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We give an equation satisfied by the generating function for parallelogram polyominoes
according to the area, the width and the number of left path corners. Next, we give an
explicit formula for the generating function of these polyominces according to the area,
the width and the number of right and left path corners.
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1. Introduction

In the Cartesian plane N x N, a polyomino is a finite connected union of elementary
cells (unit squares) without a cut point and defined up to translation. Studied for a long
time in combinatorics, they also appear in statistical physics. Usually, physicists consider
equivalent objects which are named animals, obtained by taking the center of the cells
of a polyomino (see Dhar, 1988; Hakim and Nadal, 1983).

Several parameters are defined for a polyomino {or an animal). The area is the number
of elementary cells, the width (respectively height) is the number of columns (respec-
tively rows) of the polyomino, the (bond) perimeter is the length of the perimeter and
the site perimeter is the number of cells of the outside along the boundary. No exact
formula is known for the general case but many results exist concerning certain classes
of polyominoes. Surveys can be found in Delest (1991), Guttmann (1992} and Viennot
(1992). A polyomino is called column-convex (respectively row-convex} if all its columns
(respectively rows) are connected. A convex polyomino is both row- and column-convex.
The parallelogram polyominoes are a particular case of this family. They are defined by
a pair of paths only made with north and east steps and such that the paths are disjoint,
except at their common ending points (see Figure 1). The path beginning by a north
(respectively east) step is called left (respectively right) path.

These polyominoes have been enumerated for the first time according to the area by
Polya (1969} and by Gessel (1980). In order to get the results of Section 3, we use a
bijection between Dyck words of length 2n and parallelogram polyominoes of perimeter
2n + 2, found by Delest and Viennot (1984). There are also many other bijections. Let
us quote Viennot’s one between parallelogram polyominces of perimeter 2n + 2 and
bi-coloured Motzkin words of length n + 1 (see Delest and Viennot, 1984). There is
also a bijection between parallelogram polyominoes of perimeter 2n and Motzkin words
according to a simple criterion (see Dubernard, 1993). Delest, Gouyou-Beauchamps and
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Figure 1. A parallelogram polyominoe.

Vauquelin (1987} have counted the parallelogram polyominoes according to the bond and
site perimeters. In 1989, Delest and Fédou have shown that the generating function of
parallelogram polyominoes according to the area and the width could be written using
the quotient of a g-analog of the Bessel functions Jy and Jy (see Delest and Fédou, 1989).
They have also proved that the study of this generating function could be reduced to the
study of the following recurrence

Bi=1
Gz =1
ﬁn )\n+1 -1 ’\n+1 k
a1 = (1 i + k=2" 3n—
Bnyr=(l+g ){n+1] A Z [ﬂ+1})\k)\n_k+16k’ n—k+14

where Ay = TTi, [{]1#) and [i] = ¥ ¢".

On the cther hand, Delest, Gouyou-Beauchamps and Vauquelin (1987) have shown
that the site perimeter can be deduced from the bond perimeter using anosther parameter,
the number of corners. A corner is a double step east—north (respectively north—east) on
the left (respectively right) path. Thus, the site perimeter is equal to the difference
between the bond perimeter and the number of corners. The number cf corners is thus
also an important statistic.

Using objects grammars {(Dutour and Fédou, 1894) and a result of Bousquet-Mélou
{1993), we give an explicit formula for a generalization of the generating function of paral-
lelogram polyominoes. Note that, at the same time and independently, Fédou and Rouil-
lon (1994} have found another expression for this generating function, using a method
based on a bijection between certain paths of the Cartesian plane. In the second section of
this article, we refine the result by Delest and Fédou, introducing the parameter corner.
In fact, the properties of the last paragraph were studied before obtaining Theorem 2.3
which seems more general.

2. A New Generating Function for Parallelogram polycminoes

In this paragraph, we use “objects grammars”, developed by Dutour and Fédou (1994}
with the aim to give a recursive description of the objects from which one can deduce a
functional equation satisfied by the generating function. For example, & column-convex
polyomino can be obtained by successively “gluing” columns, in a certain way which
depends on the studied polyominoes class. A particular case of this method has been
frequently used in statistical physics and is called “Temperley methodology™.

Bousquet-Mélou {1893) uses this description of column-convex polyominoes from which
she obtains functional equations. Whatever the column-convex polyominoes class is, these
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Figure 2. Decomposition of parallelogram polyeminoes.

equations are of the same type. She proves a lemma that solves systematically such
g-equations. We give below an outline of the result.

Let R = R[s,t,z,y,y;q] be the algebra of formal power series in the variables
s,t,x,y,y, ¢ with real coefficients and A a sub-algebra of R such that the series are
convergent for s = 1. If X(s,t,z,3.¥;¢) is such a series, we will often denote it X (s).

In the application to column-convex polyominoes (Bousquet-Mélou, 1993}, the different
ways of gluing a new column to a directed polyomino imply that we have to deal with
affine equations expressing X (s) in terms of X (s¢) and X (1). The function X (sq) appears
when the first column of the polyomino is duplicated; the number of cells of the first
column is added to the area of the polyomino (see for example, case (1) of Figure 2).
The function X (1) appears when we duplicate only the lowest cell of the first column;
the height of the first column becomes equal to 1 (see for example, case (2} of Figure 2).

This type of equations can be solved using the following lemma proved in Bousquet-
Mélou {1993).

LEMMA 2.1, Let X(s,t,z,4,v;q9) be a formal power series in A. Suppose that:
X (s) = te(s) + t£(s)X (1) + tg(s) X (sq),

where e(s), f(s} and g(s) are some given power series in A. Then

_ E(s)+ E(1)F(s) — E(s)F(1)

X(s) T F() ,

where
E(s) =Y " 'g(s)g(sq) . .. g(sq™ )e(sq™),
n>0
and

Fs) =Y _ " g(s)g(sq) ... g(sq" ") f{sq™).

n>0
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In particular:

EQ)

Let P be a parallelogram polyomino. Its left-height is the height of its leftmost column.
We denote:

— its left-height by [(P),

— its width (respectively height) by w(P) (respectively h(P))},

— its area by a(P),

— its number of left (respectively right} path corners by n;(P) (respectively ny(P)).

Let P be the set of parallelogram polyominoces. Its generating function is the following
formal power series:

[Py w(P) h(P) 1 (P), ma(P}ja(P)
Zpeps t x Y Y q .

Let P(s,t,x,y,¥';q) be the generating function of parallelogram polyominoes. We must
study two cases. The first is the case of parallelogram polyominoes of width 1 which are
enumerated by tszq/(1 — szq). The second is the case of parallelogramn polyominoes of
width > 1 which are obtained by gluing a new column to parallelograra polyominoes of
width > 1.

We denote ty (respectively by) the ordinate of the top (respectively bottom) of the first
column and t,, (respectively b,) the top (respectively bottom) of the new column.

For parallelogram polyominoes of width > 1, we consider four different cases in the
process of gluing the new first column (see Figure 2):

1 t, =t; and b, = by, then no corner is created,

2 t, <t; and b, = b1, then only one left path corner is created,

3 t, =t; and b, < by, then only one right path corner is created,

4 t, <t; and b, < b; then one left path corner and one right path corner are created.

Thus, we obtain an object grammar for parallelogram polyominces {Figure 2} from which
we can directly deduce an equation satisfied by their generating function.

LEMMA 2.2. The generating function P(s,t,x,y,y'; q) for parallelogram polyominoes sat-
isfies the functional eguation:

tsxq t
P(s) = tP -P
(s) = 1= sog (s9) +y1— o (sqP(1) — P(sq))
, tsxg ; tsxq .
P P(1) — Pisq)).
g (sq) +yy =01 = s29) (s¢P(1) — P(sq))

Using Lemma 2.1, we get:

THEOREM 2.3. The generating function P(s,t,x,y,y";q) for parallelogram polyominoes
is given by
Ji{8)Jo(1) — Ji{1)Jo(s) + J1(1)

Jo(1)

P(s,t,z,y,vq) =2
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where
n—1 .
> g™ (1 - ¥')szq)n ,I"Il (1 -y~ sq’)
Jolsy =1 —ys =
=1 (sq)n(570)n
and

(1 - ¥)sza)as 11—y — 6
i(s)=sY e

= (5@)n-1(579)n

If we substitute s by 1, we obtain from Theorem 2.3

1
P(i,t,z,y,vq) = EJ—I(—)--

Jo(1)

REMARK 2.4. In this formula, the symmetrical role of y and y' does not become apparent.
An expression for cl(t,y;q), the generating function of parallelogram polyominoces ac-
cording to the aren, the width and the number of left path corners, can be deduced from
P(s,t,z,y,¥';q) by putting the variables s, T and y' to 1.
In the special case of s = q = 1, Kreweras (1986) gives an exact formula for this
enumeration. This formula can also be derived from a result of Krattenthaoler and Sulanke

(1993).

3. Parallelogram Polyominces and Left Path Corners

At first, we explain the enumeration of parallelogram polyominoes according to the
area, the width and the number of left path corners. Next, we give the main results of
the enumeration when we consider the two types of corners.

Delest and Viennot (1984) give a bijection between parallelogram polyominoes having
perimeter 2n+2 and Dyck words of length 2n. A parallelogram polyomino can be defined
a8 two sequences of integers (ay,...,a,) and (by, ..., b,_1), where a; denotes the number
of cells belonging to the ith column and (b; + 1) denoctes the number of edges shared by
columns 2 and ¢ + 1. The corresponding Dyck word is the Dyck word with n peaks, whose
height of peaks are a4,...,a, and height of valleys are by,...,b,_1. Then, the number
of % factors in a Dyck word is the width of the parallelogram polyomino associated
to the word in the bijection and the sum of the height of the peaks is the area of the
polyomino. Moreover, it has been proved in Delest, Gouyou-Beauchamps and Vauquelin
(1987) that the number of the left path corners is equal to the number of Zzz factors in
the corresponding Dyck word.

Let, & be the morphism of {z,Z,y,t}* defined by

)= py) = 7,u(2) =2 and p(t) = <.

Let C be the set of the words w with letters from {w,Z,y,t} satisfying the following
conditions:

u(w) is a Dyck word;

w = ¥ or w = w1 LT We Tt - - - LLTwy with

«
— uwy ez,
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— wg €I,
— for2<i<k—-1, w; € F* Uz ys*.

The following algebraic grammar:

generates these words.
Clearly, there is a bijection between the words of length 2n having m letters ¢t and p
letters y, and the Dyck words of length 2n having m factors Z and p factors Zzz.
Computing the area is done using the technique of attribute grammars (see Delest and
Fédou, 1992). We use the attribute 7 associated to the corresponding rules

(1) 7(C) = gztF,

(2) 7(0) = drrzr(O)z,

(3) 7(C) = g7(C)xtFE,

(4) T(C) = ¢I"Clhr(C)yr(Co)7,

where |w|; is the number of letters t in the word w.

This attribute computes, recursively on the derivation trees, the sum of the height
of the peaks of the words generated from C. Figure 3 illustrates the fourth rule of the
attributes system.

Using COM_QGRAM, a Maple package handling algebraic grammars and g-grammars
{see Delest and Dubernard, 1994), we obtain the following ¢-equation

c{t,y; q) = qutx + xZ c(gt, y; q) + gzt c(t, y; q) + yEc(gt, y; @) e(t, v; 9).

From here, ¢, z,%,t and y are commutating variables and no longer (non-commutating)
letters.
Then, erasing the variables « and ¥, we get

PROPOSITION 3.1. The generating function of parallelogram polyominoes according to
the area, the width and the number of left path corners, c(t,y; q), satisjies the functional
equation

elt, y;q) = qt + clat, yiq) + qtclt, y; q) + yelgt, y; q) et v q),

where t encodes the number of columns, g the area and y the number of left path corners.

Figure 3. 1llustration of the rule (¢} = gI™{Cer(C)yr(Co) 2.
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Let
ot yiq) = D _ ant”,
n>1

where a, is the generating function of parallelogram polyominoes having width n accord-
ing to the area and the number of left path corners. Let a, ; ; be the coefficient of y*¢’
in a,. From Proposition 3.1, we obtain

a1 = g+ ga,
n—1
an = q"0pn + gn-1 + ¥ Z a’kan—qu forn > 1.
k=1
Define now
(1-qg)*!
n = —q—n—flm
then we find a; = 1, as = 1_‘1(%)-, and for n > 2
n—2
[Mlan = (1= g(1 —y) + yg" om_1 +y Y _ okt xa*.
k=2

So, using the notation &, = u—iﬁf}?)v where A, is defined in the introduction, we finally
oet:

PROPOSITION 3.2. 85 =1 and forn>2

n—1

n An A
it = (1=q(1=9) + 90" War i+ =01 =9) 3 ¢ i i S ——
n k=2 ne

The polynomial 8, appears naturally in the Maple computation after a factorization
of a,.
‘We note that the denominators of the fractions

Ant1 and Ant1
[TL + l]f\n [ﬂ + I]Ak/\n—k+1

cancel out and polynomials in g remain. Thus, we easily show by induction the following.
PROPERTY 3.3. 6, is a polynomial in y and q.

Note that any characterization of 8,, induces one on a, since
_ ’\n (1 — Q)zn_l
T (-g+gqy) g

The first values of 8,, are displayed, in Figure 4, in a matrix form in which the inter-

section of the (i + 1)th row and the {j + 1}th column is equal to the coefficient of y*q” in
.. We will denote it by 6, ; ;. We also define

Bﬂ,’i,. = Zj Gn,i,jqj-

These matrices are obtained using the Maple package COM_QGRAM (see Delest and
Dubernard, 1994). Studying 8, the properties which are displayed in Figure 5 are found.

n Ay .
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92 93 9| 85
1J[1-10][1~-1-1 1% 0 00l [1-20 2-1 ¢ 0 0 0 00]
0 t1][0 2 2-1-1-20][0 30-4 1-2 06 1 1 00]
[0 01 3 3 3110 03 6 2 2-2~-4~-4-30]
[0 00 1 4 6 8 8 6 4¢1]
)
[1-1-2 1 2 1-2 -1 1 0 0 0 0 O 0 0 0 00]
[0 4 4-6§-7-4 3 0 0 6 3 -1 -1 0 =2 0 0 00]
[0 0 61818 8 -8-16-22-30~-17T -3 8 11 16 8 3 0 0]
[0 0 0 4204363 69 88 36 -5 -41 ~-64 -66 -59 -37 -17 -4 0]
[0 0 0 0 1 722 47 79110 135 144 135 110 79 47 22 7 1]
Figure 4. The first values of 6.
-
Zale Bnaax, =20
[2].\|n| P
’I
{ 10 -0 — (0
]
1
1
0 ' .
| 9=l
(n-2)+1 : —
rows 0 1
)
]
]
)
! U Lo
{l | — b
| D)
~
-— . . n-2 I
y=1 bmomlals(i ) numer (ooeff(_‘lll .m.;n))
90
By —- | b
\-._ —— _/

X, +! columns

Figure 5. The matrix 6,.

PROPERTY 3.4. Let i be a positive integer. Then, the degree of 0, ;. in q is at most
Xn—(n—2—1i) where Xo =3, (k—1)[}] - 1.

Remark that X, is also the degree of the polynomial 5, which appears in the enumeration

of the parallelogram polyominoes according to the area and the width (see Delest and
Fédou, 1993).
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PRrROOF. From Proposition 3.2, we deduce that, for all i € [1,n — 1],

n+1

'ﬂ.+1 n

ie — 'n.lt —"en i—le
6ﬂ+1,, ( )[ +1]4\ +(q+q )[ +1]A s 1,

9 N i —nt

kL o¥Vn—k4+1,i-1-1, /\k/\-n,—k+1

i-2
A'n+1
E E B.1.a0n— 0 g —————,
[n+1 - £ kloUn—Fk41,i-1-2 )‘k/\n—k+l

If we suppose that deEq(Gn,i,-) < X, — (n — 2 — 1), we obtain by induction that
degq(9n+1,i,o) <Xn - ('n —-1- ‘!.) O

Let
{(n—1)}n-2)
5 .
From the numerical values of #,,, we notice that 8, o ; and 8,, o , _; have the same absolute

value and the same sign (respectively opposite sign) if n is even (respectively odd). So
we find

Tp = Xn —

PROPOSITION 3.5. For all j € [0,T,], the polynomial 6, 0. satisfies
bno = (=1)"0n01.5-
Proor. From Proposition 3.2, we get

An
Ont1,0,0 = (1 - Q)en,o,o[n_++1']l)\_-

Let

n+1
laag®
[CESN Z" ¢

where D,, = X, 41 — X — n is the degree of polynomial. We easily show that

A11+1

is symmetrical because it is equal to products of g-factorials which are symmetrical
polynomials. So

ln,i = J!1'1,1'371—1,

Using this notation, 0, g s can be written

Tn D,
Bn+1,0,0 = (1 - Q) (Z an,O,qu) (Z [n,qu>
i=0 k=0

As Thoy1 =T, + Dy + 1, we deduce that
T

i-1
Ortro0 = Z ((Z On0,5 ¢ lni-54" ) - q(zqj9n,0,jln,i—1—jqi_j_l))
7=0

1=0
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Trt1

Z((Zenoﬂ” iy Zanojm . J))q

i=0
S0, we find

i i1
Onr10i= E Bn0.ln,i-j — E fn,0,5ini-1-5
3=0 j=0

In the same way, we have

T

Bt 1,01t = ) On0,Tumsln (Tuyr i) (Tai) = D On0.Tamln (T i1 =)= (Tumsy -1

j=0 =0
T 5
= 0n0T sbnpoijoict — I On 0T -iln Do it
j=0 =0

We deduce from this that r =17 — 1 and s = ¢.
As l,; =1, p,—; and, by induction hypothesis,

Onoi=(~1)"0n01,-:i

we obtain

—

i— i

§ n
9’n+1,0,’]"“+1 ~1 n O,J ndi—-1-3 7 (71) Gn,(},jln,i—j
]=0 =0

i i—1
Lt ( > bnoslnii— Y 9n,0,jfn,i—1—j)
i=0 =0
= (-1)""0, 4104 O

If we extract the values 6, ; ;, we find the (n — 2)th row of the Pascal triangle. So, we
have the following.

PROPERTY 3.6. For all integer k between & and n — 2,
n—2
Bn,k,k = ( k )

A (Q-g*!
(1-g+qy) q"

PROOF. As

On =

Qn,

we can obtain that

Gninti = Onii+Onic1,i-1 if0<t<n—1,
Qn,0,n = en,D,O-

Thus, let us compute @, ;;4n. There is only one parallelogram polyomino of area n,
with n columns, and no corner. It is the “rectangle” with n columns of height 1.

To build a parallelogram polyomino with n columns, 7 left path corners and area n +1,
we must choose i columns among the last n — 1 of the rectangle with n columns. On
each of these columns, we insert by the bottom a cell, pushing all thay is upper and at
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%
O™ —**EB\ »L_EE—o-i

new cell

Figure 6. Building of a parallelogram polyomino with 6 columns, 3 left path corners and area 9.

the right of this cell. For instance, we build a parallelogram polyomino with 6 columns,
3 left path corners and area 9 in Figure 6.
So, we can build (”:1) parallelogram polyominoes with n columns, 7 left path corners
and of area n + ¢, which gives
n—1
A ditn = ( i )

Now, let us prove the property by induction. Suppose that

n—2
On,ii = ( . )
i
As an,i+1,n+i+1 = Gn,i,,— -+ 6n,i+l,i+]a we obtain
n—1 n—2
9na‘+1,z‘+1 = i+ 1 - i
_{n-=12
C\i+1)
We derive from 8,, the polynomial 3, defined by Delest and Fédou (1993) by taking
y=1,

n—2
,Gn,k: E en,i,fw

i=0

and we find the following.
PROPERTY 3.7. For all k, E:.‘;Oz O ik = E?:_(? Ori X — k-

In the same way, if we substitute the value 1 for g, we obtain:
PROPERTY 3.8. For all ¢ in [0,n — 3|, we have Z;(:() Bk =0.

Thus, by substituting ¢ = 1 we see that 8,(1) = 8, ,_2.4(1), hence &, n_2. and 3,
are g-analogs of a same quantity. We are thus led to formulate:

CONJECTURE 3.9. 0, .2, is the numerator of the coefficient of ™ in the expansion

of ol1(x)/gdo(x) where (1,.(x) is the classical g-analog of the Bessel function defined by
Ismail (1982),

L) = Zw

s [n)ln + ot
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i)

=1
(n-2)+1 —_—
nws 0
| : 0
i1 | —p—
\ = —
y=1 binomials(";z) numer (cocff( q:’ . x “) )
S0
B, 0 1] . b
——7
n-2 “0'.
SN— —~—— .~

X n"'n“l columns

Figure 7. The matrix in the case where both types of corners are counted.

This conjecture has been found empirically. The first numerical values suggest the
following Property, which can also be proved by induction.

PROPERTY 3.10. 8, n_2.4 t5 a symmetricel polynomial in q.

REMARK 3.11. Before doing all this study, we also studied the two types corners case.
Employing the same method, we proved that the study of the generating function according
to the area, the width and the total number of corners could be reduced to the study of a
polynomial recurrence. Each polynomial can be described in a matriz form as displayed
tn Figure 7. Note that in this case, we have no conjecture on 4i,(x) which is a g-analog
of the Bessel function. We get similar results, but they are not es interesting as in the
case studied above.
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