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A hallmark of neurodegenerative diseases is the reactive gliosis characterized by a phenotypic change in as-
trocytes and microglia. This glial response is associated with modifications in the expression and function of
connexins (Cxs), the proteins forming gap junction channels and hemichannels. Increased Cx expression is
detected in most reactive astrocytes located at amyloid plaques, the histopathological lesions typically pre-
sent in the brain of Alzheimer's patients and animal models of the disease. The activity of Cx channels ana-
lyzed in vivo as well as in vitro after treatment with the amyloid β peptide is also modified and, in
particular, hemichannel activation may contribute to neuronal damage. In this review, we summarize and
discuss recent data that suggest glial Cx channels participate in the neurodegenerative process of Alzheimer's
disease. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure
and characteristics.
ommunicating junctions, com-
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1. Introduction

In the brain, neurons receive, integrate, process and propagate infor-
mation. However, to achieve properly these functions and to survive,
neurons need to interact with glial cells, in particular with astrocytes.
Indeed, astrocytes provide trophic and metabolic support to neurons.
They contribute to hyperemia, the blood flow regulation in response
to neuronal activity [1], and to themaintenance of the extracellular me-
dium homeostasis [2]. Moreover, they modulate synaptic activity and
recent evidence suggests their involvement in brain functions as com-
plex as sleep and sensory processing [3]. In pathological situations, as-
trocytes together with microglial cells, the resident immune cells of
the brain, undergo striking changes referred to as reactive gliosis. During
this long-lasting process, microglial cells become activated and astro-
cytes acquire progressively a reactive phenotype characterized by
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varying degrees of morphological and molecular remodeling, which
leads to functional alterations that perturb their interactions with neu-
rons [4, 5]. It is well established that glial cells exhibit diverse levels of
connexin (Cx) expression [6] that are modified during reactive gliosis,
although the consequences on the progression of the pathology remain
to be elucidated in most cases [7]. Cxs are the molecular constituents of
gap junctions, which are clusters of intercellular channels that allow the
direct intercellular exchanges of ions and small molecules (e.g., IP3, ATP,
glutamate, and energy metabolites) between neighboring cells [8].
These gap junction channels (GJCs) are made up by the head to head
docking of two hemichannels (HCs) composed of hexamers of Cxs,
each one located in opposing membranes of adjacent cells. In addition,
it has been reported that in defined conditions, Cxs not engaged in
GJCs can also operate as HCsmediating exchange between the cell cyto-
plasm and the extracellular medium [9]. For instance, inflammatory sit-
uations likely to occur in diverse pathologies trigger HC activation in
glial cells in vitro and in vivo [10, 11]. HCs can also bemade up of pannex-
ins (Panxs), a family of three glycoproteins that share a similar trans-
membrane topology with Cxs but present only ~16% overall identity in
amino acid sequence with Cxs [12, 13]. Although Panxs 1 and 2 are
clearly detected in neurons within the brain [14, 15], up to now evi-
dence of Panx expression in glial cells in vivo has only been reported
in few cases [11, 16].

In this review, we will summarize the current knowledge on Cx
expression and function in astrocytes and microglial cells, the two
cell types involved in reactive gliosis. Special focus will be devoted
to Alzheimer's disease (AD): after a short up to date review on reac-
tive gliosis in this neurodegenerative pathology, we examined and
discussed recent in vitro and in vivo data indicating that Cxs, and pos-
sibly Panxs, can contribute in the neurodegenerative process encoun-
tered during AD progression.

2. Connexin expression and function in glial cells

In the brain, Cx expression is detected in all cell types with a spe-
cific distribution and chronology. The molecular identity of Cxs in the
different glial cell types— astrocytes, oligodendrocytes and microglial
cells – as well as in neurons – has been recently reviewed [6, 7, 17–
19]. The main features are that, among the diverse Cxs detected in
the vertebrate brain (Cxs 26, 29, 30, 31, 32, 36, 40, 43, 45, 47 and
57) by different experimental approaches, each cell type is charac-
terized by a distinct set of Cx expression and more than one Cx is
expressed in a defined cell type.

2.1. Microglial cells

Concerning microglial cells, Cx expression and function have been
almost exclusively examined in cultured cells obtained from newborn
mouse or rat cortex and in one case from embryonic human brain. In
resting microglia, Cxs are either undetected or expressed at low levels.
However, there is no consensus with respect to the type of Cx found,
Cx43, Cx36 or Cx32, whichmay be due to culture conditions and/or sen-
sitivity of the techniques used. Cx43 was the first to be detected in acti-
vated microglia, either in culture after tumor necrosis factor-αTNF-α)
and interferon-γ treatment, or in vivo around stab-wounds where
microglial cells exhibit a diffuse intracellular Cx43 immunoreactivity
[20]. Also, exposure of microglia to staphylococcus aureus triggers
Cx43 mRNA and protein expression associated with a low but signifi-
cant gap junction coupling between neighboring cells, as assessed by
dye diffusion assay [21]. Recently, the amyloid-β peptide (Aβ was
shown to increase Cx43 expression in microglial cells in particular at
the cell surface where it forms functional HCs that allow ATP and gluta-
mate release to the extracellular milieu [22]. However, Cx43 has not
been detected by immunoblotting in resting or activated (by lipopoly-
saccharide (LPS) treatment) microglia by others groups [23–26]. The
presence of Cx36mRNA and proteinwas reported in culturedmicroglial
cells from both mouse and human [25]. Due to its low level of expres-
sion, Cx36 could not be visualized by immunocytochemistry but was
shown to form functional gap junctions between microglial cells as
well as betweenmicroglia and neurons in co-cultures. Indeed, junction-
al currents measured in these cultures between pairs of cells (micro-
glia/microglia and microglia/neurons) are characterized by a small
unitary conductance (b20 pS) and low voltage sensitivity, properties
typical of Cx36 GJCs. However, the incidence of such gap junction cou-
pling is quite low (only one-third of microglial cell pairs are coupled)
and while LPS treatment does not affect Cx36 expression or function,
a mixed treatment with TNF-α and interferon-γ elicits a decrease in
Cx36 protein level [25]. Finally, microglial cells were shown to express
Cx32 that is up-regulated after LPS or TNF-α treatment as well as in
microglial cells from Mecp2 null mice, a model of a neurodevelopmen-
tal disorder known as Rett syndrome, compared to wild-type mice
microglia [27, 28]. In both cases, Cx32 operates as HCs allowing gluta-
mate release with a deleterious effect on neurons. Altogether, these
data indicate that microglial cells, at least in culture, can express low
levels of Cxs and that, in most cases, Cx expression can be triggered by
the activation of microglial cells by pro-inflammatory events. These
Cxs form functional channels as demonstrated by HC activation and
gap junction coupling between pairs of cells. Hence, Cx channels could
contribute to themicroglial response involved in pathological situations
where inflammation takes place as discussed later. In addition, it was
recently reported that Aβ treatment also induces the expression of
Panx1 at the surface of culturedmicroglia in associationwith detectable
HC activity [22]. However, the presence of microglial Cx and Panx ex-
pression in brain tissue remains to be determined.

2.2. Astrocytes

Astrocytes are the cell population that exhibits the highest level of
Cx expression in the brain, with Cx43 and Cx30 being the major astro-
glial Cxs in the adult. The molecular identity of astroglial Cxs was first
established in cultured cells in which single channel activity between
pairs of astrocytes is associated with the presence of gap junctions
composed of Cx43 [29, 30]. During the following decades, new mem-
bers of the Cx family were discovered leading to the detection of the
mRNAs of Cxs 26, 30, 40, 43 and 45 and Cx46 in cultured astrocytes
and the immunostaining for Cx40 and Cx45, although mostly
detected at low levels with diffuse intracellular staining and few im-
munoreactive puncta present at membrane appositions [31]. Finally,
Cx30 is detected in long-term cultures of rat astrocytes [32] while
its expression, undetectable in mouse cortical astrocytes, is induced
in subsets of cells in contact with neuronal cell soma in co-cultures
[33]. Due to the prevalence and high level of Cx43 in cultured astro-
cytes, these cells have been extensively used as a model to analyze
the mechanisms controlling Cx43 expression and function [34].
They provided information on the regulation of gap junction commu-
nication by neurotransmitters, growth factors, endogenous peptides
and bioactive lipids through the activation of underlying intracellular
signaling pathways [34], as well as on HC activation when triggered
by metabolic inhibition and inflammatory treatments [35, 36].

In contrast to microglial cells, an abundant literature is available
concerning the expression of astroglial Cxs in brain tissue. Although
several Cx mRNAs are detected in hippocampal astrocytes by single-
cell reverse transcription PCR [37], in situ hybridization for diverse
Cxs argues for the presence of only Cx43 and Cx30 mRNAs in astro-
cytes [38]. Hence, although a minor expression of a third Cx, Cx26,
cannot be excluded in sub-populations of astrocytes [39–41], the
two prevalent astroglial Cxs are Cx30 and Cx43. This was further con-
firmed using mice double knock out (KO) for Cx30 and Cx43 in which
gap junctional communication assessed by dye coupling in hippo-
campal astrocytes is totally abolished [42, 43]. Cx30 and Cx43 are
widely but heterogeneously distributed in the brain, with quantita-
tive differences among distinct cerebral areas, the main one



Table 1

Pathology Experimental models Connexin expression Gap junction
coupling (GJC)

Hemichannel
activation
(HCA)

Alzheimer
disease

In
vivo

Human PM
biopsies

Cx43 IR at Aβ plaques
[94]

NT

APP/PS1 mice Cx43, Cx30 IR at Aβ
plaques[95, 110]

HCA astrocytes
at plaques
[110]

PDAPP mice NT GJC cortex
[83]
GJC no change
Hip[83]
GJC no change
Hip[100]

PDGFAPPSwInd NT GJC no change
[26]In

vitro
Aβ -treated
astrocytes

No change Cx43[22, 26]
GJC [100]

Aβ-treated
microglia

Cx43[22] HCA[22]

Aβ-treated Hip
slices

NT HCA astrocytes
and microglia
[22]

Parkinson
disease

MPTP mice Cx43 striatum [123] GJC no change
[123]Rotenone rat Cx43 basal ganglia [124]

Huntington
disease

Post-mortem
human
biopsies

Cx43 caudate nucleus,no
change globus pallidus
[124, 125]

NT

Multiple
sclerosis

EAE mouse Cx43 in inflamed WM
[126]

NT

EAE guinea pig Cx43 demyelinated WM
[127]

NT

Cx43 remyelinating WM
[127]

IR: immunoreactivity; NT: not tested; Hip: hippocampus; EAE: experimental
autoimmune encephalomyelitis; MPTP: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyri-
dine; PM post-mortem; WM: white matter.
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concerning the white matter in which almost no Cx30 expression is
detected [44]. More recently, themapping of cre-mediated reporter ac-
tivation for Cx30 and Cx43 has revealed their frequent co-expression in
hippocampal astrocytes [45]. At the ultrastructural level, Cx30 and Cx43
are co-localized at gap junction plaques in brain and spinal cord as
shown by TEM (transmission electron microscopy) immunocytochem-
istry and FRIL (freeze-fracture replica immunogold labeling) [46].
Hence, these two Cxs provide the structural basis for the organization
of astrocyte networks that exhibit a certain degree of selectivity. This
was recently demonstrated in the somatosensory cortex of whisker
projection (barrel cortex) in which, due to the heterogeneity of Cx ex-
pression that is high within barrels but low between barrels, astrocyte
coupling is oriented towards the center of the barrel while inter-barrel
astrocytes areweakly coupled [47]. Such selective networks could coor-
dinate the activity of local neuronal networks through the trafficking of
neurotransmitters, e.g. glutamate or glutamine [7]. Also, by allowing the
diffusion of energy metabolites (glucose and lactate), Cx30 and Cx43
contribute to metabolic networks that are able to feed distant neurons
in case of high neuronal demand [43]. Interestingly, both Cxs are
enriched in specialized processes of astrocytes that enwrap the walls
of blood vessels, the endfeet at which level Cx immunoreactive puncta
are of large size and exhibit a “honeycomb” organization delineating
boundaries between endfeet. Such pattern of expression provides a
perivascular route that facilitates trafficking between neighboring end-
feet [43, 48]. Finally, Cx43 and Cx30 immunoreactivities decline with
aging [49]. Such decrease in immunoreactivity is not correlated with a
reduction in Cx43 protein level measured byWestern blot analysis sug-
gesting that a redistribution of this protein takes place with age and re-
sults in a small decrease in gap junction communication [49].

Although less information is available, there is now evidence for
Panx1 expression detected by western blot and/or immunocyto-
chemistry in cultured astrocytes [50–52]. In these cells, P2X7 receptor
activation with BzATP induces ATP release from astrocytes via Panx1,
but not Cx43 HCs [53]. In contrast, in cultured astrocytes submitted to
hypoxia-reoxygenation or treated with pro-inflammatory cytokines
or Aβ peptide, the HC activity is mediated by Cx43, but not Panx1
[22, 54, 55]. Interestingly, two recent studies, one in fibroblast growth
factor (FGF)-treated cultures of spinal cord astrocytes [56] and the
other in brain slices frommice harboring a brain abscess [11], indicate
that both Cx43 and Panx1 participate in HC activity. Hence, the re-
spective contribution of Panxs and Cxs in astrocyte HC function may
depend on the conditions triggering their activation, an aspect that
requires further investigation.

In diverse pathological situations, the pattern of Cx expression and
the extent of gap junction coupling are modified in astrocytes, as re-
cently reviewed [7]. These changes depend on the type and severity
of insult, the distance from the lesion site and the time post-injury.
As a consequence, deleterious and protective effects have been
reported, in particular after ischemia, stroke or trauma [7]. However,
in most of these studies, the relative contribution of GJCs and HCs was
not determined since the pharmacological agents used block both
channel types [19]. In neurodegenerative diseases, changes in astro-
glial Cx expression have been observed but changes in their channel
functions, HCs and/or GJCs, have been tested in only few of them
(Table 1). Here, we present new insights that have been recently pro-
vided in the context of AD.

3. Alzheimer's disease and reactive gliosis

Alzheimer's disease, discovered more than a century ago, is the most
common neurodegenerative disease of the elderly [57–59]. This patholo-
gy is characterized by an abnormal accumulation of Aβ, generated by se-
quential proteolytic cleavage of the amyloid precursor protein (APP) by
β- andγ-secretase [57]. Aβ oligomers aggregate in the brain parenchyma
to form extracellular deposits called the amyloid plaques, which are
a typical histopathological lesion of AD. Around blood vessels, these
deposits constitute the vascular amyloid responsible for cerebral amyloid
angiopathy [60]. Mutations responsible for the familial forms of AD lie
within genes encoding APP and presenilins (PS), the catalytic subunits
of the γ-secretase complex [57, 61]. Such mutations have been intro-
duced in transgenic mice that exhibit several neuropathological features
of AD including amyloid plaques, and are used as models to further ex-
plore themechanisms coupling Aβ deposition to neural and vascular fail-
ure [62]. A consistent feature of Aβ accumulation is the strong reactive
gliosis associated with amyloid plaques [63, 64].

3.1. Microglial cells

The intimate association ofmorphologically activatedmicroglial cells
with Aβ plaques is well established in both human AD brain and mouse
models of the disease [65, 66]. Recently, the relationship between Aβ
plaque formation and microglial dynamics has been examined using
two-photonmicroscopy in ADmice and has shown that the recruitment
of microglial cells occurs rapidly after plaque formation (within 1–
2 days) [67, 68]. However, in spite of an extensive research dedicated
to these glial cells in AD, their role in the pathological process remains
unclear [66]. Although microglia have the ability to phagocyte Aβ as
amply demonstrated in vitro, they are inefficient to clear Aβ plaques
in vivo, suggesting that the pathways involved in Aβ clearance are al-
tered in AD [66, 69] Also, as central actors in neuroinflammation,
microglial cells contribute to the inflammatory state observed in AD in
which increased levels of a variety of pro-inflammatory cytokines are
detected in brains from both AD patients and animal models [70]. How-
ever, accumulating evidence indicates that microglia exhibit multiple
activation states, from an alternative phenotype characterized by an
anti-inflammatory profile to a classical phenotype typified by the ex-
pression of pro-inflammatory cytokines [71]. In AD, recent data indicate
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that microglial responses are multifaceted, with differences during the
progression of the disease and between sub-populations of microglial
cells, as well as on their relation with Aβ plaques [71, 72]. Given such
complexity, a better understanding of microglial function in the patho-
physiology of AD requires further investigation.

3.2. Astrocytes

The role played by reactive astrocytes in the alteration of synaptic
function [73] and in neuronal toxicity [67] associated with Aβ plaques
has only started to be considered. Although the pathologic potential of
astrocytes in dementiawas initially suggested in 1910 byAlois Alzheimer
[74], the exact role of astrocytes in AD is only recently emerging. Both ag-
gregated Aβ peptides and core of Aβ plaques from AD patients stimulate
astrogliosis [63], a process observed in both AD patients and murine
models, in which reactive astrocytes are characterized by an increased
expression of GFAP and S100β proteins [64, 75]. Such reactive astrocytes
are found close to neuritic plaques, even just at the outer edge of Aβ pla-
ques [63, 76] with processes infiltrating the core of the plaques. In the
hippocampus of a triple transgenicmodel of AD, APP/PS1/tau, the hyper-
trophy of reactive astrocytes encircling neuritic plaques contrasts with
the atrophy of astrocytes located at a distance from them [77]. In addition
to these phenotypic changes, several properties of reactive astrocytes are
modified and some examples are presented below.

First, the glutamatergic function of astrocytes is impaired in AD. In-
deed, a reduced expression of EAAT2, the main astroglial glutamate
transporter in the adult, and a deficient glutamate transport are ob-
served in human post mortem biopsies from AD patients [78–80], sug-
gesting that astrocytes can lose their role in glutamate clearance
which may lead to neurotoxic effects. Similar decreases in glutamate
transporter expression and function occur in Aβ-treated cultured astro-
cytes in which the mechanisms underlying such inhibition are partly
mediated by alteredMAP kinase signaling pathways triggered by oxida-
tive stress [81]. However, the expression of glutamate transporters
seems to be highly variable between AD individuals [82] and in murine
models since increases in glutamate transporter currents are also
detected in the reactive astrocytes of aged mice over-expressing APP
[83]. Such variability may be due to the heterogeneity of reactive astro-
cytes that may be at different stages of the astrogliosis process [5, 80].
Second, in vitro studies show that the exposure of astrocytes to aggre-
gated forms of Aβ modifies their metabolic status by increasing all
main glucosemetabolic pathways (glycolysis and lactate release, tricar-
boxylic acid cycle, pentose phosphate pathway and glycogen storage)
[84], induces mitochondrial depolarization, activates NADPH oxidase
and increases oxidative stress [84–86]. All of these events result in im-
paired neuronal viability. Finally, abnormalities in astrocyte Ca2+ signal-
ing have been detected both in vitro and in vivo in transgenic mouse
models of AD, indicating that this key astroglial signaling pathway is al-
tered. Indeed, increased Ca2+ signals are measured in cultured astro-
cytes treated with Aβ, probably forming channels permeable to Ca2+

at the cell membrane [87, 88]. These Ca2+ signals cause an increase in
reactive oxygen species as well as a depletion in glutathione precursor
supply from astrocytes to neurons whose consequence is an oxidative
stress that leads to neuronal death. These observations obtained in cul-
ture are in line with recent in vivo observations made in a double trans-
genic APP/PS1mouse whose astrocytes have a higher basal intracellular
Ca2+ level compared to wild-type mice [89]. Interestingly, two-photon
in vivo imaging performed in AD mouse models has shown that in-
creased spontaneous Ca2+ signaling in astrocytes affects microvascular
circulation at early stages of the disease [90], a feature that is reminis-
cent of the cerebrovascular dysregulation observed in AD patients
[91]. In addition, cultured astrocytes treated with Aβ exhibit intercellu-
lar Ca2+waves (ICWs) [92]. The propagation of ICWs involves twopath-
ways in which astroglial Cxs acting as GJCs and/or HCs can be involved:
i) a direct intercellular communication through GJCs and ii) a process
mediated by ATP release (via HC or Ca2+-dependent exocytosis) and
subsequent activation of purinergic receptors on neighboring astrocytes
[93]. Interestingly ICWs are also detected in vivo in APP/PS1 mice: these
waves are initiated in astrocytes adjacent to cortical plaques and propa-
gate over distances as long as 200 μm[89]. Consequently, onemaywon-
derwhether suchwaves,which are not detected in control age-matched
mice, are underlain by changes in Cx expression (see below).

4. Changes in glial connexin expression in Alzheimer's disease and
murine models

Thefirst evidence for Cx changes inADwas reported byNagy and col-
leagues (1996) who observed increased immunoreactivity for Cx43 at
Aβ plaque levels in post-mortem human brains from AD patients [94].
At the ultrastructural level, this increase in Cx43 immunostaining occurs
at gap junctions between astrocytic processes adjacent to dystrophic
neuronal processes present in plaque areas [94]. We have also observed
in brain sections fromADpatients such enrichment in Cx43 puncta in the
intermingled strongly GFAP+ astrocyte processes that infiltrate amyloid
plaques (Fig. 1A). This feature is also observed for Cx30, although to a
lesser extent (Fig. 1B). Moreover, such elevated Cx immunoreactivity is
associated with plaques exhibiting bulb-like structures identified by
their content in phosphorylated tau, which is characteristic of damaged
neurites (Fig. 2A).

To investigate inmore detail the pattern of Cx expression in the con-
text of AD, APP/PS1 transgenic mice that develop an amyloid pathology
have recently been used as experimentalmodels [95]. Inmice older than
4 months, hotspots of Cx43 and Cx30 immunoreactivity are visible in
the hippocampus and the cortex at Aβ plaque levels. At high magnifica-
tion, bright and large Cx immunoreactive puncta are concentrated in as-
trocyte processes that penetrate the core of the plaques, often encircled
by neuritic dystrophies (Fig. 2B), as observed in human AD brains. In
contrast, they are not detected in microglial cells that coexist with reac-
tive astrocytes at the periphery of Aβ deposits [95]. A semi-quantitative
analysis showed that such increases in Cx immunoreactivity occurs in a
largemajority of plaques. Nevertheless, depletion in astroglial Cxs is also
observed in a small proportion of plaques (≤15%) and tends to diminish
in oldermice exhibiting a higher Aβ loading. This feature suggests that a
decreased Cx expression could preferentially occur in “young”, recently
formed plaques. Since Aβ plaques accumulate as the disease progresses,
the relative proportion of young plaques will be lower at advanced
stages of the amyloid pathology. In agreement with this hypothesis,
human AD sections from post-mortem brain biopsies show no evidence
for decreased Cx expression.

The elevated Cx immunoreactivity detected in vivo in association
with most Aβ plaques where activated microglial cells are engaged
in a multistep inflammatory process is in apparent contradiction
with in vitro observations showing single application of Cx43 expres-
sion is strongly decreased in astrocytes treated with pro-inflammatory
cytokines (interleukin1-β [IL-1β] and TNF-α), an effect potentiated by
Aβ [26]. Several hypotheses can be proposed to explain such
discrepancy. First, the changes in Cx expression in culture occur after
short-term treatments (24–48 h), a timing obviously different from
the in vivo situation in which the chronic situationmay lead to a desen-
sitization of cytokine receptors, uncoupling internal signaling path-
ways involved in the regulation of Cx expression and their channel
functions. For instance, receptor desensitization has been proposed
for the TNF-α signaling pathway. Interestingly, an intracellular media-
tor of TNF receptor1, the protein DENN/MADD is down-regulated both
in the hippocampus of AD patients and in murine models of AD [96,
97]. Second, although global inflammation develops in vivo as the pathol-
ogy proceeds, the local inflammatory status around the plaques is much
more complex. The phenotype of microglial cells can change as amyloid
pathology progresses with an age-dependent switch from an “alterna-
tive” anti-inflammatory phenotype to a “classic” pro-inflammatory phe-
notype [69, 72]. In the first step of the amyloid pathology, activated
microglial are restricted to Aβ plaques and characterized by YM-1



Fig. 1. Increased immunoreactivity of Cx43 and Cx30 in reactive astrocytes at Aβ plaques in human AD brains. High magnification confocal images of triple immunostained sections
of temporal cortex obtained post-mortem from AD patients showing Aβ deposits (blue, A1, B1), immunoreactive puncta of Cx43 (A2) or Cx30 (B2) in green and GFAP labeled as-
trocytes (red, A3, B3). Overlay images illustrate the enrichment in Cx immunoreactive dots at plaque level in (A4, B4). Scale bar: 50 μm.
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mRNA expression, amarker of the alternative phenotype. Later on, while
activatedmicroglial cells show awidespread distribution in the brain pa-
renchymaandproduce increasing levels of TNF-α and IL-1β [69], surpris-
ingly, microglial cells contacting the plaques remain YM-1 positive and
are devoid of TNF-α [72]. Together these data indicate that global inflam-
mation develops as the pathology proceeds but that the inflammatory
status at plaque level is likely different. Also, it cannot be excluded in
situ that other secretion products originated frommicroglia and/or astro-
cytes can counteract the effect of pro-inflammatory cytokines and Aβ.
Hence, to understand the possible contribution of inflammation in the
expression of Cxs, and perhaps Panxs, at amyloid plaque levels, it will
be important to directly examine by in situ hybridization and/or immu-
nohistochemistry the expression of a panel of markers of inflammation
to determine the local inflammatory status of Aβ plaques and whether
it is involved in the changes observed in Cx expression in glia. Finally,
the expression of Cxs in astrocytes is under the control of neurons [33,
98], thus again in vitro situations that do not take into account this part-
nership could introduce a bias in reproducing pathological situation and
lead to misinterpretations.
Fig. 2. Elevated astrocyte Cx43 immunoreactivity associated with neuritic dystrophies in bra
triple immunostained cortical sections of human AD brains in the upper part (A1–4) and AP
trocytes (red A1, B1) with an increased Cx43 immunoreactivity (green A2, B2) in areas ex
blue with anti-Tau antibodies (A3, B3). Merge images are shown in (A4, B4). Scale bar: 50 μ
5. Changes in connexin channel functions in Alzheimer's disease
animal models and amyloid-β treated cultures

Once at the membrane, Cxs can function as GJCs or HCs and recent
evidence indicates that in glia both functions are modified in Aβ-trea-
ted cultures as well as in AD models.

5.1. Gap junction communication

Concerning gap junction communication, the first evidence of a
potential effect of Aβ comes from the observation that this peptide in-
creases the propagation of ICWs in PC12 cells [99] and in astrocytes
[92], a process in which Cxs are known to be involved [93]. Then,
the effect of Aβ on gap junction communication was directly investi-
gated by measuring dye coupling in cultured astrocytes. Several iso-
forms of aggregated Aβ (1–40, 1–42, 25–35) that per se do not
affect dye coupling, potentiate the inhibition induced by inflammato-
ry cytokines IL-1β and TNF-α [26]. However, the aggregation status
of Aβ seems important since low concentrations of monomerized
in sections from AD patients and APP/PS1 mice. High magnification confocal images of
P/PS1 mice in the lower part (B1–4). Representative images showing GFAP stained as-
hibiting bulb-like structures (arrows) characteristic of dystrophic neurites stained in
m.
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Fig. 3. Aβ peptide triggers hemichannel activation in cultured glial cells leading to neu-
ronal death. Aggregated Aβ peptide treatment of microglial cells (M) or astrocytes (A)
triggers activation of HCs composed of Cx43 in reactive astrocytes (RA) and of Cx43
and Panx1 in activated microglia (MA) allowing for glutamate and ATP release. Both
gliotransmitters can bind on neuronal (N) NMDA and purinergic receptors, respective-
ly, leading to an increase in intracellular Ca2+ resulting in neuronal degeneration (DN).
ATP can also activate Panx1 HCs generating Ca2+ influx and neuronal damage.
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Aβ1–40 impair gap junction communication in cultured rat astrocytes
[100]. Indeed, several astrocyte properties are differentially affected
by oligomeric versus fibrillar Aβ, including their ability to release
pro-inflammatory cytokines and their metabolic status [84, 101].
Such observations in cultured astrocytes contrast with those obtained
in adult brain slices from ADmodels. The extent of dye coupling in as-
trocytic networks in acute cortical brain slices of a mouse over-
expressing APP is increased compared with age-matched control
mice [83]. Such increase is likely dependent on the brain area since
astrocyte gap junction communication is similar in hippocampal
slices of wild-type mice and of AD models (PD-APP, PDGF-APPSwInd)
in which Aβ deposits are present [83, 100]. These results indicate
that the ability of astrocytes to send signals to distant sites via gap
junction-mediated astroglial networks is maintained or enhanced in
vivo in pathological conditions, but the nature of biological signals
trafficking through this network remains to be identified. Since ICW
propagation depends on gap junction communication in the cortex
but not the hippocampus [102], ICWs observed recently in vivo in
the cortex of the APP/PS1 mouse model [89] are likely to represent
the first example of such intercellular trafficking.

5.2. Hemichannels

To establish whether the changes in expression of astroglial Cxs
have also an impact on their HC function, in vitro cultures are useful
models for determining the respective contribution of Cxs and Panxs
to HC activity by using pharmacological approaches and single channel
patch-clamp recordings. Recently, a detailed in vitro analysis of the ef-
fect of aggregated Aβ25–35 on HC activity in the three cell types that in-
teract at amyloid plaques (i.e. microglia, astrocytes and neurons) has
been performed [22]. By monitoring the uptake of ethidium bromide
(Et) as an index of activity, HC activation is detected in these three
cell types, with microglia being the most sensitive to the Aβ treatment,
followed by astrocytes and then neurons. The pharmacological profile
of these activations indicates that Cx43 and Panx1 HCs are involved in
microglia, while only Cx43 HCs are activated in astrocytes. These
observations were confirmed by using glial cultures from Cx43 KO
mice. In neurons, a Cx HC activity that involves Cx36, is associated to a
Panx1 HC component. Accordingly, single channel events with unitary
conductances characteristic for Panx1, Cx43 and Cx36HCswere respec-
tively recorded in microglia, astrocytes and neurons after treatment
with Aβ25–35. These currents are recorded at negative holding potential
(−60 mV) and in the presence of external divalent cations suggesting
that such HC openings may occur in pathophysiological situation.

The consequences of Aβ25–35 induced-HC activationwere further an-
alyzed at two levels: i) the molecular nature of molecules released and
ii) their impact on neuronal fate. There is already evidence that HC acti-
vation can lead to “gliotransmitter” release in both types of glia [27, 28,
103, 104]. This was confirmed in microglial cells and astrocytes treated
by Aβ25–35, which release glutamate and ATP via activated HCs [22].
Moreover, both gliotransmitters present in conditioned medium (CM)
harvested from either microglia or astrocytes treated with Aβ25–35

were shown to trigger HC opening in neurons with effects on neuronal
survival. Hence, in culture models, Aβ peptide generates HC activation,
in addition to activation of NMDA and P2X receptors, in glia that release
ATP and glutamate, which in turn activate HC opening in neurons
leading to neuronal death (Fig. 3).

Acute brain slices from adultmouse represent amore integrated sys-
tem to test HC activity and perform pharmacological treatments. Short-
term treatments of acute hippocampal slices with Aβ25–35 result in an Et
uptake inmicroglia identified after post-fixation by isolectin B4 labeling,
in astrocytes visualized in hGFAP-eGFP mice as well as in pyramidal
neurons [22]. In microglia and astrocytes, this membrane “permeabili-
zation” is mediated by Cx43 HCs as indicated by their pharmacological
profile and confirmed by the lack of Aβ25–35-induced Et uptake in a
Cx43fl/flcreGFAP mouse. In pyramidal neurons, Et uptake is essentially
due to Panx1 HCs whose activity augments in the presence of the Aβ
peptide. Like in cultures, neuronal death detected in Aβ-treated slices
is prevented either by blockingHCs inmicroglia, astrocytes and neurons
or by using NMDA or P2X receptor antagonists. These results confirm
that short-term treatments with the Aβ peptide induce a cascade of
HC activation in glia and neurons leading to neuronal death [22]. Inter-
estingly, a novel putative HC blocker (INI-0602) able to cross the blood
brain barrier was recently shown to inhibit in vivo the LPS-induced glu-
tamate release from microglia and to improve memory deficits in
APP/PS1 mice [105]. The authors argued that these effects are mediated
by the pharmacological blockade of microglial Cx32 HCs. However, the
possible involvement of other HC types or even other channels cannot
be ruled out in this study since the specificity of INI-0602 requires fur-
ther demonstration, using for example in vivo experiments with
Cx32−/− microglia or knockdown of Cx32. Finally, the next step will
be to analyze in slices from AD model mice (APP/PS1) the functional
state of glial HCs using patch-clamp andmembrane permeability assays
to fully determine the HC involvement in this pathology.

6. Conclusions and perspectives

A common feature of neurodegenerative diseases is the phenotypic
transformation of glial cells that are engaged in the activation process
resulting in reactive gliosis. In most of these pathologies, in situ studies
have established that this glial response is associated with a change in
Cx expression (Table 1). This is the case for AD in which functional ap-
proaches, based on the use of AD animal models or cell cultures treated
with Aβ peptide, have recently contributed to give some insight on the
consequences of these modifications in the pathological process.

In normal situation, gap junction communication is high between as-
trocyteswhile it is still questioned inmicroglia (Fig. 4A). So far, available
data in ADmouse models are concordant and indicate an enhancement,
or at least maintenance of intercellular communication in astroglial net-
works, compared to control mice. Hence, such pathways, which allow
the diffusion of a variety of substances to distant sites, would be still
working (Fig. 4B). The nature of signaling molecules trafficking within
these networks can bemultiple and consequently may have various im-
pacts on several functions. For instance, ICWs propagating between cor-
tical astrocytesmay have direct consequences on neuroglial interactions,
which could modify the activity of neurons and/or their survival. This
could operate through Ca2+-dependent mechanisms that are involved
for instance in gliotransmission [106], K+ homeostasis [93], intercellular
metabolic wave propagation [107], as well as blood flow control at the
gliovascular interface [108]. Interestingly, cerebral blood flow is reduced
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Fig. 4. Changes in connexin channel-mediated neuroglial interaction at amyloid pla-
ques. (A) In normal situation with healthy neurons (green), astrocytes (blue) are high-
ly coupled by gap junction channels (double black symbols), while hemichannels are
virtually absent in astrocytes and microglial cells (orange). (B) In AD models character-
ized by amyloid plaques (violet aggregates), neighboring astrocytes are reactive (thick
blue) and microglia are activated (thick orange). While gap junction communication is
maintained in astrocytes, hemichannels (black symbols) are open in glial cells next to
the Aβ deposits. This activation allows the release of active compounds (red light-
nings), in particular glutamate and ATP, which can lead to neuronal damage. These
gliotransmitters can also act on astrocytes (blue arrows) and microglia (orange
arrows).
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in AD, which may impair the proper delivery of nutrients to neurons. In
this context, the preservation of gap junction communication within
astroglial networks associated to an increase in glucose metabolism, re-
cently demonstrated in astrocytes treated with Aβ [84], could represent
a neuroprotective compensatory mechanism allowing the intercellular
diffusion of energymetabolites to sustain neuronal activity and survival.
Also, the diffusion of toxic substances, e.g. glutamate, within groups of
communicating astrocytes, could contribute to their dissipation and
thus result in an attenuation of neurotoxicity. However, addressing the
issue of a beneficial or deleterious role of glial gap junctions is a complex
problem since many available pharmacological tools have a limited
specificity and block GJCs as well as HCs [19]. Obviously, mice KO for
Cx genes do not represent good tools to solve this question since both
channel functions are affected in these mice [19]. An interesting possi-
bilitywould be tofindmutations in Cx43 that blockGJC formationwith-
out affecting the HC activity. Potential targets could be found in the
extracellular Cx43 domains that are involved in the docking of HCs to
form a GJC. Such dominant negative mutations have been described
for other Cx genes, e.g. Cx50 [109]. Mice engineered to express these
mutations could be crossed with APP/PS1 mice to determine their con-
sequence on neuronal properties and survival aswell as on the progres-
sion of the amyloid pathology.

On the other hand, activation of glial HCs might provide a pathway
for ATP and glutamate release and potentially other molecules that
can have deleterious effects on neurons, as illustrated in Figs. 3 and
4B. Whether this process demonstrated in culture and in acute slices
after short-term exogenous application of Aβ peptide [22] takes place
in vivo remains to be investigated. Preliminary results indicate that
HCs are activated in reactive astrocytes surrounding Aβ plaques in
APP/PS1 mice [110]. Glutamate released through HCs in microglia
and/or astrocytes at plaque levels could locally enhance intracellular
[Ca2+]i in neurites by acting on NMDA receptors and thus could
lead to neuritic dystrophies underlying neuronal dysfunction in AD.
Indeed, in APP/PS1 mice, the presence of Aβ plaques causes a Ca2+

overload in axon and dendrites, further resulting in spinodendritic
Ca2+-dependent decompartmentalization and neuritic dystrophy
[73]. Alternatively, ATP could represent another glial signal released
through HCs during AD progression. ATP can act on microglia, astro-
cytes or neurons. For instance, it is now well established that the mo-
bility of microglial cells depends on an ATP signal that contributes to
their rapid migration towards an injured area [111]. Recently, it was
reported that ATP is required for the migration and accumulation of
microglial cells after a nerve crush in the leech and is released
through glial innexin HCs [112]. Thus, the ATP release via activated
HCs in reactive astrocytes could contribute to the recruitment of micro-
glia around Aβ plaques. Accordingly, microglia from ex vivo retinal ex-
plants exhibit a reduced process motility after treatment with
probenecid, a specific Panx HC blocker, suggesting that Panx1 HCs
could play a relevant role in this process [113]. In astrocytes, ATP can
act in a paracrine manner on P2Y2 receptors and thus, contributes to
the propagation of ICWs [114]. Accordingly, ATP release via HCs from
reactive glial cells could be involved in the propagation of ICWs initiated
close to the plaques in APP/PS1 mice [89]. Also, ATP acting on P2X7 re-
ceptors could amplify in an autocrine and/or paracrine manner the
opening of Panx1 HCs in astrocytes and trigger the inflammasome
with subsequent release of IL1β [115]. By the same mechanism, it has
been recently proposed in neurons that ATP opens Panx1 HCs allowing
the entry of Ca2+ that leads to neuronal death [22]. Finally, since ATP
modulates synaptic activity and is involved in synaptic depression
after its conversion to adenosine [116, 117], its release through glial
HCs could participate in synaptic impairment that characterizes AD.
However, its conversion to adenosine could also exert a beneficial
role, as shown in the response to ischemia after preconditioning [118].

In order to better define the role of glial Cxs and Panxs in AD, several
lines of research can be defined for the future. One would be to develop
new tools that selectively target the different glial and neuronal Cxs and
Panxs, but also discriminate between their two channel functions, HC
versusGJC. Interestingly, HCs appear more implicated in neurotoxic pro-
cesses than GJC [54, 119], a feature that should improve the chance of
success for pharmacological intervention. Indeed, while GJCs have their
two ends within the cytoplasm, HCs offer a direct extracellular access
that should facilitate the screening of drugs that block their activity. Re-
active gliosis is a hallmark in AD and other neurodegenerative diseases,
and focusing on glial targets is emerging as an alternative therapeutic
approach in this field [120–122]. Since expression and function of glial
Cxs (this remains to be addressed for Panxs) are modified in AD, these
proteins should be considered as potential targets for the design of fu-
ture therapeutic tools. The identification of molecular mechanisms as
well as cellular interactions in which Cx channels are involved in during
AD progression could then be used as a basis to address the question of
the role of glial cells in other neurodegenerative diseases where it is al-
ready known that the expression of glial Cxs is modified (Table 1).
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