of Kab finite overK ′. Consequently,

Br(B) = lim−→
K ′⊂L⊂Kab

Br(B ′ ⊗K ′ L),

and (b) implies that Br(B) = 0. (a) now follows from (9.8).
The proof remains unchanged ifKab is replaced byKsol. �
We are now ready to proceed with the proof of Theorem 9.4(i). We start with the g

G = (PGLn)
m >� Sm. By Theorem 1.1(a), there exists a finite subgroupS of G such that

the natural homomorphismH 1(K,S) → H 1(K,G) is surjective. The groupSm is the au-
tomorphism group of the trivial étale algebra, so by Galois descent the setH 1(K,Sm)

classifiesm-dimensional étale algebras. By [Se1, Corollary I.5.4.2], the fiber of the
H 1(K,G) → H 1(K,Sm) at [E] ∈ H 1(k,Sm) is

H 1(K,E
(
PGLm

n

))
/E(Sm),

with E(PGLm
n ) andE(Sm) are the twisted groups by the étale algebraE/K . SinceG →

Sm has a section, the mapEG(K) → E(Sm)(K) is surjective. ThenE(Sm) acts trivially
on H 1(K,E(PGLm

n )) and hence the fiber at[E] is H 1(K, E(PGLm
n )). By definition of

the Weil restriction, we haveE(PGLm
n ) = RE/k(PGLn). We identifyH 1(K, E(PGLm

n )) =
H 1(E,PGLn) by the Shapiro isomorphism. Thus

H 1(K,G) =
⊔

[E]∈H1(K,Sm)

H 1(E,PGLn).

An element ofH 1(K,G) is then given by an Azumaya algebraA/E of degreen defined
over aK-étale algebraE of rankm. By Theorem 1.1(a), every class[A/E] comes from a
classα ∈ H 1(K,S).

We now apply the assertion of Problem 9.3(i) to the groupS and the classα. There exists
an abelian extensionL/K , ak-curveC and a mapk(C) ⊂ L such that the restriction of th
classα in H 1(L,S) belongs to the image ofH 1(k(C),S) → H 1(L,S). The commutative
diagram of restriction maps

H 1(K,S) H 1(L,S) H 1(k(C),S)

H 1(K,G) H 1(L,G) H 1(k(C),G)

shows that there exists an étale algebraE′/k(C) and an Azumaya algebraA′/E′ such that

E ⊗K L
∼−→ E′ ⊗k(C) L and A′ ⊗E′

(
E′ ⊗k(C) L

) ∼−→ (
A⊗E (E ⊗K L)

)
.
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Since cd(k(C)) � 1 (see [Se1, Section II.3]),A′/E′ is the split Azumaya algebra of rankn.
We conclude thatA⊗E (E ⊗K L)/(E ⊗K L) is the split Azumaya algebra of rankn. This
shows that the map Br(E) → Br(E ⊗Kab) is trivial for any étale algebraE/K . Lemma 9.9
now tells us that cd(Kab) � 1. This concludes the proof of Theorem 9.4(i).

The proof of part (ii) is exactly the same, except that the field extensionL/K , con-
structed at the beginning of previous paragraph, is now solvable, rather than abelian�
9.10. Remark. A similar argument shows that the conjecture of Bogomolov [Bog, C
jecture 2] mentioned in Remark 9.5 is a consequence of the following weaker fo
Problem 9.3(i) (which is also open).

Problem 9.3′. Let k be an algebraically closed field of characteristic zero,S be a finite
group,K/k be a field extension andp be a prime integer. Is it true that for everyα ∈
H 1(K,S) there exists a finite extension[K ′ : K] of degree prime top and an abelian
extensionL/K ′ such that ed(αL) � 1?
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