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Abstract

Let G be alinear algebraic group defined over a fieltlVe prove that, under mild assumptions on
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ular, we prove that for every € H1(K, G) there exists an abelian field extensibpk such that
ar € HY(L, G) is represented by &-torsor over a projective variety. From this we deduce that
ay has trivial fixed point obstruction. We also show that a (strong) variant of the algebraic form of
Hilbert’s 13th problem implies that the maximal abelian extensiok dfas cohomological dimen-
sion< 1. The last assertion, if true, would prove conjectures of Bogomolov and Kénigsmann, answer
a question of Tits and establish an important case of Serre’s Conjecture Il for theEgoup
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1. Introduction

The starting point for this paper is the following theorem, which will be proved in Sec-
tions 2 and 3.

1.1. Theorem. Let G be a linear algebraic group defined over a fidldAssume that one
of the following conditions holds

(a) chatk) =0 andk is algebraically closed, or
(b) chaxk) =0andG is connected,
(c) G is connected and reductive.

Then there exists a finite-subgroupsS of G, such that the natural map/(K, S) —
HY(K, G) is surjective for every field extensidfy k.

Here, as usuaH (K, G) is the Galois cohomology séf(Gal(K /K), G); cf. [Sel].
Recall that this set does not, in general, have a group structure, but has a marked ele-
ment, corresponding to the trivial (or split) class, which is usually denoted by 1. Given
a field extension./K we will, as usual, denote the image @funder the natural map
HYK,G)— HYL,G)byay.

In the course of the proof of Theorem 1.1 we will construct the finite gHegplicitly
(see the beginning of Section 2); it is an extension of the Weyl giupf G by a finite
abelian group. Moreover, if; is split andk contains certain roots of unity thefican be
chosen to be a constant subgroupiofsee Remark 3.1. We also note that Theorem 1.1(a)
can be deduced from the results of Bogomolov (see [CS, Lemma 7.3]); we are grateful to
J.-L. Colliot-Théléne for pointing this out to us. We will include a self-contained proof of
Theorem 1.1(a) in Section 2.

In Section 4 we will discuss Theorem 1.1(a) in the context of invariant theory. In par-
ticular, we relate it to a result of Galitskii [Ga] and use it to give a simple proof of the
no-name lemma, thus filling a small gap in the existing literature; cf. [CS, Section 4].

Our other applications of Theorem 1.1 are motivated by the following question, implicit
in the work of Tits [T2].

1.2. Problem. Let G be a connected algebraic group defined over an algebraically closed
field of characteristic zerdk / k be a field extension and € H1(K, G). Is it true thatu

can always be split by (i) a finite abelian field extensionk or (ii) by a finite solvable

field extension./K?

Tits [T2, Théoréme 2] showed that Problem 1.2(ii) has an affirmative answer for every
almost simple group of any type, other thBg (He also showed that for every su6hthe
solvable field extensioh /K can be chosen so that each prime factdiof K] is a torsion
prime of G.) Note that if Problem 1.2(ii) has an affirmative answer for figtdef cohnomo-
logical dimension< 2, then we would be able to conclude, using an argument originally
due to Chernousov, th&l (K, Eg) = {1}, thus proving an important (and currently open)
case of Serre’s Conjecture Il; for details, see [PR, Chapter 6] or [Gi, Théoréme 11].
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We will say thate € HY(K, G) is projectiveif it is represented by a torsor over an
irreducible complete variety(/ k. In other wordsk(X) = K, and« lies in the image of the
natural mapH1(X, G) — H(K, G), restricting a torsor oveX to the generic point oX.
(Note that after birationally modifying, we may assume it is smooth and projective.)
The split element oHH1(K, G) is clearly projective, and it is natural to think of projective
elements ofH1(K, G) as “close” to being split. The following result may thus be viewed
as a “first approximation” to the assertion of Problem 1.2.

1.3. Theorem. Let k be an algebraically closed field of characteristic ze@/k be a
linear algebraic group,K /k be a finitely generated field extension, an¢ H1(K, G).
Then there exists a finite abelian extensiofkK , such thaty;, is projective.

Note that the groupg in Theorem 1.3 is not assumed to be connected; in particular, the
case wherd; is finite (Proposition 6.1) is key to our proof. On the other hand, in the case
whereG is connected, Theorem 1.3 does not imply an affirmative answer to Problem 1.2.
Indeed, while it is natural to think af; as “close to split,” it may be not be literally split,
even in the case whekg is connected and simply connected. To illustrate this point, we
will use a theorem of Gabber [CG] to construct a smooth projective 3Xglkdand a non-
trivial classe € H1(k(X), G») such thatx is projective; see Proposition 7.1. (Hete
denotes the (split) exceptional group of ty@e defined ovek.)

It is also natural to think oft € H1(K, G) as being “close to split” if: hasfixed point
obstruction for a precise definition, see Section 8. We will show that ifs projective
then it has trivial fixed point obstruction; see Proposition 8.1. Combining this result with
Proposition 7.1 yields another “approximation” to the assertion of Problem 1.2.

1.4.Corollary. Letk be an algebraically closed field of characteristic z&@y,k be a linear
algebraic group,K /k be a finitely generated field extension, an& H1(K, G). Then
there exists a finite abelian extensibpK, such that; has trivial fixed point obstruction.

In Section 9 we will use Theorem 1.1(a) to relate Problem 1.2 to a (strong) variant of
Hilbert’s 13th problem (Problem 9.3). We will show that if Problem 9.3 had an affirmative
answer then so would Problem 1.2 (and, in fact, a much stronger assertion would then hold;
see Theorem 9.4 and Remark 9.5).

2. Proof of Theorem 1.1(a)

We begin with the following observation. Letbe a field of characteristic zerG,/ k be
a linear algebraic group, am|,(G) be the unipotent radical @ . Recall thaiG has a Levi
decompositionG = Ry(G) >< Greg, WhereGyeg is a reductive subgroup @, uniquely
determined up to conjugacy. As usual, we shall refer g as aLevi subgroupf G.

2.1. Lemma. Leti: Greg— G be a Levi subgroup af. Then for any field extensiaki/ k,
the natural map

it HY(K, Gred) — HYK, G)

is a bijection.
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Proof. Let 7:G — G/Ry(G) be the natural projection. By the Levi decomposition,
Gredi> G> G/Ry(G) is an isomorphism betweah,eg andG/Ry(G). Thus

HYK, Gred) > HY(K, G) = HY (K, G/Ru(G))

is a bijection betweet/ 1(K, Greq) and H1(K, G/Ry(G)). By [Sa, Lemma 1.13]x, is
also a bijection. Hence, soigs. O

2.2. Remark. Lemma 2.1 tells us that if the natural map
HY(K,S) - HYK, Gred
is surjective then so is the natural map
HYK,S)—> HYK,G).

In particular, in the course of proving Theorem 1.1(a) and (b) we may reglamg Geqg
and thus assume thétis reductive.

We now proceed with the proof of Theorem 1.1(a). L&k an algebraically closed field
of characteristic zero an@ be a linear algebraic group defined o%eAs usual, we will
identify G with its group ofk-pointsG (k). In view of Remark 2.2, we will assume that
(or equivalently, the connected componéiftof G) is reductive.

Let T be a maximal torus of; and setN = Ng(T) andW = Ng(T)/T. ThenW is a
finite group andv is an extension oW by T. Let u =, T be the group ofi-torsion points
of T, wheren = |W|. Consider the exact sequences

1-T—->N—->W-1 and 1—>M—>T§T—>1.

The first sequence yields a classff(W, T). Sincen - H>(W, T) = 0, the second se-
quence tells us that this class comes fréf(W, 11). In terms of group extensions, it
means that there exists an extensfoof W by u such thatv is the push-out of by the
morphismu < T'. In particular,s is a finite subgroup oi of order| W |"2"&+1 We will
now prove the following variant of Theorem 1.1.

2.3. Proposition. AssumeG is reductive ands is the finite subgroup of; constructed
above. Then the mai(K, S) — HY(K, G) is surjective for any field extensidti/ k.

Proof. We claim that the natural mafil(K, N) — HY(K, G) is surjective for every field
extensionk /k. Indeed, letk be an algebraic closure & . For any[z] € HY(K, G) the
twisted group, G is reductive and has a maximal torgs Viewing Q and T as maxi-
mal tori in GO(K), we see that they ar&-conjugate; the claim now follows from [Sel,
Lemma Il.2.2.1].
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It remains to prove that the mail(K, S) — HL(K, N) is surjective. We will do
this fiberwise, with respect to the map: HX(K, N) - HY(K, W). Let[a] = p.([b]) €
HY(K,W). Atwisting argument [Sel, |.5.5], shows that the map

HYK, ,T) — p;*([al)

is surjective; here,T denotes the torug’, twisted by the cocyclé. On the other
hand, consider the map,: HX(K, S) — H(K, W) induced by the natural projection
g:S— W = S/u. Since H3(K, ) — H?%(K,T) is injective andd([a]) = O, where
d:HY(K, W) — H%(K,T) is the connecting morphism, we conclude thaf € Im g..

It now suffices to prove that the map

HYK, pu) — HY(K, pT)

is surjective. The cokernel of this map is given by the exact sequence

HYK, ypu) — HY(K, T) =5 HY(K, ,T).

The torus,T is split by the Galois extensiol./K given by [a] € HY(K, W) =
Homg(Gal(K /K), W)/ Int(W), the degree of this extension divides The restriction—
corestriction formulaxn = Corf- o Reg and the fact that/}(L, T) = 0 (Hilbert's The-
orem 90) imply that the mapn: HY(K, ,T) — HY(K, ,T) is trivial. We conclude that
the mapH(K, ,u) — HY(K, ,T) is surjective. Hence, the mapl(K, S) - HY(K, N)
is surjective as well. O

3. Proof of Theorem 1.1(b) and (c)

In view of Remark 2.2 part (b) follows from part (c). The rest of this section will be
devoted to proving part (c). We will consider three cases.

Case 1. Let G be a quasi-split adjoint group. We denote’ by maximal quasi-split torus
in G, N =Ng(T) andW = Ng(T)/T. For every rootx € X = X (G, T), whereX is the
root system ofG with respect tol’, the corresponding subgroug, < G is isomorphic
(over a separable closure ¥ to either Sk, or PSL,.

Let T, =T NG, and letw, € Ng, (Ty) be a representative of the Weyl group®@§
with respect to the maximal tord, given by a matrix

0 1
-1 0)°
By Galois’ criteria for rationality, the group generated by al,, is k-defined. One easily

checks that the intersectidnnN T belongs to the 2-torsion subgroup®fin particular,L
is finite.
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Let u = ,T be then-torsion subgroup off wheren is the cardinality of the Weyl
group W. Consider the subgroup of N generated by. and . Now, arguing as in the
proof of Proposition 2.3, and using the fact tiatand 7'/ are permutation tori (and
hence both have trivial Galois cohomology in dimension 1), one checks that the canonical
map H1(K,S) — HY(K, N) is surjective for every extensioki/k. In the course of the
proof of Proposition 2.3 we showed that (K, N) — H(K, G) is surjective. Then the
composite magH (K, §) - HY(K, N) - HY(K, G) is surjective as well.

Case 2. Let G be an adjointc-group. Denote byGo the quasi-split adjoint group of the
same inner type a&. One knows (see [T1]) that = ,(Gyo) is the twisted form of5q for
an appropriate cocycle € Z1(k, Go). If So is the subgroup o6 constructed in Case 1,
we may assume without loss of generality thatakes values irsy. Let S = ,Sp and
consider the diagram

1 o 1
H*(K, So) —> H*(K, Go)

L

T
HYK,S) —— HYK,G).
Here fs and fs are natural bijections. Sineg) is surjective, so ig.

Case 3. Let G be a connected reductivegroup. It is an almost direct product of the
semisimplet-group H =[G, G] and the centrat-torusC of G. Let Z be the center off.
Clearly, we haveC N H < Z. Consider the groug;’ = G/Z and a natural morphism
f:G — G’. By our constructionG’ is the direct product of the torus/C N H and the
adjoint groupH’' = H/Z.

Let S’ be the subgroup constructed in Case 2Hbdrand letuw =, (C/C N H) be then-
torsion subgroup of the torus/C N H, wheren is the degree of the minimal extensionkof
splitting C. Then for any extensiok / k a natural morphisnt (K, u x 8’y — HY(K, G')
is surjective. We claim that = f~1(u x §’) is as required, i.,e H1(K, §) - HY(K, G)
is surjective.

Indeed, the exact sequences>1Z - G — G'— land 1—- Z — S — S’ — 1 give
rise to a commutative diagram

8 &
HY(K,Z) —— HY(K,G) —— HY(K,G') —— H2(K,Z)

L

1 o Mo N "2 2
HY(K, Z) HY(K,S) HYK, xS H2(K, Z)

Hereg,, ho are connecting homomorphisms. et € H1(K, G) and[b] = g1([a]). Since
7’ is surjective, there is a clags] € H(u x ') such thatr’([c]) = [b]. Sinceha([c]) =
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gor'([¢]) =0, there is[d] € HL(K, S) such thath1([d]) = [c]. Thus two classef:] and
7([d]) have the same image H'(K, G’). By a twisting argument, one gets a surjective
mapHY(K, 4Z) — g 1(g1(la])). SinceZ c S and hencgZ C 45, we have[a] € Imx.
This completes the proof of Theorem 1.1.

3.1. Remark. Our argument shows that @ is split andk contains certain roots of unity,
then the subgroug in parts (b) and (c) can be taken to be a constant group.

More precisely, in part (c)k needs to have a primitive root of unity of degree=
[W(Gs9)| - 1Z(Gsg)|, whereW (Gsg) andZ(Gsg denote, respectively, the Weyl group and
the center of the semisimple patsof G.

The same is true in part (b), except tiianeeds to be replaced l6§eqg= G/Ry(G) in
the above definition aof.

4. Theorem 1.1 in the context of invariant theory

For the rest of this papér will be an algebraically closed field of characteristic zero,
K will be a finitely generated extension bfand G will be a linear algebraic group de-
fined overk. In this section we will introduce some terminology in this context, discuss an
invariant-theoretic interpretation of Theorem 1.1(a) and use it to give a simple proof of the
no-name lemma. The third author would like to thank V.L. Popov for helpful suggestions
concerning this material.

4.1. (G, S)-sections

Recall that every element di1(K, G) is uniquely represented by a primitive gener-
ically free G-variety V, up to birational isomorphism. That is(V)¢ = K, the rational
guotient mapr : V --» V/G is a torsor over the generic point &f/ G, and this torsor is
a; see [Po, 1.3]. (HereV is primitive” means thaG transitively permutes the irreducible
components o¥ . In particular, ifG is connected thel is irreducible.)

If Sis a closed subgroup @f anda € H(K, S) is represented by a generically frée
variety Vo, then the image af in H1(K, G) is represented by th@-variety G s Vo, which
is, by definition, the rational quotient @ x Vp for the S-action given bys: (g, vg) —
(gs~ L, s - vg). We shall denote the image ¢f, vo) in this quotient by[g, vo]. Note that a
rational quotient is, a priori, only defined up to birational isomorphism; however, a regular
model forG xg Vo can be chosen so that tiie-action onG x Vy (by translations on the
first factor) descends to a regul@raction onG =g Vg, making the rational quotient map
G x Vo --» G xg Vo G-equivariant (viag’ - [g, vo] — [g’g, vo]); see [Re, 2.12]. I is a
finite group andVp is a quasi-projectives-variety (which will be the case in the sequel)
then we may takes x5 Vp to be the geometric quotient for thaction onG x Vp, as
in [PV, Section 4.8].

Now let V be aG-variety. AnS-invariant subvarietyp C V is called a(G, S)-section
if

(@) G- Vpisdenseinv and
(b) Vo has a dense opestinvariant subvarietyy such thatg - u € Vg for someu € U
impliesg € S.
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The above definition is due to Katsylo [Ka]; sometimaga S)-section is also called a
standard relative sectiofsee [Po, 1.7.6]) oa relative sectiowith normalizers (see [PV,
Section 2.8]). AG-variety V is birationally isomorphic tas g Vo for someS-variety Vo
if and only if V has a(G, S)-section; see [PV, Section 2.8]. In this context Theorem 1.1(a)
can be rephrased as follows:

Theorem 1.1'. Every generically free5-variety has a(G, S)-section, whereS is a finite
subgroup ofG.

Recall that a subvarietyy of a generically fre€s-variety V is called aGalois quasisec-
tion if the rational quotient map : V --» V/G restricts to a dominant mag --» V/G,
and the induced field extensi@Vp)/k (V)¢ is Galois. If Vy is a Galois quasisection then
the finite groupl” (Vo) := Gal(k(Vp)/k(V)©) is called the Galois group dfy; see [Ga] or
[Po, (1.1.1)]. (Notel" (Vo) is not required to be related @ in any way.) The following
theorem is due to Galitskii [Ga]; cf. also [Po, (1.6.2) and (1.17.6)].

4.2. Theorem. If G is connected then every generically fi@evariety has a Galois quasi-
section.

A (G, S)-section is clearly a Galois quasisection with Galois gréupience, Theo-
rem 1.1 (or equivalently, Theorem 1.1(a)) may be viewed as an extension of Theorem 4.2.
Note that the Galois group (Vp) of the Galois quasisectiovy constructed in the proof of
Theorem 4.2 is isomorphic to a subgroup of the Weyl grauig); cf. [Po, Remark 1.6.3].
On the other hand, the groupin our proof of Theorem 1.1(a), is an extension{G)
by a finite abelian group. Enlarging the finite grofimay thus be viewed as “the price to
be paid” for a section with better properties.

4.3. The no-name lemma

A G-bundler : V — X is an algebraic vector bundle withGaction onV andX such
thatr is G-equivariant ang restricts to a linear map—1(x) — 7 ~1(gx) for everyx € X.

4.4. Lemma (No-name lemma)Letx : V — X be aG-bundle of rank-. Assume that the

G-action onX is generically free. Then there exists a birational isomorphisnV =
X x A" of G-varieties such that the following diagram commutes

¢

> X x A" (4.5)

T
pry

N~ <

Here G is assumed to act trivially oA”, andpr; denotes the projection to the first factor.
In particular, k(V) is rational overk(X)¢.

The term “no-name lemma,” due to Dolgachev [Do], reflects the fact that this result
was independently discovered by many researchers. In the case @/iegefinite group,
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Lemma 4.4 (otherwise known as Speiser’s lemma, see [Sp]) may be viewed as a restate-
ment of Hilbert's Theorem 90. In this case there are many proofs in the literature; see,
e.g., [EM, Proposition 1.1], [L, Proposition 1.3], [Sh, Appendix 3] or [CS, Section 4]. For
algebraic group& Lemma 4.4 was noticed more recently (the earliest reference we know
is [BK]). This fact is now widely known and much used; however, as Colliot-Théléne and
Sansuc observed in [CS, Section 4], a detailed proof has never been published. We will
now use Theorem 1.1(a) (or equivalently, Theorem abbve) to give a simple argument
reducing the general case of the no-name lemma to the case of a finite group.

Proof of the no-name lemma. By Theorem 1.1 X has a(G, S)-sectionXg for some
finite subgroups of G. ThenVy = n~1(Xo) is a (G, S)-section forV; cf. [Po, (1.7.7),
Corollary 2]. In other wordsX ~ Xg x5 G andV >~ Vg x5 G, where>~ denotes birational
isomorphism ofG-varieties.

Note thatVy is an S-vector bundle oveX. Since we know that the no-name lemma

holds forS, there is ars-equivariant birational isomorphisg : Vo . Xo x A" such that
the diagram ofS-varieties

[
Vo — == Xox A (4.6)
ln
pry
Xo

commutes. Taking the homogeneous fiber product of this diagramGyitte obtain

¢
VZV()*SG*7>(X0XAr)*SG2XXAr

ln
pry

X >~ Xo*s5 G,
wherep =¢o*s G. O

4.7. Remark. The above argument can be naturally rephrased in cohomological terms.
Let K = k(X)¢ = k(Xo)5. Then Lemma 4.4 is equivalent to the following assertions:
(i) k(V)G = K(r1,...,t,) and (ii) ay is the image ofax under the restriction map
HYK,G)— HYK(t1,....1,),G).

Diagram (4.6) tells us that (ix(Vo)® = K (t1, ..., t,) and (iiy ay, is the image ofvy,
under the natural maplX(K, S) — HY(K (1, ...,1), S). (i) follows immediately from
(i)', and (ii) follows from (ii} by considering the natural diagram

ax, € HY(K,S) —= HY(K(t1,...,1,),S) 3 ay,

\L res l/ res

ax € HY(K,G) — HYK(t1,....1,),G) d ay.
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5. Preliminarieson G-covers

Let G be afinite group. We shall call a finite morphism X’ — X of algebraic varieties
aG-cover if X isirreducible,G acts onX’, so thatr maps everyG-orbitin X’ to a single
point in X, andx is aG-torsor over a dense open subsebf X. We will express the last
condition by saying that is unramifiedover U. Restrictingr to the generic point oX,
we obtain a torsow € H1(k(X), G) over Spe&(X). In this situation we shall say that
represents. If a covern : X’ — X is unramified over all ofX, then we will simply say
thatz is unramified

Recall thate € HY(K, G) is calledunramifiedif it lies in the image ofH1(R, G) —
HY(K, G) for every discrete valuation ringc R C K andprojective if it is represented
by an unramifiedG-covern : X’ — X over a complete (or equivalently, projective) vari-
ety X.

5.1. Lemma. Let G be a finite group,K be a finitely generated extension of an alge-
braically closed base field of characteristic zero, and € H(K, G). Then the following
assertions are equivalent

(a) « is represented by a projective-variety V (in the sense of Sectiet), such that every
elementl # g € G acts onV without fixed points,

(b) « is projective, and

(c) « is unramified.

Note that condition (b) can be rephrased by sayingdhas trivial fixed point obstruc-
tion; see Section 8.

Proof. (a) = (b). TheG-action onV has a geometric quotiemt: V — X, whereX is

a projective variety; cf., e.g., [PV, Section 4.6]. We claim thais a torsor overX. In-
deed, we can cove¥ by G-invariant affine open subset§. The quotient varietyX is
then covered by affine open subs&is= 7 (V;), moreovery; =y, : Vi — X; is the geo-
metric quotient for the5-action onV;; see [PV, Theorem 4.16]. It is thus enough to show
thatr; : V; — X; is a torsor for each. This is an immediate corollary of the Luna Slice
Theorem; see, e.g., [PV, Theorem 6.1].

(b) = (c). Supposex is represented by &-torsorV — X, whereX is a projective
variety withk(X) = K. We want to prove that for any discrete valuation riRg- K the
classx belongs to the imag&/ (R, G) - HYX(K, G).

Indeed, the ringk dominates a point itX'; denote this point byd. Consider the canon-
ical map Spe® — X sending the closed point in SpRcato D and the generic point of
Speck into the generic point oX. Take the fiber produdiSpecR) x x V. It follows im-
mediately from this construction that tidatorsor

(SpecR) xx V — Speck

is as required, i.e., its image under the ni&ah(R, G) - HY(K,G) is a.
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(c) = (a). LetV be a smooth projectivé -variety representing and letr : V — X be
the geometric quotient. Note th&tis normal. We want to show that every4lg € G acts
on V without fixed points. Assume the contragp = v for somev € V. By [RY2, Theo-
rem 9.3] (withs = 1 andH; = (g)), after performing a sequence of blowups with smooth
G-invariant centers oV, we may assume that the fixed point lodd$ of g contains a
divisor D C V. If R = Ox »(p) is the local ring of the divisofr (D) in X theno does not
lie in the image of the natural morphist(R, G) - HX(K, G), a contradiction. O

5.2. Remark. Our proof of the implication (b} (c) does not use the fact thatis a finite
group. This implication is valid for every linear algebraic graip
6. Proof of Theorem 1.3

Let S be the finite subgroup af given by Theorem 1.1(a). Thene H(K, G) is the
image of somes € H1(K, S). Examining the diagram

HY(X,S) HY(L,S) > B

! l

HY(X,G) — HYL,G) 30y,

whereX is a complete variety anfl = k(X), we see that if Theorem 1.3 holds f&ithen
it holds forG.

From now on we may assume thaitis a finite group. In this case Theorem 1.3 can be
restated as follows.

6.1. Proposition. Let G be a finite groupk be an algebraically closed base field of charac-
teristic zero,K / k be a finitely generated extension, and& H1(K, G). Then there exists
an abelian field extensiofi/K such thata; is represented by an unramifie@d-cover

7 :Z — Z,whereZ and Z’ are projective varieties.

The rest of this section will be devoted to proving Proposition 6.1. We begin with the
following lemma.

6.2. Lemma. Let G be a finite group. Then evetye HX(K, G) is represented by &-
coverm : X’ — X such that

(a) X’ is normal and projective,
(b) X is smooth and projective,
(c) there exists a normal crossing divisfron X such thatr is unramified oveX — D.

Proof. Supposex is represented by &-Galois algebrak’/K. We may assume with-
out loss of generality thak’ is a field. Indeed, otherwise is the image of some
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ap € HY(K, Gp), where Gy is a proper subgroup ofi, and we can replac& by Go
andua by «ap.

Choose a smooth projective modél k for K/k and let¢:Y’ — Y be the normal-
ization of Y in K’. ThenY’ is projective (see [Mu, Theorem 111.8.4, p. 280]), and by
uniqueness of normalization (see [Mu, Theorem 111.8.3, pp. 277-278h¢ts onY’ by
regular morphisms, so thatY”’) is isomorphic taK’ as aG-field (see [Mu, pp. 277-278]).
We have thus shown thatcan be represented by a cogerY’ — Y satisfying conditions
(a) and (b). We will now birationally modify this cover to obtain another cavek’ — X
which satisfies condition (c) as well.

The coverg is unramified over a dense open subset’ofdenote this subset by .
SetE =Y — U, and resolveE to a normal crossing divisaP via a birational morphism
y : X — Y. Now consider the diagram

where X’ is the normalization ofX in K’. By our constructionX is smooth andX’ is
normal. Moreover, since is an isomorphism ovet/, x is unramified overX — D =
¢»1(U), as desired. O

We are now ready to complete the proof of Proposition 6.1. Our argument will be based
on [GM, Theorem 2.3.2], otherwise known as “Abhyankar’s lemma,” which describes the
local structure of a covering, satisfying conditions (a)—(c) of Lemma 6.2, in the étale topol-
ogy. We thank K. Karu for bringing this result to our attention.

Let7: X' — X be aG-cover of projective varieties representimgnd satisfying con-
ditions (a)—(c) of Lemma 6.2. Denote the irreducible component3 by D1, ..., D;.

SinceX is smooth, eaclt € X has an affine open neighborhotid where eaclD; is
principal, i.e., is given bya, ; = 0} for somea, ; € Ox(U;) (possiblya, ; = 1 for some
x and j). By quasi-compactness, finitely many of these open subsetsUsay.. ., Uy,
coverX. To simplify our notation, we sdf; = U, anda;; = ay, ;.

Now letb;; be an/G|th root ofg;; in the algebraic closure & = k(X) andL = K (b;;),
wherei ranges from 1 tm and j ranges from 1 te. Suppose’ : Z — X is the normal-
ization of X in L andZ’ = X’ xx Z. Since we are assuming thats algebraically closed
of characteristic zero (and in particularcontains a primitivg G|th root of unity), L/K
is an abelian extension. It is also easy to see from our constructio thatl Z’ are pro-
jective, Z is normal, and the natural projectiari: Z' — Z is aG-cover, which represents
ar € HY(L, G). To sum up, we have constructed the following diagram of morphisms:
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It remains to show that th€-covery is unramified. Suppose we want to show tiats
unramified atzg € Z. Since the open setd,, ..., U, coverX, xo = y(zo0) lies in U; for
somei = 1,...,n. By Abhyankar’s lemma [GM, Theorem 2.3.2], there exists an abelian
subgroupH ~Z/n1 x --- x Z/nsZ of G (possibly withn; = 1 for some;) and a (Kum-
mer) H-Galois cover

Vi={Gt, . t) 1 =aia, . ] =ai ) C U x A,
such that theG-coversn: X’ — X and¢:G xgy V; — U; are isomorphic over an étale
neighborhood okg in X. (Here the natural projectiovy — U, is anH-cover,G xg V; —
U; is theG-cover induced from it; for a definition af %y V;, see Section 4.)

Now recall that by our construction the elemebtse L = k(Z) satisfybl‘.J.G| =a;j €
Ox (U;). In particular, they are integral ovef; and thus they are regular function on
y~LU)). Sincen; divides|G| for everyj =1, ..., s, the pull-back ofp to Z splits over
an étale neighborhood ab; hence, so doeg = pull-back of z. In other words, is
unramified at, as claimed. This completes the proof of Proposition 6.

7. An example

It is well known that there exist non-trivial projective elementsHri (K, PGL,) for
everyn > 2 (for suitablek). In this section we use a variant of a construction of Colliot-
Théléne and Gabber [CG] to show that, for cert&insuch elements exist iH1(K, G2)
as well.

7.1. Proposition. Letk be an algebraically closed base field of characteristic zero such that
trdeg, (k) > 3. (Note that the last condition is satisfied by every uncountable Ji€tten
there exist a smooth projectivgfold X /k with function fieldk = k(X) and a projective
non-trivial classa € H1(K, G»).

Note that no such examples can exisKifis a curve or a surface, since in this case
H(k(X), G2) = {1}; see [BP].

Proof. Let E1, E2, E3 be elliptic curves. Foir =1, 2, 3 choosep;, g; € E; so thatp; © ¢;

is a point of order 2. (Here> denotes subtraction with respect to the group operation

on E;.) Then 2v; — 2g; is a principal divisor onE; and p; — ¢; is not; see, e.g., [Si,

Corollary 3.5]. Thus 2; — 2¢; = div(f;), wheref; # 0 is a rational function otk;, which

is not a complete square. Adjoining f; to k(E;), we obtain an irreducible unramified

7./2Z-coverm; : E; — E;. (Note that by the Hurwitz formulaZ’ is also an elliptic curve.)
Now setX = E1 x E» x Ez andK = k(X), S = (Z/2Z)3, and consider the element

B € HY(k(X), S), represented by th&-cover

7= (m1,m2,m3)  E] x E5 x E5 —> E1 x Ea x E3=X.

Sincer is an unramified covep is projective.
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We now recall that the exceptional grodgy/k contains a unique (up to conjugacy)
maximal elementary abelian 2-groupS = (Z/27)3 < G». Seta = i,.(8) € HX(K, G2).
Since g is projective, so isy. It thus remains to show that # 1 in H1(K, G») (for a
suitable choice of; andE)).

The cohomology seH(K, G,) classifies octonion algebras or equivalently, 3-fold
Pfister forms; cf. [Se2, Theorem 9]. By [GMS, Section 22.10], the map

HY(K, $) = (K*/(K¥)%)* 25 HY(K, G2)

is non-trivial; hence, it sendsi, az, az) € (K * /(K *)?) to the class of the 3-Pfister form
({a1, a2, a3)); see [GMS, Theorem 27.15]. By our constructigrg H1(K, S) corresponds
to (f1, f2, f3) € (K*/(K*)?)3. Thusa = i,(B) is non-split inH(K, G») if and only if
the 3-fold Pfister form({ f1, f2, f3)) is nonsplit or, equivalently, if f1) U (f2) U (f3) #0
in H3(k(X),Z/27); see [EL, Corollary 3.3].

Since we are assuming that tr@g@) > 3, we can choose elliptic curvdg, E> andE3
so that theirj-invariants are algebraically independent o@eiVe now appeal to a theorem
of Gabber ([CG, p. 144]), which says théf1) U (f2) U (f3) # 0 in H3(k(X), Z/27).
Hencew # 1in HY(K, G), as claimed. This completes the proof of Proposition 7 .

8. Thefixed point obstruction

We now recall the notion dixed point obstructiofrom [RY3, Introduction]. Suppose
a € HY(K, G) is represented by a generically free primitifevariety V (as in Section 4).
We shall say that a subgroup 6f is toral if it lies in a subtorus ofG and non-toral
otherwise. IfV (or anyG-variety birationally isomorphic to it) has a smooth point fixed by
a non-toral diagonalizable subgro@ipcC G, then we shall say that (or equivalently)
hasnon-trivial fixed point obstructigref. [RY3, Introduction]. Note that after birationally
modifying V, we may assume that is smooth and complete (or even projective, see,
e.g., [RY2, Proposition 2.2]), and that the fixed point obstruction can be detected on any
such model. In other words, ¥ andV’ are smooth complete birationally isomorpliic
varieties therV ¥ = ¢ if and only if (V/)# = ¢ for any diagonalizable subgroug c G;
see [RY1, Proposition A2]. It/ = ¢ for every diagonalizable non-toral subgroHpc G
(and V is smooth and complete), then we will say thator equivalentlyx, hastrivial
fixed point obstruction

If « is split (i.e.,a =1 in HX(K, G)) then by [RY2, Lemma 4.3} has trivial fixed
point obstruction. We will now extend this result as follows.

8.1. Proposition. If « € HX(K, G) is projective therr has trivial fixed point obstruction.

Proof. Let G be a smooth projectivé x G-variety, which containg as a dense open
orbit. (Here we are viewings; as aG x G-variety with respect to left and right mul-
tiplication.) To construcG, we use a theorem of Kambayashi, which says thaan be
G x G-equivariantly embedded inf® V) for some linear representatichx G — GL(V);
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see [PV, Theorem 1.7]. Taking the closure®fn P(V), andG x G-equivariantly resolv-
ing its singularities, we obtai with desired properties.

Forg e G, we will write g1 - 5 - gz_l instead of(g1, g2) - g; the reason for this notation
is that forg € G, (g1, g2) - 8 = glgggl €qG.

Sinceuw is projective, it can be represented bgaorsorz : Z — X over a smooth pro-
jective irreducible varietyX. (HereK = k(X).) We will now construct a smooth complete
G-variety Z representingr (i.e., birationally isomorphic t&) by “enlarging” each fiber
of 7 fromG to G.

Let U; — X, i € I be an étale covering which trivializes. Thenx is described by
the transition mapg;; : U;; x G — U;; x G on the pairwise “overlapsl;;; here eacly;;
is an automorphism of the triviab-torsorU;; x G on U;;. (G acts trivially onU;; and
by left translations on itself.) These transition maps satisfy a cocycle condition (for Cech
cohomology) which expresses the fact that they are compatible on triple “ovetlags”
It is easy to see thaf;; is given by the formula

for some morphisni;; :U;; — G. (In fact, h;; (u) = pryo f;j(u, 1), where ps:U;; x
G — G is the projection to the second factor.) Formula (8.2) can now be used to extend
fij to aG-equivariant automorphism

ij:Uin5—>Uin6,

whereG acts onG on the left. Sincef;; satisfies the cocycle condition agtis dense iG,
we conclude thaE- satisfy the cocycle condition as well. By descent theory, the transition
mapsf;; patch together to yield a varie® and a commutative diagram of morphisms

zZ7——7Z
N\ /s
X
which locally (in the étale topology) looks like

UxG“—U; xG

N,/

(The mapsr andx in the second diagram are projections to the first component.) It is now
easy to see that is smooth and proper ovéf andZ < Z is aG-equivariant open embed-
ding. Indeed, these properties can be checked locally (in the étale topolog;)where
they are immediate from the second diagram. Note also that Siniseproper overx,
andX is projective ovek, Z is complete as &-variety.
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Having constructed a smooth complete modebr «, we are now ready to show that
« has trivial fixed point obstruction. Suppose a diagonalizable subgibud G has a
fixed point inz € Z. We want to show thakl is toral in G. Indeed, letF be the fiber ofr
containingz. By our constructiornF ~ G asG-varieties (heres is viewed as aG-variety
with respect to the lefG-action). We conclude tha# has a fixed point irG. SinceG has
G as aG-invariant dense open subset, it is split aG-&ariety (i.e., it represents the trivial
class inH(k, G)), [RY2, Lemma 4.3] now tells us thaf is toral. This shows that has
trivial fixed point obstruction, thus completing the proof of Proposition 8..

8.3. Remark. The fact thatG acts onG both on the right and on the left was crucial in the
construction ofZ in the above proof. The action on the right was used to glue the transition
mapsf;, ; together, and the action on the left to defing-action onZ. If G could only act

on G on one side, we would still be able to constracts a variety; however, we would

no longer be able to define@-action on it, extending th&-action onZ.

8.4. Corollary. There exist non-split elements € HX(K,,,PGL,) (n=2,3,...) andp e
HY(K, G») with trivial fixed point obstruction, for some finitely generated field extensions
K,/kandK/k.

Proof. Chooseax,, andg so that they are non-split and projective; cf. Section 7.

8.5. Remark. By [RY3, Theorem 4] for every prime number there exists a non-split

o« e HY(K, PGL,) such thatX is a purely transcendental extensionkainda has trivial
fixed point obstruction. Suct are necessarily ramified and hence, cannot be projective.
Thus the converse to Proposition 8.1 is false.

9. Problem 1.2 and Hilbert’s 13th problem
9.1. An algebraic variant of Hilbert's 13th problem

Hilbert’'s 13th problem asks, loosely speaking, which continuous functionsviari-
ables can be expressed as compositions of functions-rl variables. In this form the
problem was settled by Arnold [Ar] and Kolmogorov [Ko], who showed that any continu-
ous function inn variables can be expressed as a composition of continuous functions in
one variable and the addition functigiix, y) = x + y. The algebraic variant of Hilbert's
13th problem, where “continuous functions” are replaced by “algebraic functions,” remains
open. In modern language the problem can be stated as follows; cf. [AS,Di].

Let E/F be a finite separable field extension (or, more generally, an étale algebra) and
assume thaf’ contains a copy of the base fidldThen theessential dimensioed, (E/F)
(or simply edE/F), if the reference ta is clear from the context) is the minimal value
of trdeg, (Fop), where the minimum is taken over all elemeats E and over all subfields
k C Fp C F such thatE = F(a) and Fp contains every coefficient of the characteristic
polynomial ofa; cf. [BR1,BR2]. For example, i/ F is a non-trivial cyclic extension of
degreen andk contains a primitive:th root of unity then ed E/F) = 1, since in this case
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we can choose so thata” € F. Note also that ed=”/F) = ed(E/F), where E* is the
normal closure of over F; cf. [BR1, Lemma 2.3].
We will now say thatt'/ F has levek d if there exists a tower of finite field extensions

F=FCcF,C---CF, (9.2)

such thatF C E C F, and eq(F;/F;_1) < d for everyi =1,...,r. For example, ifk
contains all roots of unity then every solvable extendighi” has levek{ 1 (because we can
take (9.2) to be a tower of cyclic extensions). The algebraic form of Hilbert’s 13th problem
then asks for the smallest integér) such that the level of every degreextensionE / F

is < s(n). (Here we are assuming that the base field fixed throughout.) Not much is
known abouts(n) (see [Di]); in particular, it is not known if(n) > 1 for anyn. It is thus
natural to ask, if, perhaps(n) = 1 for all n; this equality may be viewed as an algebraic
analogue of the above-mentioned theorem of Arnold and Kolmogorov; cf. [Di, p. 90]. In
fact, in the absence of evidence to the contrary, one can even ask for a particularly nice
tower (9.2), showing that(n) = 1, namely for a tower (9.2), whei._1/ F is solvable (or
even abelian) and). / F,._1 has essential dimension 1. Equivalently, we have the following.

9.3. Problem. Let k be an algebraically closed field of characteristic zetdye a finite
group andK /k be a field extension. Is it true that for evewrye HX(K, S) there exists
(i) an abelian extensioh /K such that e@x;) < 1? or (ii) a solvable extensioh/K such
that eday) <17

Hereq;y, is represented by aft-Galois algebrd’/L and edq;,) denotes the essential
dimension ofL’/L. Equivalently, edx.) is the minimal value of trdegLo) such that
oy lies in the image of the natural mat(Lo, S) — HY(L, S) for some intermediate
field k ¢ Lo C L. (Note, that, since the base field is assumed to be algebraically closed,
edar) =0ifand only ifay, is split.)

We do not know whether or not the assertions of Problem 9.3 are true (cf. Remark 9.6).
However, using Theorem 1.1 we will show that, if true, they have some remarkable conse-
guences.

9.4. Theorem. Letk be an algebraically closed field of characteristic zero. anddek be
a field extension. Denote the maximal abelian and the maximal solvable extensikns of
by Kap and K g, respectively.

(i) If Problem9.3(i) has an affirmative answer thetl(K5p) < 1.
(ii) If Problem9.3(ii) has an affirmative answer thel(Ksq) < 1.

9.5. Remark. The inequality cdKap) < 1 is only known in a few cases; in particular, for

K = a number field, oK = a p-adic field by class field theory and fé&f = C((X))((Y))

by a theorem of Colliot-Théléne, Parimala and Ojanguren [COP, Theorem 2.2]. If it were
established, it would immediately imply an affirmative answer to Problem 1.2. Another
important consequence would be a conjecture of Bogomolov [Bog, Conjecture 2], which

asserts that Q(K;ﬁ)) < 1, wherek (P is a maximal prime-tgp extension ofK. On the
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other hand, an affirmative answer to Problem 9.3(ii) would imply that( &dp)) < 1,
where p is a prime number and (p) is the p-closure (i.e., the maximagb-solvable ex-
tension) ofK, thus giving an affirmative answer to a question of J. Kénigsmann; cf. [Koe,
Question 5.3].

9.6. Remark. The third author would like to take this opportunity to correct a misstate-
ment he made in [BR1, Introduction]. The identi#/(6) = 2, which is attributed to
Abhyankar [A] at the bottom of p. 161 in [BR1], would, if true, give a negative answer

to Problem 9.3(ii) for the symmetric group = Sg. In fact, the version of Hilbert's 13th
problem considered in [A] is quite different from ours; the base extensions that are allowed
there are integral ring extensions, rather than field extensions. For this reason the identity
d’'(6) = 2 does not follow from the results of [A] and, to the best of our knowledge, Prob-
lem 9.3 is still open, even in the case whéris the symmetric grougs.

9.7. Proof of Theorem 9.4

We begin with some preliminary facts. Recall that a fi€lthas cohomological dimen-
sion < 1 if and only if the Brauer group BF”) is trivial for any separable finite field
extensionF’/F; see [Sel, Proposition 11.3.5]. It will be convenient for us to work with
étale K -algebras, rather than just separable field extensions.dRecall that aK -étale
algebra is a finite produdf = K1 x K> x --- x K, of finite separable extensions /K .
The Brauer group of is Br(E) = @; Br(K;); an element of this group is represented by
ann-tuple A = (A;/K i);=1..._, Of central simple algebras. Note thdtis an Azumaya
algebra ovet. Given a fieldF, we have

CdF)<1 <= Br(E)=0 forany étale algebra/F; (9.8)
see [Sel, Proof of Theorem I11.2.2.1] or [FJ, Lemma 10.11].

9.9. Lemma. The following are equivalent

(@) cd(Kap) <1,
(b) For any étale algebre&E /K, the restriction maBr(E) — Br(E ®k Kap) IS trivial.

Moreover, the lemma remains truekity, is replaced byKsg.

Proof. (a) = (b). This case immediate from (9.8).
(b) = (a). Let B/Kap be an étale algebra. There exists a finite abelian subextension
K’/K of Kap/K and an étale algeb®/ /K’ such thatB’ ® ¢ Kap= B. We have

B= |m B ®xL,
—_—
K'CLCKap
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where the limit is taken on subfieldsof K, finite overK’. Consequently,

Br(B)= |lim Br(B' ®xg L),
—
K'CLCKap

and (b) implies that BiB) = 0. (a) now follows from (9.8).
The proof remains unchanged&kty, is replaced byKso. O

We are now ready to proceed with the proof of Theorem 9.4(i). We start with the group
G = (PGL,)™ >« S,,. By Theorem 1.1(a), there exists a finite subgrésupf G such that
the natural homomorphisiH (K, §) — H(K, G) is surjective. The groug,, is the au-
tomorphism group of the trivial étale algebra, so by Galois descent th&# 5e¢, S,,)
classifiesn-dimensional étale algebras. By [Sel, Corollary 1.5.4.2], the fiber of the map
HY(K,G)— HYK,S,) at[E] e H(k,S,) is

HY(K,g (PGL"))/E(Sn).

with £(PGL)) and £(S,) are the twisted groups by the étale algeBK . SinceG —
S, has a section, the mapG(K) — g(S,)(K) is surjective. Therg(S,,) acts trivially
on H(K, e(PGLY)) and hence the fiber &F] is HY(K, e(PGLM)). By definition of
the Weil restriction, we have (PGL}') = R/« (PGL,). We identify (K, e(PGL)) =
HY(E,PGL,) by the Shapiro isomorphism. Thus

HYK,G) = |_| HYE, PGL,).
[EleHY(K,Sn)

An element ofH1(K, G) is then given by an Azumaya algeh#g E of degreen defined
over aK -étale algebra& of rankm. By Theorem 1.1(a), every clagd/E] comes from a
classe € HY(K, S).

We now apply the assertion of Problem 9.3(i) to the gr8@md the clasa. There exists
an abelian extensioh/K , ak-curveC and a ma(C) C L such that the restriction of the
classx in H1(L, S) belongs to the image di1(k(C), S) — H(L, S). The commutative
diagram of restriction maps

HYK,S) —— HYL,S) =— HYk(C),S)

l l !

HYK,G) — HYL,G) =— H(k(C),G)
shows that there exists an étale algebfak(C) and an Azumaya algebrd’/E’ such that

EQk L = E ®kc) L and A ®g (E/ Qk(0) L) — (A ®E (E Qk L))
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Since cdk(C)) < 1 (see [Sel, Section 11.3]Y'/E’ is the split Azumaya algebra of rank
We conclude thatl ® g (E ®k L)/(E ®k L) is the split Azumaya algebra of rank This
shows that the map BE) — Br(E ® Kap) is trivial for any étale algebr& /K. Lemma 9.9
now tells us that ctK4p) < 1. This concludes the proof of Theorem 9.4(i).

The proof of part (ii) is exactly the same, except that the field extensjaki, con-
structed at the beginning of previous paragraph, is now solvable, rather than abelian.

9.10. Remark. A similar argument shows that the conjecture of Bogomolov [Bog, Con-
jecture 2] mentioned in Remark 9.5 is a consequence of the following weaker form of
Problem 9.3(i) (which is also open).

Problem 9.3. Let k be an algebraically closed field of characteristic zerde a finite
group, K /k be a field extension ang be a prime integer. Is it true that for evesye
HY(K, S) there exists a finite extensidik’ : K] of degree prime tg and an abelian
extensionL /K’ such that ey ) < 1?
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