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Abstract In the present work we derive an exact solution of
an isotropic and homogeneous Universe governed by f (T )

gravity. We show how the torsion contribution to the FRW
cosmology can provide a unique origin for both early and
late acceleration phases of the Universe. The three models
(k = 0,±1) show a built-in inflationary behavior at some
early Universe time; they restore suitable conditions for the
hot Big bang nucleosynthesis to begin. Unlike the standard
cosmology, we show that even if the Universe initially started
with positive or negative sectional curvatures, the curvature
density parameter enforces evolution to a flat Universe. The
solution constrains the torsion scalar T to be a constant func-
tion at all time t , for the three models. This eliminates the
need for dark energy (DE). Moreover, when the continu-
ity equation is assumed for the torsion fluid, we show that
the flat and closed Universe models violate the conservation
principle, while the open one does not. The evolution of the
effective equation of state (EoS) of the torsion fluid implies a
peculiar trace from a quintessence-like DE to a phantom-like
one crossing a matter and radiation EoS in between; then it
asymptotically approaches a de Sitter fate.

1 Introduction

Recent observational data suggest that our Universe is accel-
erating. Amongst the possible explanations for this phe-
nomenon are modifications to gravitational theory [1]. Cos-
mological constant, from an ideal fluid having different
shapes of EoS with a negative pressure, a scalar field with
quintessence-like or phantom-like behavior can also explain
DE [2]. It is not obvious what kind of DE is more suitable to
explain the present epoch of the Universe. Observational data
point to some type of DE having an EoS parameter which is
close to −1, or even less than −1 (which is the phantom case).
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Modification of general relativity (GR) seems to be quite
attractive possibility to resolve the above mentioned prob-
lem. Modifications of the Hilbert–Einstein action through the
introduction of general functions of the Ricci scalar R have
been extensively explored [3–9]. These f (R) gravity theo-
ries can be reformulated in terms of scalar field quintessence.
Moreover, it has been shown that when starting from f (R)

gravity, the phantom case in scalar tensor theory does not
exist. However, when the conformal transformation becomes
complex the phantom barrier is crossed, and therefore the
resulting f (R) function becomes complex. These cases are
studied [6] in more detail, in which, to avoid this handicap,
a dark fluid was used to produce the phantom behavior such
that f (R) function reconstructed from the scalar tensor the-
ory continues to be real.

Initially the idea of teleparallelism theory has been pro-
posed by Einstein in order to unify gravity and electromag-
netism [10,11]. Later Einstein left the teleparallelism theory
not because of its failure in the attempt of unification only,
but also because of the vanishing of the curvature tensor of
the Weitzenböck connection. But the non-vanishing torsion
tensor aroused recently a great interest in astrophysical and
cosmological applications in the so called f (T ) gravitational
theory. The main motivations of such a theory were:

1. GR can be viewed as a certain theory of teleparallelism;
thus, it could be regarded at least as a different perspective
that could lead to the same results [12].

2. In such a context, one can define energy and momen-
tum tensors of the gravitational field which are true ten-
sors under all general coordinate transformations but not
under local Lorentz transformation.

3. This theory is interesting because it can be seen as gauge
theories of the translation group (not the full Poincaré
group); consequently, one may provide an alternative
interpretation of GR [13–24]. Most recently Teleparal-
lel Equivalent of General Relativity (TEGR) has been
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generalized to f (T ) theory, a theory of modified grav-
ity formed in the same spirit as generalizing GR to
f (R) gravity [25,26]. A main merit of f (T ) gravity
theory is that its gravitational field equation is of sec-
ond order, the same as for GR, while it is of fourth
order in metric f (R) gravity. This merit makes the
analysis of the cosmological expansion of the Uni-
verse in f (T ) gravity much easier than in f (R) grav-
ity. f (T ) gravity has gained significant attention in
the literature with promising cosmological implications
[27–74].

The main target of this work is to show how f (T ) gravity
can be useful in explaining the flatness and acceleration at
early and late phases of our Universe. For as is well known,
current observations of the present Universe indicates that
our Universe now is almost spatially flat. This leads one to
exclude the closed and open Universe models. On the other
hand the initial flat space assumption contradicts the pres-
ence of the strong gravitational field (i.e. the Riemann cur-
vature) as it should! This contradiction might be explained
as the flatness problem of the standard cosmology. Actu-
ally this problem has been overcome by the idea of an infla-
tionary scenario during ∼ 10−36 − 10−32 s from the big
bang. Lots of inflationary models have been proposed by
using scalar fields. But to gain the benefits of bsoth infla-
tion and the standard cosmology the inflation should end at
∼ 10−32 s from the big bang. This needs slow-roll conditions
so that the inflationary Universe ends with a vacuum dom-
inant epoch allowing the Universe to restore the big bang
scenario. So the inflation can be considered as an add-on
tool rather than a replacement of the big bang [75]. Until
now there are no satisfactory reasons for the transition from
inflation to big bang. Our trail here to treat these problems
starts by diagnosing the core of the problem. We found that
the curvature within the framework of the GR may lead to
these conflicts, while introducing new qualities to the space-
time, like torsion, might give a different insight into these
problems.

The work is arranged as follows: In Sect. 2, we describe
the fundamentals of the f (T ) gravity theory. We next show
the contribution of the torsion scalar field to the density and
the pressure of the FRW models and necessary modifica-
tions in Sect. 3. Also, we obtain a model dependent scale
factor R(t) and f (T ) as a solution of the continuity equa-
tion. In Sect. 4, we investigate the cosmological behavior of
the flat, closed and open Universe models due to f (T ) mod-
ifications. Moreover, we give the physical descriptions for
the obtained results. In the flat Universe the teleparallel tor-
sion scalar field T and the f (T ) appear as constant functions
and the later might replace the cosmological constant, the
Universe shows an inflationary behavior as the scale factor
R(t) ∝ eHt , where the Hubble parameter H is a constant.

The flat Universe shows no evolution with time. Moreover,
we investigate the closed Universe model which shows an
inflationary behavior as well. In spite of the torsion scalar
field T appears as a constant function similar to the flat case,
but the f (T ) of the closed Universe appears as a function
of time. This allows the cosmological parameters to evolve.
In particular the evolution of the curvature density parame-
ter �k shows a clear tendency to vanish at late time, which
explains how the Universe can start with initial curvature;
then it goes naturally to flat behavior. Combining the cur-
vature density parameter within the total density parameter
�Tot in addition to the matter �m and the torsion �T den-
sity parameters gives a very restrictive range for the total
density parameters |�Tot − 1| ≤ 10−16 at some early time.
This is a suitable value to begin the primordial nucleosyn-
thesis epoch. The late accelerating expansion of the Universe
is also recognized as the Hubble parameter H > 0 and the
deceleration parameter q → −1. Furthermore, the investi-
gation of the open Universe shows a behavior similar to the
closed model. So both closed and open models suggest a
unique source for early and late acceleration phases of the
Universe. While the open model, uniquely, implies a time
dependent effective EoS of the torsion fluid. Its evolution
starting initially with a quintessence-like energy to asymp-
totical de Sitter crosses radiation-, dust-, and phantom-like
energies. Section 5 is devoted to summarizing and conclud-
ing the results.

2 ABC of f (T )

In the Weitzenböck space-time the fundamental field vari-
ables describing gravity are a quadruplet of parallel vector
fields [76–79] hi

μ, which we call the tetrad field character-
ized by

Dνhi
μ = ∂νhi

μ + �μ
λνhi

λ = 0, (2.1)

where �μ
λν define the nonsymmetric affine connection

�λ
μν

def.= hi
λhi

μ,ν, (2.2)

with hiμ,ν = ∂νhiμ.1 Equation (2.1) leads to the metricity
condition and the identically vanishing of curvature tensor
defined by �λ

μν , given by Eq. (2.2). The metric tensor gμν

is defined by

gμν
def.= ηi j h

i
μh j

ν, (2.3)

with ηi j = (+1,−1,−1,−1) is the metric of Minkowski
space-time. We note that, associated with any tetrad field hi

μ

1 Space–time indices μ, ν, . . . and SO(3,1) indices a, b, . . . run from 0
to 3. Time and space indices are indicated by μ = 0, i , and a = (0), (i).
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there is a metric field defined uniquely by (2.3), while a given
metric gμν does not determine the tetrad field completely; for
any local Lorentz transformation of the tetrads hi

μ leads to
a new set of tetrads which also satisfy (2.3). Defining the
torsion components and the contortion as

T α
μν

def.= �α
νμ − �α

μν = ha
α

(
∂μha

ν − ∂νha
μ

)
,

K μν
α

def.= −1

2

(
T μν

α − T νμ
α − Tα

μν
)
, (2.4)

where the contortion equals the difference between the
Weitzenöck and Levi-Civita connections, i.e., K μ

νρ =
�μ

νρ − {μ
νρ

}
. The tensor Sα

μν is defined as

Sα
μν def.= 1

2

(
K μν

α + δμ
α T βν

β − δν
αT βμ

β

)
, (2.5)

which is skew symmetric in the last two indices. The torsion
scalar is defined as

T
def.= T α

μν Sα
μν. (2.6)

Similar to the f (R) theory, one can define the action of f (T )

theory as

L(ha
μ,�A) =

∫
d4xh

[
1

16π
f (T ) + LMatter(�A)

]
,

where h = √−g = det
(
ha

μ

)
,

(2.7)

and we assumed the units in which G = c = 1 and �A are
the matter fields. Considering the action (2.7) as a function
of the fields ha

μ and setting the variation of the function
with respect to the field ha

μ to be vanishing, one obtains the
following equations of motion [25,59]:

Sμ
ρνT,ρ f (T )T T +

[
h−1ha

μ∂ρ

(
hha

α Sα
ρν

) − T α
λμSα

νλ
]

× f (T )T − 1

4
δν
μ f (T ) = −4πT ν

μ, (2.8)

where T,ρ = ∂T
∂xρ , f (T )T = ∂ f (T )

∂T , f (T )T T = ∂2 f (T )

∂T 2 and
T ν

μ is the energy-momentum tensor.

3 Cosmological modifications of f (T )

Recent cosmic observations support that the Universe is
expanding with an acceleration. In this paper we attempted
to apply the f (T ) field equations to the Universe. In this
cosmological model the Universe is taken as homogeneous
and isotropic in space, which directly gives rise to the tetrad
given by Robertson [80]. This tetrad has the same metric as
the FRW metric; it can be written in spherical polar coordi-
nate (t , r , θ , φ) as follows:

(
hi

μ
)=

⎛

⎜⎜
⎜
⎜
⎝

1 0 0 0

0 L1 sin θ cos φ
4R(t)

L2 cos θ cos φ−4r
√

k sin φ
4r R(t) − L2 sin φ+4r

√
k cos θ cos φ

4r R(t) sin θ

0 L1 sin θ sin φ
4R(t)

L2 cos θ sin φ+4r
√

k cos φ
4r R(t)

L2 cos φ−4r
√

k cos θ sin φ
4r R(t) sin θ

0 L1 cos θ
4R(t)

−L2 sin θ
4r R(t)

√
k

R(t)

⎞

⎟⎟
⎟
⎟
⎠

,

(3.1)

where R(t) is the scale factor, L1 = 4 + kr2, and L2 =
4 − kr2. Substituting the vierbein (3.1) into (2.6), we get the
torsion scalar

T = 6k − 6Ṙ2

R2 ,

= −6

(
H2 − k

R2 ,

)

= −6H2(1 + �k), (3.2)

where H(= Ṙ
R ) is the Hubble parameter and �k(= −k

R2 H2 ) is
the curvature energy density parameter. The field Eq. (2.8)
read

T 0
0 = −R2 f − 12Ṙ2 fT

4R2 , (3.3)

T 1
1 = T 2

2 = T 3
3 = 4k(R2 fT + 12Ṙ2 fT T ) − R4 f − 4R2(R R̈ + 2Ṙ2) fT + 48Ṙ2(R R̈ − Ṙ2) fT T

4R4 , (3.4)

where the EoS is taken for a perfect fluid so that the energy-
momentum tensor is T μ

ν = diag(ρ,−p,−p,−p). Using
(3.3), the perfect fluid density ρ is given by

4πρ = R2 f + 12Ṙ2 fT

4R2 , (3.5)

and using (3.4), the proper pressure p of the perfect fluid is
given by

4πp = 4k(R2 fT + 12Ṙ2 fT T ) − R4 f − 4R2(R R̈ + 2Ṙ2) fT + 48Ṙ2(R R̈ − Ṙ2) fT T

4R4 . (3.6)
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Equations (3.5) and (3.6) are the modified Friedmann
equations in the f (T )-gravity in its generalized form. Then
the EoS parameter ω = p

ρ
of the perfect fluid is given by

ω = −1

+4k(R2 fT +12Ṙ2 fT T ) − 4(R R̈− Ṙ2)[R2 fT −12Ṙ2 fT T ]
R2(R2 f +12Ṙ2 fT )

.

(3.7)

Considering the total energy density and pressure of the Uni-
verse behaves as the DE. Assuming the EoS of the DE, i.e.,
p = −ρ, we get from Eq. (3.7) an explicit form of f (T ):

f (T ) = a + b e
1

12

[
R2(R̈ R−Ṙ2−k)

Ṙ2(R̈ R−Ṙ2+k)

]
T
, (3.8)

where a and b are constants of integration. The above equa-
tion indicates that there is a certain code relating f (T ) to
the scale factor R(t) so that we should investigate possi-
ble compatibilities of these two functions. In the flat case,
Eq. (3.8) seems to be suitable to produce the de Sitter Uni-
verse (i.e. T = −6H2 = const.), which implies that
Ṫ = R̈ R2− Ṙ2 = 0; see (3.2). This produces an unavoidable
undetermined quantity in the f (T ) form. Even in non-flat
cases, the successful exponential scale factor of the infla-
tionary cosmology requires a constant torsion scalar, i.e.
Ṫ = R̈ R − Ṙ2 + k = 0, and again we get an undefined
quantity in the above f (T ) form. Later, in §3.3, we will
recall (3.8) to show that enforcing the universal density to
produce a DE, as we have just done, is not a functional code
for the Universe! So we do not advice using this treatment to
approach the accelerating Universe.

3.1 The FRW dynamical equations

Let us assume that the background is a non-viscous fluid. As
we have mentioned, we cannot enforce the total density and
pressure to be a DE. Alternatively, we can study the torsion
contribution to both ρ and p in the Friedmann dynamical
equations by replacing ρ → ρ+ρT and p → p+ pT , where
ρ, ρT , p, and pT are the matter density, the torsion density,
the matter pressure and the torsion pressure, respectively.

3

(
Ṙ

R

)2

= 3H2 = 8πρ + 8πρT − 3
k

R2 , (3.9)

3

(
R̈

R

)
= 3q H2 = −4π (ρ + 3p)

−4π (ρT + 3pT ) , (3.10)

where q(= − R R̈
Ṙ2 ) is the deceleration parameter. In the above

equation we take the general case of a non-vanishing pressure
p �= 0. It is clear that when ρT = 0 and pT = 0 the above
equations reduce to the usual Friedmann equations in GR. We
take ρ = ρc where ρc is the critical density of the Universe

when it is full of matter and spatially flat (k = 0), then
ρc = 3H2

8π
. Substituting this in Eqs. (3.9) and (3.10) we get

1 = �m + �T + �k, (3.11)

q = (ρ + 3p) /2

3H2/8π
+ (ρT + 3pT ) /2

3H2/8π
, (3.12)

where �m = ρ
ρc

= ρ

3H2/8π
represents the matter density

parameter and �T = ρT
ρc

= ρT
3H2/8π

represents the torsion
density parameter.

3.2 The torsion contribution

In order to obtain the torsion contribution ρT and pT , we
rewrite Eqs. (3.5) and (3.6) in terms of the Hubble parameter,

4πρ = 1

4
( f + 12H2 fT ), (3.13)

4πp = k

R2 ( fT + 12H2 fT T ) −
(

Ḣ + 3H2
)

fT

+12Ḣ H2 fT T − 1

4
f. (3.14)

Also, the EoS parameter (3.7) can be rewritten as

ω = −1 + 4k( fT + 12H2 fT T )

R2( f + 12H2 fT )

−4Ḣ( fT − 12H2 fT T )

( f + 12H2 fT )
. (3.15)

Substituting the matter density that is obtained by the f (T )

field Eq. (3.13) into the FRW dynamical Eq. (3.9), we get the
torsion density,

ρT = 1

8π

(
3H2 − f/2 − 6H2 fT + 3k

R2

)
. (3.16)

The above equation can be written in the form

ρT

3H2/8π
= 1 −

[
f

6H2 + 2 fT

]
+ k

H2 R2 ,

so that the torsion density parameter is

�T = 1 −
[

f

6H2 + 2 fT

]
− �k, (3.17)

comparing the above equation to Eq. (3.11) we get the mod-
ified matter density parameter as

�m = f

6H2 + 2 fT . (3.18)

Similarly, we substitute from (3.13), (3.14), and (3.16) into
(3.10) to get

pT = −1

8π

×
[ k

R2 (1 + 2 fT + 24H2 fT T ) + 2Ḣ

+ 3H2− f/2−2(Ḣ +3H2) fT + 24Ḣ H2 fT T

]
. (3.19)
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The EoS parameter due to the torsion contribution is thus

ωT = pT

ρT
= −1 + 2/3

×(1− fT +12H2 fT T )Ḣ −(1− fT −12H2 fT T )k/R2

f/6 − (1 + 2 fT )H2 − k/R2 .

(3.20)

It is clear that ωT = −1 for the case of a flat Universe (k = 0
and Ḣ = 0), cf. [55]. The torsion contributes to the FRW
model in a way similar to the cosmological constant.

3.3 A generalized R(t) and f (T ) as an ordered pair

The scale factor R(t) plays a key role in the Universe’s evolu-
tion and composition. Most of the cosmological applications
leave the scale factor to be chosen! In this section, we aim to
get a generalized form for a model dependent f (T ) and R(t).
In this case some solutions will be rejected due to incompat-
ibility. This can be done as follows: we substitute the matter
density (3.5) and pressure (3.6) into the continuity equation

ρ̇ + 3(ρ + p)
Ṙ2

R2 = 0; (3.21)

the continuity equation reads

Ṙ(R̈ R − Ṙ2 + k)(12 fT T Ṙ2 + fT R2) = 0. (3.22)

The solution of the above differential equation has many pos-
sible cases: We exclude the case that R(t) is a constant as it
gives a steady Universe. We are interested to examine the
case of the vanishing of the first and second brackets simul-
taneously. So we first take R̈ R − Ṙ2 + k = 0; this constrains
the torsion scalar to be a constant function with respect to
time. By solving for the scale factor R(t) we get

R(t) = c1

2

⎡

⎣e
2(t+c2)

c1 − k

e
(t+c2)

c1

⎤

⎦ , (3.23)

where c1 and c2 are constants of integration. The above equa-
tion provides an exponentially expanding Universe, which is
suitable for the inflationary scenario at the early time. We
check the compatibility of (3.8) and (3.23), as mentioned in
§3; by substituting from (3.23) into (3.8) we get a forbidden
case as the total energy density and pressure of the Universe
cannot be DE, as expected!

We next examine the vanishing of the second bracket of
(3.22) so that 12 fT T Ṙ2 + fT R2 = 0; by substituting from
(3.23) and solving for f (T ) we get

f (T ) = c3 + c4e

−1
12

⎡

⎢
⎢⎢
⎣

c1

⎛

⎝e

−2(t+c2)
c1 −k

⎞

⎠

e

−2(t+c2)
c1 +k

⎤

⎥
⎥⎥
⎦

2

T

, (3.24)

where c3 and c4 are constants of integration. Equations (3.23)
and (3.24) verify the continuity Eq. (3.21). One can easily
show that the above f (T ) form is suitable to describe the
acceleration of the late Universe. But it is valid for flat and
non-flat Universe models. Also, it covers perfectly Eq. (3.8)
without undetermined quantities in the f (T ) form. Combin-
ing the compatible solutions (3.23) and (3.24) provides a
consistent treatment in the study of both early and late Uni-
verse acceleration in flat and non-flat Universe models. So the
obtained solution represents generalized f (T )-gravity and a
generalized scale factor R(t) suitable for this study.

Also, it is worth to mention again that the substitution from
(3.23) into (3.2) implies a generalized behavior for the torsion
scalar T to be a constant function of the time t . So we may
conclude that the torsion contribution to the energy density
may not vary with time and does not affect the expansion
of the Universe, which is very similar to the behavior of the
DE. We next examine the obtained solution in different world
models.

4 World models

One of the benefits of the obtained solution is that it is a gener-
alized f (T ) and R(t) formula valid for the three world mod-
els, the spatially flat Universe (k = 0), the pseudo-spherical,
open, Universe (k = −1), and the spherical, closed, Uni-
verse (k = +1). This enables us to examine the behavior
of the DE and its effects on the cosmological parameters in
these different models as follows.

4.1 Flat Universe

In the case of spatially flat FRW Universe, k = 0, the scale
factor (3.23) becomes

R(t) = c1

2
e

t+c2
c1 , (4.1)

and (3.24) will be

f (T ) = c3 + c4e− 1
12 c2

1T . (4.2)

It is convenient to reexpress some quantities in terms of the
scale factor (4.1): the Hubble parameter H ; the torsion scalar
T , (3.2); the Hubble parameter change Ḣ (the dot repre-
sents the derivative with respect to time), and the declaration
parameter q, respectively, are

H = 1/c1, T = −6/c1
2, Ḣ = 0, q = −1. (4.3)

It is clear that T = −6H2, and one may use T and H inter-
changeably. Also, it is clear that the scale factor (4.1) and the
Hubble parameter (4.3) show an inflationary behavior of the
Universe, where H is a constant and R(t) ∝ eHt . One can
easily conclude that the torsion scalar plays the role of the
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cosmological constant during the inflation period. We next
evaluate the critical density, using (4.3), for flat space:

ρc = 3/c2
1

8π
, (4.4)

the matter density (3.13) and pressure (3.14) read

ρ = c3 + c4
√

e

16π
= −p, (4.5)

the torsion density (3.16) and pressure (3.19) are

ρT = 6 − (c3 + c4
√

e)c2
1

16πc2
1

= −pT . (4.6)

One can easily find that the total density is exactly at its
critical value, ρc = ρ + ρT . Also, it should be mentioned
that assuming the torsion fluid fulfills the continuity equation
we have a case similar to the steady state cosmology, where
the ρ̇ = 0 and ρ̇T = 0. The EoS parameters for both matter
and torsion are

ω = −1, ωT = −1; (4.7)

the curvature density parameter for the flat Universe is
�k = 0, while the matter density parameter (3.18) is

�m = c2
1

6
(c3 + c4

√
e), (4.8)

and the torsion energy parameter (3.17) is

�T = 1 − c2
1

6
(c3 + c4

√
e). (4.9)

The above cosmological parameters show that the scale fac-
tor (4.1) growths exponentially with time. But the Universe’s
constituents do not change with time. This does not allow the
Universe to evolve. However, the Universe shows an accel-
erated expansion. Equations (4.5), (4.6), and the continuity
Eq. (3.21) lead to the conclusion that the total density has a
constant value; nevertheless, the Universe is expanding! This
leads directly to a violation of the conservation principle of
energy. In the following two sections, we are going to exam-
ine similar cases in both the closed and the open Universes.

4.2 Sphere, closed, Universe

In the case of the closed FRW Universe, k = +1, the scale
factor (3.23) becomes

R(t) = −c1 sinh

(
t + c2

c1

)
, (4.10)

and (3.24) will be

f (T ) = c3 + c4e
− c2

1
12 tanh2

(
t+c2

c1

)
T
. (4.11)

Using the above values for the scale factor and the torsion
function we get the following cosmological parameters for

the Hubble parameter:

H = 1

c1
coth

(
t + c2

c1

)
, (4.12)

Ḣ = 1

c2
1

csch2
(

t + c2

c1

)
. (4.13)

The Hubble parameter H appears in the closed Universe as
a function of time, not a constant as given in the flat case,
but keeping the same exponential behavior of the scale factor
with time as the flat Universe. We find that this case is more
suitable to describe the evolution of the constituents of the
Universe. Another cosmological parameter which is related
to the evolution of the Universe is the deceleration parameter;
this parameter appears for the closed Universe as a function
of time as

q = − tanh2
(

t + c2

c1

)
. (4.14)

In order to show the cosmological behavior, the deceleration
parameter (4.14) versus redshift z = R0

R −1, where R0 is the
scale factor at the present time, is plotted in Fig. 1a. The graph
shows that the deceleration parameter q → 0 as z → ∞, then
q → −1 as z → 0 for the late Universe. The plot shows the
accelerating phases of the closed Universe from early to late
time. Also, the graph shows that the deceleration parameter
is −1 when the torsion scalar field is dominant. The curvature
density parameter for the closed Universe is

�k = −sech2
(

t + c2

c1

)
. (4.15)

In standard cosmology it is well known that if there is a
slight deviation from the flat Universe, it grows to become
more and more curved very quickly. The curvature density
parameter in the closed Universe model initially is chosen
to produce a closed Universe. The cosmological parameter
�k , given by (4.15), is plotted versus the redshift z in Fig. 1b.
Unlike the standard cosmology the evolution of the curvature
density parameter turns the Universe into a flat one. This is
of great interest for solving the flatness problem of big bang
cosmology. The torsion scalar (3.2) becomes

T = − 6

c2
1

. (4.16)

One should note that in spite of the Hubble and the curvature
density parameters being functions of time they combine in
such a way as to rule out the evolution of the torsion scalar
field with the expansion. Also, it is clear that the torsion scalar
field is dominant, T → ∞ as c1 → 0. The critical density,
for a closed Universe, is generalized to become a function of
time,
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(a) (b)

Fig. 1 a The evolution of the deceleration parameter q versus the red-
shift z. b The plot shows the evolution of the curvature densities param-
eters �k versus the redshift. Here the dot and solid lines are for the

constant c1 = 10−13 and 10−14, respectively, while the dash line is for
c1 → 0, or alternatively when the torsion scalar field is dominant

ρc = 3/c2
1

8π
coth2

(
t + c2

c1

)
, (4.17)

and the matter density (3.13) and pressure (3.14) are

ρ = 1

16π

[
c3 + c4e

1
2 tanh2

(
t+c2

c1

)]
= −p, (4.18)

while the torsion density (3.16) and pressure (3.19) read

ρT = −1

16π

×
[

c3+c4e
1
2 tanh2

(
t+c2

c1

)

+ 6

c2
1

(
1−2 coth2

(
t+c2

c1

))]

= −pT . (4.19)

For this case of a closed Universe the matter and the torsion
densities are no longer constants. But their equations of state
evolve in a way similar to the flat Universe. Assuming the
torsion fluid fulfills the continuity equation, one can easily
find that ρ̇ = 0 and ρ̇T = 0. Again as in the flat Universe, we
conclude that the closed Universe also violates the conser-
vation principle of energy, and the EoS parameters for both
matter and torsion give

ω = −1, ωT = −1; (4.20)

the matter density parameter (3.18) for the closed Universe
reads

�m = c2
1

6

⎡

⎣c3 + c4e
1
2 tanh2

(
t+c2

c1

)

coth2
(

t+c2
c1

)

⎤

⎦ , (4.21)

while the torsion density parameter (3.17) becomes

�T = 1 + sech2
(

t + c2

c1

)

−c2
1

6

⎡

⎣c3 + c4e
1
2 tanh2

(
t+c2

c1

)

coth2
(

t+c2
c1

)

⎤

⎦ . (4.22)

The cosmological parameters in Eqs. (4.15), (4.21), and
(4.22) are plotted versus the redshift z in Fig. 2a to pro-
vide information about the evolution of the cosmos compo-
nents during the expansion for the closed Universe model.
In spite of all the Universe compositions vary with time, we
found a rapid change at early Universe, then it converges
all compositions to act as a steady behavior of the flat Uni-
verse at late Universe. This leads to investigate the global
behavior of the Universe compositions. Thus we define the
total density parameter �Tot := �m + �T + �k , where it
includes the curvature one. According to the FRW dynami-
cal Eq. (3.9), the total density parameter �Tot initially equals
1. The early variation of the densities parameters in Fig. 2a
is reflected on the total density parameter; see Fig. 2b. The
plot shows very high frequency variations which is explained
by recognizing the rapid, but smooth, variation of the densi-
ties parameters at early time, then it turns back to 1 at late
Universe when the parameters become steady. The inflation-
ary behavior of (4.10) combined with the violent variations
shown in Fig. 2b of an amplitude of |�Tot − 1| ≤ 10−16

restores the most outstanding success of the Hot big bang, the
nucleosynthesis.

Also, the obtained closed Universe model shows a behav-
ior different from the standard cosmology. It is well known
that when the Universe is slightly shifted from the flat case
it goes further away to be more curved which is inconsistent
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(a) (b)

Fig. 2 a The plot shows the evolution of the density parameters �k ,
�m and �T versus the redshift z. The black, blue, and red colors
are for the curvature, matter, and torsion density parameters, respec-

tively. b The plot shows the evolution of the total density parameter
�Tot := �k + �m + �T versus the redshift. The dot and solid are
correspond to the value of c1 as in Fig. 1

with the present observation. This leads to assume an initial
flat Universe model. Here we show that the Universe might
start initially with a positive curvature then it turns to a flat
Universe behavior. This reopens the closed Universe model
for more investigations.

In addition, the calculations of the cosmological param-
eters for the closed Universe model (4.18) and (4.19) show
that a case similar to the flat Universe. Here the total density
of the Universe is constant, ρ̇ = 0 and ρ̇T = 0, while the
Universe expands! Again, we get a violation to the energy
conservation principle.

4.3 Pseudo spherical, open, Universe

In the case of the open FRW Universe, k = −1, the scale
factor (3.23) becomes

R(t) = c1 cosh

(
t + c2

c1

)
, (4.23)

and (3.24) will be

f (T ) = c3 + c4e
− c2

1
12 coth2

(
t+c2

c1

)
T
. (4.24)

Using the above values of the scale factor and the torsion
function we get for the Hubble parameter

H = 1

c1
tanh

(
t + c2

c1

)
, (4.25)

and the Hubble parameter appears as a function of time whose
gradual change in time is

Ḣ = 1

c2
1

sech2
(

t + c2

c1

)
, (4.26)

Also here in the open Universe case we got an exponen-
tial scale factor but a varying Hubble parameter. This case
is more suitable to find the evolution of the Universe. The
deceleration parameter will be

q = − coth2
(

t + c2

c1

)
, (4.27)

we plot the deceleration parameter versus the redshift z in Fig.
3a. The evolution of the deceleration parameter versus the
redshift z shows a possible deceleration epoch when q > 0
before going to be negative allowing accelerated expansion
of the open Universe. Also, the curvature density parameter
is given by

�k = csch2
(

t + c2

c1

)
. (4.28)

The evolution of the curvature density parameter is plotted
versus the redshift z in Fig. 3b. The plot shows that the curva-
ture density parameter started initially with an arbitrary value
then it converges naturally to the flat case, which agrees with
the present Universe observations. This encourages to recon-
sider the curved open Universe model.

We next evaluate the torsion scalar field (3.2) in the open
Universe, we get

T = − 6

c2
1

, (4.29)

it should be mentioned here that, in the case of an open Uni-
verse, we found that the scale factor (4.23) and the Hubble
parameter (4.25) combine in a way to cancel out the effect of
the time on the evolution of the torsion scalar field. The the
critical density for an open Universe is given as a function of
time as
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(a) (b)

Fig. 3 a The deceleration parameter versus the redshift z. Here the
solid and dot lines are for the constant c1 = 1.3×10−13 and 1.6×10−13,
respectively. b The plot shows the evolution of the curvature density

parameter versus the redshift, the solid and dot are correspond to the
value of c1 as in (a)

ρc = 3/c2
1

8π
tanh2

(
t + c2

c1

)
, (4.30)

while the matter density (3.13) and pressure (3.14) are

ρ = 1

16π

[
c3 + c4e

1
2 coth2

(
t+c2

c1

)]
= −p, (4.31)

Combining the above result with the continuity Eq. (3.21)
gives, ρ̇ = 0, a constant value of the matter density with the
expansion. This implies a continuous creation of matter. The
EoS for the matter gives

ω = −1. (4.32)

Also, the torsion density (3.16) for the open Universe reads

ρT = −1

16π

×
[

c3 + c4e
1
2 coth2

(
t+c2

c1

)

+ 6

c2
1

(
1 − 2 tanh2

(
t + c2

c1

))]

,

(4.33)

and the torsion pressure (3.19) becomes

pT = 1

16π

×
[

c3 + c4e
1
2 coth2

(
t+c2

c1

)

− 2

c2
1

(
1+2 tanh2

(
t + c2

c1

))]

,

(4.34)

Assuming that the torsion fluid fulfills the continuity equa-
tion, this implies that ρ̇T �= 0. The evolution of the torsion
fluid prevents a violation of the conservation principle.

It is clear that the torsion density and pressure (4.33) and
(4.34) implies that pT �= −ρT . The EoS Parameter of the
torsion (3.20) appears as a function of time

ωT = −1

+
8 sech2

(
t+c2

c1

)

c2
1

[
c3 + c4e

1
2 coth2

(
t+c2

c1

)

+ 6
c2

1

(
1 − 2 tanh2

(
t+c2

c1

))] .

(4.35)

We recognize that the open Universe case, uniquely, gives
a dynamical behavior of the EoS of the torsion fluid. The
evolution of the EoS parameter, (4.35) shows an initial
quintessence-like DE, crossing ωT = 0 dust-like epoch to a
radiation one at ωT ∼ 1

3 then it turns back crossing ωT = 0
very quickly to cross ωT = −1 implying that a phantom-like
DE (ωT < −1), then it asymptotically approaches a de Sit-
ter fate. It is well known that the density of the phantom-like
dark torsion fluid ρT ∝ R(t)n , where n is positive, which
implies an increasing of the density as the Universe expands.
The phantom energy epoch might be created as a result of
the curvature density parameter decay in order to preserve
the energy conservation principle.

We next write the matter density parameter (3.18) for the
open Universe as

�m = c2
1

6

⎡

⎣c3 + c4e
1
2 coth2

(
t+c2

c1

)

tanh2
(

t+c2
c1

)

⎤

⎦ , (4.36)

while the torsion density parameter (3.17) will be

�T =1 − csch2
(

t + c2

c1

)
− c2

1

6

⎡

⎣c3 + c4e
1
2 coth2

(
t+c2

c1

)

tanh2
(

t+c2
c1

)

⎤

⎦ .

(4.37)
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(a) (b)

Fig. 4 a The plot shows the evolution of the density parameters �k ,
�m and �T versus the redshift z. The black, blue, and red colors are
for the curvature, matter, and torsion density parameters, respectively.
The solid and dot are correspond to the value of c1 = 1.3 × 10−13

and 1.6 × 10−13, respectively. b The plot shows the evolution of the
total density parameter �Tot := �k + �m + �T versus the redshift for
c1 = 1.6 × 10−13

The open Universe model provides information about the
evolution of the Universe compositions during the expan-
sion. Equations (4.28), (4.36), and (4.37) have been plotted
versus the redshift z in Fig. 4a. However, the Universe com-
positions vary with time very quickly, they combine later in
a way to give a flat Universe behavior. The investigation of
the global behavior of the Universe compositions shows that
the total density parameter �Tot is extremely closed to 1.
Figure 5b shows that a very restrictive variation range of the
total density parameter |�Tot −1| ≤ 10−15 at early Universe,
which is similar to the closed Universe case but slightly less.
Then it turns to 1 at some late Universe time. However, the
Universe shows an inflationary behavior, (4.23), it restores
the critical value of �Tot for the nucleosynthesis to begin. We
must mention here that the open Universe model is the most
accurate model, in the present work, as the nucleosynthesis
epoch is from ∼ 1 → 200 s, while similar case of the closed
Universe takes much longer time.

In addition, the calculations of the cosmological param-
eters for the open Universe model (4.31) and (4.33) show
that a case similar to the flat Universe for the matter con-
tent where the matter density of the Universe is constant,
ρ̇ = 0. Again, by assuming that the torsion fluid fulfills the
continuity equation, we find a behavior different from the
flat or the closed models. Since the torsion density is not
constant, ρ̇T �= 0, while the Universe expands! We get a
unique behavior of the open Universe model preventing the
violation of the energy conservation principle. This leads to
the conclusion that the torsion density might decay repro-
ducing a matter density as the Universe expands. Moreover,
the open Universe uniquely implies an initial quintessence-
like and later phantom-like energy and a de Sitter case in the

Fig. 5 The evolution of the EoS of the torsion fluid (4.35) versus the
scale factor. The torsion fluid acts as a quintessence-like DE (−1 <

ωT < 0) at high redshift, while it asymptotically approaches a de sitter
fate in the future crossing ωT = 0 and ωT = −1 in between. The
constants c3 = 2 and c4 = −7 mainly control the amplitude of the
torsion EoS parameter crossing ωT = 0 and ωT = −1. The solid and
dot lines are for the constant c1 = 1.3 and 1.6, respectively. The dash
line is for c1 → 0 when the torsion scalar field is dominant which acts
as the cosmological constant

future. For the above mentioned reasons we find that the open
Universe model is the most accurate and consistent model in
the present work. We summarize the evaluated cosmological
parameters of the three models in the next subsection.
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Table 1 Summary of the cosmological parameters

Evolution Composition
cosmological parameters cosmological parameters

k = −1 c1 cosh
(

t+c2
c1

)
csch2

(
t+c2

c1

)

k = 0 R(t) 1
2 c1 exp

(
t+c2

c1

)
�k 0

k = +1 −c1 sinh
(

t+c2
c1

)
−sech2

(
t+c2

c1

)

k = −1 tanh
(

t+c2
c1

)
/c1

c2
1
6

[
c3+c4e

1
2 coth2

( t+c2
c1

)

tanh2
(

t+c2
c1

)

]

k = 0 H 1/c1 �m
c2

1
6 (c3 + c4

√
e)

k = +1 coth
(

t+c2
c1

)
/c1

c2
1
6

[
c3+c4e

1
2 tanh2

( t+c2
c1

)

coth2
(

t+c2
c1

)

]

k = −1 − coth2
(

t+c2
c1

)
1 − csch2

(
t+c2

c1

)
− c2

1
6

[
c3+c4e

1
2 coth2

( t+c2
c1

)

tanh2
(

t+c2
c1

)

]

k = 0 q −1 �T 1 − c2
1
6 (c3 + c4

√
e)

k = +1 − tanh2
(

t+c2
c1

)
1 + sech2

(
t+c2

c1

)
− c2

1
6

[
c3+c4e

1
2 tanh2

( t+c2
c1

)

coth2
(

t+c2
c1

)

]

4.4 Cosmological parameters summary in the three world
models

We summarize the calculated cosmological parameters for
the three world models k = 0,±1 and list it in Table 1.
These values are useful to discuss the standard problems of
cosmology, i.e. the particle horizon, the flatness, and the sin-
gularity problems.

We may split these cosmological parameters into two dif-
ferent sets: the first is to describe the composition of the
Universe, which contains three parameters �m , �k , and �T .
The second set is to describe the expansion of the Universe,
which contains two parameters H and q.

5 Concluding remarks

• In this work we have evaluated the matter density and
pressure of the f (T ) field equations. We modified the
FRW models due to the torsion contribution by replacing
ρ → ρ + ρT and p → p + pT . Most of the cosmo-
logical models choose the scale factor R(t) independent
of the model. In this work we have got a model depen-
dent R(t) and f (T ) as order pairs, when applying the
continuity equation to the Universe matter assuming that
the torsion scalar and time are independent variables. The
obtained solutions allow us to study the three world mod-
els, i.e. k = 0,±1. The calculations show that the torsion
scalar (3.2) can be written as a combination of the Hub-
ble parameter H and the curvature density parameter �k .
These two parameters always combine keeping the tor-
sion scalar constant at all time t .

• The study of the flat Universe model produces an infla-
tionary cosmological model R(t) ∝ eHt , H = const .
But the Universe’s compositions have no evolution where
the matter density is constant during the expansion
ρ̇ = 0. Assuming the continuity equation for the tor-
sion fluid leads to a constant torsion density, ρ̇T = 0,
during the expansion. This gives a steady state Uni-
verse. The total density of the Universe is equivalent to
a constant Universe critical density. Then we conclude
that the flat Universe model violates the conservation
principle.

• The cosmological parameters for the closed Universe
model are found as functions of time. These parameters
show a quick evolution at some early Universe, then they
show a steady behavior at later time. Although the Uni-
verse in the closed model is chosen to be curved initially,
the Universe’s composition enforces the Universe to be
flat at some late time as �Tot → 1 and �k → 0. Assum-
ing the continuity equation for the torsion fluid implies a
case similar to the flat model.

• In the case of the open Universe model we have found a
quick evolution of the cosmological parameters at some
early time. The Universe in this model has been chosen
to be initially curved, while the evolution of the cosmo-
logical parameters turns the Universe to be flat at some
later time. The calculations show that the evolution of the
open Universe prevents the violation of the conservation
principle. This makes the open Universe model the most
acceptable one.

• The inflationary Universe has been started as a specula-
tive idea to solve some problems of the big bang cosmol-
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ogy. The inflation has been considered as an add-on extra
tool to the standard big bang during some very early Uni-
verse. In this model, we get a built-in inflationary behav-
ior at early time and then the model enables the big bang
to be restored naturally.

• In the standard big bang cosmology it is known that the
Universe becomes more and more curved very quickly,
if it has been chosen to be initially curved, i.e. �Tot

diverges away from the unity. But the current cosmo-
logical observations show that our present Universe is
almost flat. This requires a flat Universe initial condi-
tion. In our model, unlike the standard cosmology, we
found that even if the Universe has started with an initial
curvature, the evolution of �Tot converges to unity. This
tells that the Universe in the case of k = ±1 models is
enforced to be flat. This solves many of the hot big bang
cosmology problems. The closed Universe model shows
an extremely restrictive range for the total density param-
eter |�Tot − 1| ≤ 10−16 at early Universe time, which
is required for the nucleosynthesis epoch to begin and
restore the big bang scenario. The open Universe shows
almost the same restrictive range but a much shorter inter-
val of time. The result agrees with the BBN period (∼ 1–
200 s), which again supports the open Universe model.
See Figs. 3b and 5b.

• In the open model we have found that the teleparallel
torsion fluid explains both early and late cosmic acceler-
ation. This eliminates the need for the DE; in addition,
it does not address the cosmological constant problem.
Also, the use of the torsion scalar instead of the cosmo-
logical constant gives a conservative Universe. In addi-
tion, the torsion contribution gives a built-in inflationary
behavior at a very early time; then the evolution of the
total density parameter �Tot shows good agreement with
later stages. Moreover, the open Universe converges to a
flat one, which agrees perfectly with the current observa-
tions. Furthermore, the evolution of the torsion fluid EoS,
see Fig. 5, shows a peculiar dynamical behavior during
different phases of the cosmic expansion. There are many
other details of these models that need further investiga-
tions. In particular, one would be interested in the torsion
density and pressure in the open Universe model and their
possible justifications as regards quantum cosmology.

Acknowledgments This work is partially supported by the Egyptian
Ministry of Scientific Research under project No. 24-2-12.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.
Funded by SCOAP3 / License Version CC BY 4.0.

References

1. S. Nojiri, S.D. Odintsov, Int. J. Geom. Meth. Mod. Phys. 4, 115
(2007)

2. E. Elizalde, S. Nojiri, S.D. Odintsov, D. Saez-Gomez, V. Faraoni,
Phys. Rev. D 77, 106005 (2008)

3. S. Nojiri, S.D. Odintsov, J. Phys. Conf. Ser. 66(2007), 012005
(2007)

4. S. Nojiri, S.D. Odintsov, Phys. Rev. D 74, 086005 (2006)
5. S. Capozziello, S. Nojiri, S.D. Odintsov, A. Troisi, Phys. Lett. B

639, 135 (2006)
6. S. Nojiri, S.D. Odintsov, D. Sáez-Gómez, Phys. Lett. B 681, 74

(2009)
7. G. Cognola, E. Elizalde, S.D. Odintsov, P. Tretyakov, S. Zerbini,

Phys. Rev. D 79, 044001 (2009)
8. E. Elizalde, D. Sáez-Gómez, Phys. Rev. D 80, 044030 (2009)
9. R. Myrzakulov, Eur. Phys. J. C 71, 1752 (2011)

10. A. Einstein, Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Kl.
217(1930), 401 (1928)

11. Y.C. Ong, K. Izumi, J.M. Nester, P. Chen. arXiv:1303.0993v1
12. T. Ortín, Gravity and Strings (Cambridge University Press, UK,

2004)
13. F.W. Hehl, in Proceedings of the 6th School of Cosmology and

Gravitation on Spin, Torsion, Rotation and Supergravity, Erice,
1979, ed. by P.G. Bergmann, V. de Sabbata (Plenum, New York,
1980)

14. F.W. Hehl, J.D. McCrea, E.W. Mielke, Y. Neeman, Phys. Rep. 258,
1 (1995)

15. K. Hayashi, Phys. Lett. 69B, 441 (1977)
16. K. Hayashi, T. Shirafuji, Phys. Rev. D 19, 3524 (1979)
17. K. Hayashi, T. Shirafuji, Phys. Rev. D 24, 3312 (1981)
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