
Journal of Computer and System Sciences 72 (2006) 1–15
www.elsevier.com/locate/jcss

Real-valued multiple-instance learning with queries�

Daniel R. Doolya, Sally A. Goldmanb,∗,1, Stephen S. Kwekc

aSouthern Illinois University Edwardsville, Edwardsville, IL 62026, USA
bWashington University, St. Louis, MO 63130, USA

cUniversity of Texas San Antonio, San Antonio, TX 78249, USA

Received 22 March 2005; received in revised form 24 May 2005

Abstract

While there has been a significant amount of theoretical and empirical research on the multiple-instance learning
model, most of this research is for concept learning. However, for the important application area of drug discovery,
a real-valued classification is preferable. In this paper we initiate a theoretical study of real-valued multiple-instance
learning. We prove that the problem of finding a target point consistent with a set of labeled multiple-instance
examples (or bags) is NP-complete, and that the problem of learning from real-valued multiple-instance examples
is as hard as learning DNF. Another contribution of our work is in defining and studying a multiple-instance
membership query (MI-MQ). We give a positive result on exactly learning the target point for a multiple-instance
problem in which the learner is provided with a MI-MQ oracle and a single adversarially selected bag.
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1. Introduction

The multiple-instance (MI) learning model is becoming increasingly important within machine learn-
ing. Unlike standard supervised learning in which each instance is labeled in the training data, in the
standard MI learning model each example is a set (or bag) of instances (or points) which is labeled as to
whether any single point within the bag is positive. The individual points are not given a label. The goal
of the learner is to generate a hypothesis to accurately predict the label of previously unseen bags.

The MI model was motivated by the drug activity prediction problem where each example corresponds
to a molecule of interest and each bag contains all low-energy (and hence likely) configurations (or
shapes) for the molecule [6]. There has been a significant amount of theoretical and empirical research
directed towards this problem. Other applications for the multiple-instance model have been studied. For
example, Maron and Ratan [13] applied the MI model to the task of learning to recognize a person from
a series of images that are labeled positive if they contain the person and negative otherwise. They have
also applied this model to learn descriptions of natural images (such as a waterfall) and then used the
learned concept to retrieve similar images from a large image database. More recently, Ruffo [15] has
used this model for data mining applications.

Most prior research performed under the MI model is for concept learning (i.e. Boolean labels). The
first empirical study of Dietterich et al. [6] used real data for the problem of predicting whether or
not a synthetic molecule binds to the musk receptor. However, binding affinity between molecules and
receptors is quantitative, borne out in quantities such as the energy released by the molecule–receptor pair
upon binding and hence a real-valued classification of binding strength in these situations is preferable.
Dietterich et al. [6] say “The only aspect of the musk problem that is substantially different from typical
pharmaceutical problems is that the musk strength is measured qualitatively by expert human judges,
whereas drug activity binding is usually measured quantitatively through biochemical assays.”

Furthermore, the previous work has just considered learning from a given set of labeled bags. However,
in the real drug-discovery application, obtaining the label for a bag (which corresponds to making the
drug and then running a laboratory experiment) is very time consuming. The process that would be used
is to start with some “random” drug labeled as to whether or not it binds. Then a new drug is selected and
created followed by an experiment to obtain its affinity value (i.e. the label), and so on. In the machine
learning community, this learning protocol is called active learning since the learner gets to actively
choose the next example for an expert (i.e. the experiment) to label selected from among a provided set
of unlabeled examples. In learning theory research, active learning is modeled via a membership query
which is an oracle that when given any unlabeled example from the domain will return the label for
that example. Selecting the next drug to test is very much like a membership query (which outputs a
real-valued label) except one cannot select an arbitrary set of points to define a bag but rather can only
select a drug which in turn defines a bag.

Our goal here is to initiate a theoretical study on real-valued MI learning which includes the introduction
of a MI membership query (MI-MQ). We prove that the problem of finding a target point consistent with
a set of labeled MI examples (or bags) is NP-complete. We also prove that the problem of learning from
real-valued MI data is as hard as learning DNF. A key contribution of this paper is a positive result on
exactly learning the target point for a MI problem in which the learner is provided with a MI-MQ and a
single adversarially selected bag b = {p1, . . . , pr}. The MI-MQ oracle takes as input any n-dimensional
shift vector �v and returns the distance label for b + �v = {p1 + �v, . . . , pr + �v}.
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2. The real-valued multiple-instance model

Unlike standard supervised learning in which each instance is labeled in the training data, in this model
each example is a set (or bag) 2 of instances which is labeled as to whether any single point within the bag
is positive. The individual points are not given a label. The goal of the learner is to generate a hypothesis
to accurately predict the label of previously unseen bags. Consider the standard learning problem of
learning an axis-aligned box in �n. In the standard learning model each labeled example is a point in
�n (drawn according to some unknown distribution D) and labeled as positive if and only if it is in the
target box. In the MI model, an example is a collection of points in �n (often called a bag or r-example)
which is labeled as positive if and only if at least one of the points in the bag is in the target box. More
formally, in the MI learning the training data D = {〈B1, �1〉, . . . , 〈Bm, �m〉} consists of a set of m bags
where bag Bi has label �i . Let bag Bi = {Bi1, . . . , Bij , . . . Bin} where Bij is the j th point in bag i. When
all bags contain exactly r points then we use the terminology of r-example. Let �ij be the label for point
Bij . For the Boolean target concept of an axis-aligned box, �ij is 1 if and only if Bij is in the target box.
For the real-valued case, the target concept could be defined according to the distance between the center
of the box and Bij . The MI model assumes the label of the bag is determined by the point in the bag
with the highest label. Hence, for Boolean labels, �i = �i1 ∨ �i2 ∨ · · · ∨ �in, and for real-value labels,
�i = max{�i1, �i2, . . . , �in}.

The MI model was motivated by the drug activity prediction problem where each example is a possible
configuration (or shape) for a molecule of interest and each bag contains all low-energy (and hence likely)
configurations for the molecule [6,8]. For the drug-discovery application, each bag corresponds to a drug,
each point in the bag corresponds to the shapes that it is likely to take, and the target point corresponds to
the ideal shape that will create the strongest bond with the receptor molecule. By accurately predicting
which molecules will bind to an unknown protein, one can accelerate the discovery process for new drugs,
hence reducing cost.

We assume that there is a target point t in �n which corresponds to the ideal shape. A Boolean label
then indicates whether or not the given conformation is close enough to t to bind. For target t and point
p, let dist (t, p) be the distance between t and pi in the L2 norm and V be a function that relates
distance with binding strength. For example, V could be defined by the widely used empirical potential

for intermolecular interactions, the Lennard-Jones potential V (d) = 4�
(( �

d

)12 − ( �
d

)6) where � is the

depth of the potential well, � is the distance at which V (d) = 0, and d is the internuclear distance for
two monoatomic molecules [4]. The Lennard-Jones model is nice because of its mathematical simplicity
and its ability to qualitatively mimic the real interaction between molecules. For the purposes of this
paper, the only property we assume about the computation of the binding strength between p and q is that
from it dist (p, q) can be computed and that the binding strength diminishes as the distance to the target
increases. Then the label for bag b = {p1, . . . , pr} is max

i=1,...,r
V (dist(t, pi)) An alternate definition for

the label of b = {p1, . . . , pr} is to compute

dmin(b) = min
i=1,...,r

dist (t, pi)

2 We use the standard terminology of the field, in which a bag of points is a set, not a mathematical bag, of points.
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and then return V (dmin(b)) as the label. We will use this view and further, assume that dmin itself is given.
In general, one can extend this model by using a weighted L2 norm but in this work we assume that an
unweighted L2 norm is used.

While most MI learning algorithms assume Boolean labels, recent work studies extensions of the DD
and citation k-NN algorithms for data with real-value labels [1] and MI regression [14]. The MI regression
work assumes an underlying linear model for the hypothesis and thus has a different inductive bias. Zhang
and Goldman developed EM-DD which combines the DD algorithm with the expectation-maximization
(EM) algorithm [18]. More recently, Andrews et al. [2] combined EM with a support vector machine to
develop MI learning algorithms.

The most natural generalization of the standard single-instance membership query for the MI model
would be to allow as input to the MI membership oracle an arbitrary bag (perhaps of a some fixed size
r). There are several reasons why this is not a good way to model the MI membership query. First,
if allowed to do this then by perturbing the individual points in a given bag b, the learning algorithm
could determine which point is closest to the target which would effectively reduce the problem to a
single-instance problem. Secondly, as discussed earlier, in reality one can select a drug (which could be
a small variation of an earlier drug tested). However, the set of bags that correspond to real drugs are
limited and in general there will not exist a drug that would have as its likely conformations an arbitrary r
points. In particular, a molecule smoothly moves between conformations (shapes) and thus there is some
dependency among the points in the bag. However, the dependency is very complex and thus defining a
MI membership query that captures the physical constraints of the underlying chemistry is challenging
and we do not claim to have solved that problem here.

We now define our MI membership oracle (MI-MQ). Given a bag b = {p1, . . . , pr} where b is provided
by an adversary, we define the MI-MQ oracle to be one that takes as input any n-dimensional shift vector
�v and returns the real-valued label for b + �v = {p1 + �v, . . . , pr + �v}. While this model does not capture
all of the physical constraints of the underlying chemistry, it does maintain the relationship between the
points in the provided bag b (which is adversarially provided and thus could always be one obtained from
a real drug) since the same vector is added to every point in b. We feel that this proposed model is a good
starting point for developing a theory of learning with queries for real-valued MI learning. Developing
a model that better captures the physical constraints of the underlying chemistry and thus would enable
the needed laboratory experiments required of the MI-MQ to be performed in a cost-effective way is an
intersting direction for future work.

3. Prior work

We begin with a summary of the prior work on learning the (Boolean) MI concept class of axis-aligned
boxes in n-dimensional space. To understand the distributional assumptions made by the prior work, we
begin with some definitions. We use D to denote an arbitrary distribution over n-dimensional points. We
use D to denote a distribution over r-examples. For any point �p and distribution D over r-examples, let
w+

D ( �p) denote the conditional probability that �p is a point in a random bag drawn according to D given that
bag has a positive label. For any region R ⊆ �n, let w+(R) = ∫

�p∈R
w+

D ( �p). Long and Tan [10] described
an efficient PAC algorithm under the restriction that each point in the bag is drawn independently from
a product distribution, Dproduct. Hence the resulting distribution over r-examples is D = Dr

product. Auer
et al. [3] gave an efficient PAC algorithm that allows each point to be drawn independently from an
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arbitrary distribution D. Hence each r-example is drawn from D = Dr for an arbitrary distribution D
defined over points. In their paper, Auer et al. [3] also proved that if the distributional requirements are
further relaxed to allow an arbitrary distribution D over r-examples then learning axis-aligned boxes is
as hard as learning DNF formulas in the PAC model. Blum and Kalai [5] described a simple reduction
from the problem of PAC learning from MI examples to that of PAC learning with one-sided random
classification noise when the r-examples are drawn from Dr for D any distribution defined over points.
They also described a more efficient (and more involved) reduction to the statistical-query model [9] that
yields the most efficient PAC algorithm known for learning axis-aligned boxes in the MI model over Dr

for an arbitrary distribution D defined over points. Their algorithm has sample complexity Õ(n2r/�2),
roughly a factor of r faster than the result of Auer et al.

To understand some of the difficulties that occur when switching from the Boolean to real-valued
setting, we briefly overview the basic technique used to obtain these results. Let t be the target box,
and define T = { �p | �p ∈ t}. The key property used by earlier results is that there is some constant c
such that for any region R where R ∩ T = ∅, w+

D (R) = c. For all known positive results, D = Dr .
Under this definition of D, the needed property holds since any point in a positive bag that is in region R
where R ∩ T = ∅ must be in a bag with some point in T. In other words, one of the other r − 1 points
in the bag (drawn independently from the same distribution) must have been in T. It is under this iid
assumption that Blum and Kalai [5] show how to reduce MI learning to PAC learning with one-sided
noise.

We now consider the real-valued setting where the label for bag b is a function of the distance between
the closest point in the bag b and the target. In this setting, the sharp change that occurs in the fraction of
positive examples as a half-space crosses the boundary of the box (in the Boolean domain) is no longer
present. Hence, a completely different approach appears to be needed. However, in order to ensure that
we obtain an algorithm that is polynomial for an arbitrary number of dimensions, we must in some way
be able to independently work with each dimension (or at least a constant number of dimensions at a
time).

The only theoretical work which we are aware of that studies real-valued MI learning is work by
Goldman and Scott [7]. Similar to our work here, they associate a real-valued label with each point
in the MI example. These values are then combined using a real-valued aggregation operator to obtain
the classification for the example. Here, we only consider the minimum for the aggregation operator.
They provide on-line agnostic algorithms for learning real-valued MI geometric concepts defined by
axis-aligned boxes in constant dimensional space by reducing the learning problem to one in which the
exponentiated gradient (or gradient descent) algorithm can be used. However, their work (and their basic
technique) assumes that d is constant which is not feasible for the drug discovery application since d is
typically in the hundreds.

Most empirical work also considers the Boolean setting. In their seminal paper, Dietterich et al. [6],
presented three methods for learning axis-aligned boxes (often referred to as APR for axis-parallel rect-
angles) in the MI model. They presented an algorithm they refer to as the “outside-in” algorithm. In this
algorithm, first they construct the smallest box that bounds all of the positive examples, and then shrinks
this box to exclude false positives. Finally, they presented a third algorithm, the “inside-out” algorithm
which starts with a point in the feature space and “grows” a box with the goal of finding the smallest box
that covers at least one example from each positive bag and no examples from any negative bag. Then
they expand the resulting box (via a statistical technique) to get better results. When appropriately tuned,
their algorithm gives 89% accuracy on the Musk2 data set.
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The work of Dietterich et al. [6] was preceded by the work of Jain et al. [8] in which they presented
COMPASS which is an APR-like neural network algorithm which is robust to errors in the initial alignment
of the molecules. While COMPASS can handle real-valued labels, we are not aware of any reported results
on any available real-valued data sets.

Auer et al. [3] presented an algorithm that learns using simple statistics and hence avoids some poten-
tially hard computational problems that were required by the heuristics used by Dietterich et al. Their
algorithm worked quite well on the Musk2 data set (obtaining a 84% accuracy) despite the fact that they
assumed each point in a bag was drawn independently of the others.

Maron and Lozano-Pérez [12] described a framework called Diverse Density (see also Maron [11]).
The intuition of their approach is as follows. When describing the shape of a molecule by n features, one
can view each configuration of the molecule as a point in a n-dimensional feature space. As the molecule
changes its shape, it traces out a manifold through this n-dimensional space. (To keep the size of the bags
manageable, only shapes of the molecule that have sufficiently low potential energy were considered.)
The diverse density at a point p in the feature space is a measure of both how many different positive bags
have an example near p, and how far the points from negative bags are from p. They use gradient ascent
with multiple starting points (namely, starting from each point from a positive bag) to find the point that
maximizes the diverse density. Their algorithm obtained 82.5% accuracy on the Musk2 data.

Amar et al. [1] and Zhang and Goldman [18] empirically studied diverse-density-based and k-citation
nearest neighbor-based algorithms for learning in the real-valued MI model. However, even for the original
versions of the diverse density [12] and k-citation nearest neighbor algorithms [16] for the Boolean domain,
no theoretical results have been shown.

Wang and Zucker [16] proposed a lazy learning approach to MI learning by applying a variant of the
k nearest neighbor algorithm (k-NN). To compute the distance between bags b1 and b2 they used the
minimum distance between a point in b1 and a point in b2. While a standard k-NN approach did not work
well, by also using citers of p (points who include p as one of its nearest-neighbors) as well as p’s nearest
neighbors they reached a 92.4% accuracy on Musk1 and 86.3% accuracy on Musk2.

Ray and Page [14] studied MI linear regression using artificial data to empirically evaluate their
algorithm which uses an inductive logic programming-based approach combined with a linear regression
algorithm supplemented with expectation maximization. More recently, Warmuth et al. [17] have used
support vector machines with active learning and real data. Again, no theoretical results are given in their
work. The goal of our work here is to begin developing theoretical foundations for the real-valued MI
model for high-dimensional spaces.

4. Results for the real-valued multiple-instance model

For the reminder of this paper we study the real-valued MI problem where we assume that each bag
is drawn from an arbitrary distribution D and can have any number of examples within it. We define
the Real-Valued Multiple-Instance L2-Consistency Problem as the following problem. As input you are
given a set S of bags each labeled with a real value. The problem is to determine whether or not there is
some target point t ∈ �n such that the label given to each bag is consistent with target t where we assume
bag b = {p1, . . . , pr} for target t would receive the label mini=1,...,r dist(t, pi) with the L2 norm for the
distance metric.
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4.1. Negative results

In this section we present some negative results demonstrating the general MI learning problem is hard.

Theorem 1. The real-valued MI L2-consistency problem is NP-complete.

Proof. The proof is by reduction from 3-Sat. The instance space has n dimensions, one for each variable.
The 3-Sat formula is transformed into a collection of bags as follows. For each clause in the formula, we
introduce a bag of 3 points and assign it a label corresponding to a distance of

√
n − 1. Each of these

points corresponds to a literal in the clause with all coordinates set to 0 except for the coordinate that
corresponds to the literal. If the corresponding literal is a negated literal xi then the ith coordinate is set
to −1, otherwise it is set to 1. In addition, we also add to this collection a bag O = 〈0, . . . , 0〉 with a
distance label of

√
n.

Suppose the point p = (p1, . . . , pn) labels these bags consistently. Let s = (s1, . . . , sn) be the closest
point to t an arbitrary point in a bag corresponding to a clause such that dist (p, s) = √

n − 1. Recall
that every such bag holds three points and for each point all features are 0 except for one which is either
set to 1 or −1. Let i be the nonzero feature of s. Then,

dist(p, s) =
√

(si − pi)2 +
∑
j 
=i

p2
j =

√√√√(si − pi)2 − p2
i +

n∑
j=1

p2
j = √

n − 1.

Since p is consistent with the distance labels on the collection of bags,

dist(p, O) =
√√√√ n∑

j=1

p2
j = √

n.

Putting these two facts together yields (si −pi)
2 −p2

i +n = n− 1 which simplifies to s2
i − 2sipi = −1.

Recall that by our construction either si = 1 or si = −1. It is easily verified that when si = 1 is substituted
into the above equation, one obtains that pi = 1. Likewise, when si = −1 is substituted into the above
equation, one obtains that pi = −1. Hence it follows that pi = si .

Therefore, if there is a point which labels the bags consistently, we transform it into an assignment
of variables which satisfies all the clauses as follows: if the coordinate of the point in dimension i is
−1, assign false to variable xi . If the coordinate of the point in dimension i is 1, assign true to variable
xi . Otherwise assign either true or false, at random. For each clause, at least one of the three relevant
coordinates of the point will cause an assignment to a variable which makes that clause true. So the
assignment satisfies all the clauses.

If there is an assignment of variables which satisfies all the clauses, then the point with coordinate 1
in dimensions corresponding to true variables and coordinate −1 in dimensions corresponding to false
variables will meet all the distance criteria, since it is at distance

√
n from the origin, and there will be at

least one of the three points in each bag for which it is at distance
√

n − 1. �

Theorem 1 does not indicate that learning is hard, but only that any learning algorithm that requires
the consistency problem to be solved is not feasible. We now give a hardness result showing that the real-
valued MI learning problem is as hard as learning DNF even if the learner is allowed to use a hypothesis
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Fig. 1. The geometry of points I, P, N, F, T , O for the proof of Theorem 2.

class that is not simply a point in �n. The statement of this result is very similar to the hardness result
for the Boolean MI model of Auer et al. [3]. We note that our result does not follow from their results
since each bag in the Boolean model is labeled as positive if and only if it is in the target box. Here, each
bag must be labeled with the distance between its closest point and the target point. Hence, neither result
subsumes the other.

Theorem 2. Given a MI sample S for an unknown target box in �n where each s ∈ S has a real-value
label of the L2-distance between the target t and the closest point in s to t, the task of finding any polynomial
evaluatable hypothesis that would correctly classify all points in S is as hard as learning DNF.

Proof. This proof is by reduction from the problem of learning r-term DNF to the problem of learning
in the real-valued MI setting. For ease of exposition, we assume that n > 2 and use v1, . . . , vn to denote
the variables.

First, we describe how the reduction works for r = 1. Each literal in the term is represented by a point
in the two-dimensional Euclidean plane with origin O. We use the following widget. Let points P (for
positive), N (for negative) and I (for irrelevant), respectively, be the vertices of an equilateral triangle in
the two-dimensional Euclidean plane that is centered around O where I = (0, 1) and the distance from
O to each of P, N, an I is 1 (see Fig. 1). Let � = 1

2n
. Let T (for true) be a point that lies outside of �INP

along the bisector of the segment IP that is
√

1 − � away from both P and I. Similarly, let F (for false)
be a point that lies outside the triangle and is

√
1 − � away from both N and I. Observe that since n > 2,

� < 1
4 which guarantees that T and F lie strictly outside of the �INP .

The function g maps a term � into a 2n-dimensional point g(�) = p = 〈p1, p2, . . . , pn〉 where pi is a
two-dimensional point defined as follows. If vi is in � then pi = P , if vi is in � then pi = N , and finally,
if vi is not in � then pi = I . Similarly, for an example x = (x1, . . . , xn) is mapped to a 2n dimensional
point by g(x) = 〈g(x1), . . . , g(xn)〉 where g(xi) = T if xi = 1 and g(xi) = F if xi = 0.

Suppose that x satisfies � then it is easily verified that dist(g(�), g(x)) = √
n(1 − �) = √

n − 1/2
since by construction the distance between each of the pair of points corresponding to the ith literal and
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ith element of x is
√

1 − �. However, if x does not satisfy � then in at least one two-dimensional space the
distance between that portion of g(�) and g(x) has distance greater than 3

2 and hence dist(g(�), g(x)) >√
9
4 + (n − 1)(1 − �) >

√
n. To change the latter inequality to an equality so that all the negative examples

in the DNF learning problem are mapped into points with unique distance values, we treat g(x) as a bag
and add the origin O as an additional point in g(x). Clearly, dist(g(�), O) = √

n for all possible choices
of � and hence dist(g(�), g(x)) = √

n if x does not satisfy �.
We now extend the reduction to r-term DNF � = �1 ∨ · · · ∨ �r . In our transformation we introduce a

two-dimensional subspace for each of the rn pairing of a variable with a term giving 2rn dimensions in
all. For 1�i�n and 1�j �r , we let Sij to denote the subspace associated with the ith variable of term j.
We transform the given r-term DNF formula � into a target point in 2rn-dimensional space as follows.
If the �j contains a positive variable xi , we set Sij to P. If �j term contains xi we set Sij to N. Finally, if
variable xi does not appear in �j , we set Sij to I. Thus, g(�) = 〈S11 · · · S1r S21 · · · S2r · · · Sn1 · · · Snr〉.
Assignment x = (x1, . . . , xn) is mapped into a bag of B(x) of r + 1 points. This bag contains the origin
O as well as points pk for 1�k�r . Point pk is defined as follows. For 1�i�n, 1�j �r , in pk subspace
Sij is set to O if j 
= k, and for j = k, Sij is set to T if xi = 1 and set to F if xi = 0.

We consider an example with n = 4 and r = 2. Let � = (x1 ∧ x2 ∧ x4) ∨ (x1 ∧ x3). Then g(�) =
PNIP PIP I where the first four pairs correspond to the first term and the second four pairs correspond
to the second term. The assignment x = 1001 would be translated to the bag

g(x) = {T FFT OOOO, OOOO T FFT, OOOO OOOO}.
Each of the first r points in g(x) tests to see if x satisfies term j, while the last is a reference point

known to be closer to the target than the point corresponding to any unsatisfied term. To complete the
transformation, we give the positive bags the distance value

√
rn − n� = √

rn − 1/2 and the negative
bags the distance value

√
rn. We also include rn bags containing three points each. In each group of three,

the coordinates in one of the subspaces Sij are assigned to P, N , or I, and the coordinates in all other
subspaces are assigned to O. Each of these rn bags has value

√
rn − 1. Finally, we have a bag containing

the point O with a distance value
√

rn.
As for the case of conjunctions it can be easily verified that if x satisfies �, then dist (g(x), g(�)) =√
n(1 − �) + (r − 1)n = √

rn − n� =
√

rn − 1
2 . Conversely, if x falsifies �i then

dist(g(x), g(�))�
√

(n − 1)(1 − �) + 9/4 + (r − 1)n >
√

rn.

Since dist(O, g(�)) = √
rn it follows that

dist(g(x), g(�)) =
{√

rn − 1/2, x satisfies �,√
rn, x does not satisfy �

as desired.
Suppose that we have an algorithm which is able to find a 2rn-dimensional point p that has a distance

to each provided bag where the distance equals the specified distance label. For any 2rn-dimensional
point p, we use pij to denote the value of p for subspace Sij . Let qij be the one of P, N or I which is
closest to pij . We now argue that the distance between pij and qij is zero. That is, pij must be one of P,
N or I. From the bag with O for all subspaces, we have

∑
i,j dist(pij , O)2 = rn. Multiplying both sides
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by rn − 1 yields

(rn − 1)
∑
i,j

dist(pij , O)2 = rn(rn − 1). (1)

From the rn bags with three points each we have that

dist(pk�, qk�)
2 +

∑
i 
=k,j 
=�

dist(pij , O)2 = rn − 1.

Summing over the rn subspaces we get∑
k�

dist(pk�, qk�)
2 +

∑
k�

∑
i 
=k,j 
=�

dist(pij , O)2 = rn(rn − 1).

Using the observation that∑
k�

∑
i 
=k,j 
=�

dist(pij , O)2 = (rn − 1)
∑
ij

dist(pij , O)2

gives ∑
k�

dist(pk�, qk�)
2 + (rn − 1)

∑
ij

dist(pij , O)2 = rn(rn − 1). (2)

Combining Eqs. (1) and (2) gives that
∑

k� dist(pk�, qk�)
2 = 0 and hence pk� must be one of P, N or I.

Let us now consider a positive bag (i.e. a bag with label
√

rn − n�). One of the points in this bag must
be at distance

√
rn − n� from the target point t = g(�). Let it correspond to term j and let us call it

z. Since we know that dist(zik, O) = 1, we can subtract the distance in all the subspaces except those
corresponding to term j to get

∑
i dist(tij , zij )

2 = n(1 − �). So each variable i must satisfy term j. Let us
consider a negative bag. All of the points in this bag must be at least distance

√
rn from t. Let us pick a

point w corresponding to term j. There must be at least one subspace for which dist(tij , wij )
2 > 1. The

only way this can happen is for variable i to fail to satisfy term j. So we can read the terms of the DNF
from the values that t takes in the subspaces. If tij has location P, then term j contains literal xi . If tij has
location N, then term j contains the literal xi . Finally, if tij has location I, then term j does not contain
include xi (or its negation). �

4.2. Our positive result

In this section we present a positive result. Let b be an arbitrary bag provided by an adversary. We
assume that we have access to a MI-MQ oracle and that from the label provided by this oracle we can
then compute the distance between the closest point in b + �v and the target t where �v is the input given
to the MI-MQ. It is important to remember that although we can compute the distance between the target
and the closest point from b + �v this provides no information as to which point in b + �v is closest to the
target.

A natural approach to use to solve this problem is the following. Suppose there was a single closest
point p in bag b to the target, and further that we knew a value of � so that the distance between p and the
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db

x

(j)(x)

Fig. 2. A visualization of d
(j)
b

(x).

target is smaller by an additive factor of � than the distance between the target and any other point in b.
Then one can try shifting b in each direction by � using membership query to find some shift for which p
is closer to the target. By repeating this process one can bring p arbitrarily close to the target. Finally, once
a shift is found so that p has distance 0 to the target, it is possible to actually determine the coordinate of
the target. While this approach sounds simple, there are many important details that must be worked out.
For example, to ensure that there is a single point p in b closest to the target it is necessary to repeat the
process with small random shifts and thus the resulting algorithm becomes a randomized algorithm. An
appropriate small value for � must be computed and also, it is nontrivial to find the target point even when
a bag with distance 0 from the target is found. So while it is possible to fill in the many missing details
to the above approach, the algorithm that we give is much more efficient and is also deterministic.

We now describe our algorithm. The high-level approach is to independently determine the coordinate
in each dimension of the target point. In order to describe our algorithm in more depth, we introduce
the following definitions 3 . Let p = (p1, . . . , pr) be an arbitrary point and let �vj be a unit vector along

dimension j. For x an arbitrary real, we define d
(j)
p (x) as the distance between the target t and the point

p + x · �vj = (p1, . . . , pj−1, pj + x, pj+1, . . . , pr). That is,

d
(j)
p (x) =

∑
i 
=j

(ti − pi)
2 + (tj − (pj + x))2 = y

(j)
p + (x − m

(j)
p )2 (3)

for constants (with respect to x) of y
(j)
p = ∑

i 
=j (ti − pi)
2 and m

(j)
p = (tj − pj ). Finally, let d

(j)
b (x) =

minp∈b d
(j)
p (x) and p

(j)
b (x) = argminp∈b d

(j)
p (x). That is, d(j)

b (x) is obtained by combining the r parabo-

las given by d
(j)
p (x) for points p1, . . . , pr in b. For each value of x, the value of d

(j)
b (x) is that of the

parabola that has the minimum value when evaluated at the dimension j shift of x. In other words, for
p = p

(j)
b (x), the value of d

(j)
b (x) is y

(j)
p . Fig. 2 shows a visualization of d

(j)
b (x).

3 These definitions depend on the target t and bag b. However, for ease of exposition we do not explicitly include t and b in
the notation.
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Suppose for a moment we could find three offsets x1, x2, x3 for which the same point p defines the
minimum value of d

(j)
b (x). In the next lemma, we argue that with knowledge of p, we could then find the

dimension j value, tj , for the target point t.

Lemma 3. Let x1, x2 and x3 be three translations and let p be a known point in b such that p
(j)
b (x1) =

p
(j)
b (x2) = p

(j)
b (x3) = p. Then the coordinate of the target in dimension j can be computed from the

values returned by MI-MQ(b + x1 · �vj ), MI-MQ(b + x2 · �vj ) and MI-MQ(b + x3 · �vj )

Proof. By the fact that p(j)
b (x1) = p

(j)
b (x2) = p

(j)
b (x3) = p it follows that for all three translations x1, x2

and x3, p is the closest point to the target. For i = 1, 2, 3, let yi be the value returned by MI-MQ(b+xi · �vj ).
Then (p + x1, y1), (p + x2, y2) and (p + x3, y3) are all points on the parabola that takes on the minimum
value of y

(j)
p and the target value in dimension j is tj = pj + m

(j)
p . �

Our goal is now to independently, for each dimension j, find three translations that satisfy the conditions
of Lemma 3 from which we can compute the target t = (t1, . . . , tn). As discussed above, in d

(j)
b (x) there

are r parabolas, one for each point in b. For each parabola it reaches a minimum value for the value of
x that represents the dimension j shift for which tj − pj = 0. It is important to note (as shown above)
that all r parabolas are of the form y + (x − m)2 where y and m may be different for each of the points.
In particular, for point p ∈ b, y

(j)
p is the label for bag b that would be obtained if bag b were shifted in

dimension j so that tj −pj = 0 and m
(j)
p is the value of x where this parabola reaches its minimum value.

Our next lemma shows that as we translate far enough in dimension j so that the closest point to the target
will be the one with the minimum coordinate in dimension j.

Lemma 4. Let �vj be a unit vector along dimension j. For bag b and dimension j, let xm be the smallest
value in dimension j among all points in b. Let L = {p ∈ b | pj = xm}. Let xr > xm be the second
smallest value in dimension j among all points in b. We define the target distance d� = minp∈b dist(p, t)

for t the target point, d� = xr − xm, and the diameter dd = maxp1,p2∈b dist(p1, p2).

For any x >
(d�+dd)2−d2

�
2d�

+ d� + dd , the closest point in b + x�vj to the target is a point in L.

Proof. The distance between any point in b + x�vj and the target can be expressed in terms of the
component along �vj and the component normal to �vj (See Fig. 3). Let dp be defined as the maximal
projection of the distance along the hyperplane, normal to �vj , between any point in L and any point
p ∈ b − L. We denote the component along �vj from any point p ∈ L + x�vj to the target as

dv = x + (p − t) · �vj >
(d� + dp)2 − d2

�

2d�
+ d� + dd + (p − t) · �vj .

Since p ∈ b it follows that the distance between the target t and p is at most d� +dd . Thus (p− t) · �vj � −
(d� + dd). Thus from this inequality, the fact that dd �dp,and the above inequality it follows that

dv = (d� + dd)2 − d2
�

2d�
+ �

for some � > 0.
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t

vj 2d∆

2d∆

d∆

(dl+dp)2 + d2

(dl+dp)2- d2

L contains all points from b on the line y = xm

xr

dl

dp

xm

∆

∆

∆

Fig. 3. The geometry for the proof of Lemma 4. All points in L have a jth coordinate of xm which is the smallest value of the jth
coordinate among all points in bag b. All points p ∈ b · L have a jth coordinate of at least xr .

The distance from any point p ∈ (b − L) to t is at least that of its component along �vj , which is at
least dv + d�. We now consider only the points in L. For any point p ∈ L, the distance between p and t
is at most

√
d2
v + (d� + dp)2 �� +

√√√√((d� + dp)2 − d2
�

2d�

)2

+ (d� + dp)2

= � +
√

(d0 + d2)4

4d2
1

− (d0 + d2)2

2
+ d2

�

4
+ (d� + dp)2 = � + (d� + dp)2 + d2

�

2d�

= � + (d� + dp)2 − d2
�

2d�
+d� < dv + d�. �

We now describe how we use the above lemmas in the procedure Find_Coordinate (see the detailed
pseudo-code in Fig. 4) to find the target value tj for dimension j. First d�, d�, dd, xm, xr and L are

computed from the training data. We then use the MI-MQ oracle to query the value of s
(j)

�t,b (x) for three
points, farther out. These points will lie on a parabola. The minimal value of the parabola gives us the
j-coordinate of the target.

We now consider the procedure Find_Target which is the overall procedure to learn the target point
(see Fig. 5). It independently finds the coordinates of the target in each of the n dimensions.

Theorem 5. Assuming that each call to the MI-MQ oracle takes constant time, Find_Target has a worst-
case time complexity of O(nr2) and is guaranteed to output the target point t where r is the number of
points in the provided bag b and n is the number of dimensions for each point in b.

Proof. In Find_Coordinate, computing the value of xm, xr and computing the set of points in L can
be done in O(r) time and the other steps take constant time. So Find_Coordinate takes O(r) time to



14 D.R. Dooly et al. / Journal of Computer and System Sciences 72 (2006) 1–15

Fig. 4. The procedure Find_Coordinate searches for the coordinate of the target in dimension j. Recall that dd is the maximum
distance between any two points in b.

Fig. 5. The algorithm Find_Target. Note that all bags created are linear transformations of the original bag b provided by the
adversary.

compute the jth component vj of �v. It takes O(nr2) time to compute dd since there are O(r2) pairs of
points and it takes O(n) time to compute the distance between a pair of points. The loop in Find_Target
takes O(r) time for each of the n iterations. So the overall time complexity is O(nr2) with the dominant
cost being that to compute dd . We know from Lemma 4 that the distances y0, y1 and y2 are determined by
translations of the same point in the bag. So Lemma 3 proves that each element vj of �v is the coordinate
of the target point in dimension j. �

5. Concluding remarks

In this paper, we present some hardness results and a positive result for learning in a real-valued
MI learning model. We hope that this work will be the beginning of a theoretical study of learning
in the real-valued MI model and eventually lead to improved algorithms for applications such as drug
discovery. There are many interesting open problems. For example, are there nontrivial distributional
assumptions, for which there is an efficient PAC learning (or on-line learning) algorithm to approximate
the target point from real-valued MI data? Similarly, can hardness results be shown for more restricted
distribution? Finally, are there alternate definitions for a MI membership query that better capture the
physical constraints of the drug-discovery application.
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