
JOURNAL OF FUNCTIONAL ANALYSIS 50, 215-228 (1983) 

Proof of the Conjecture of A. Grothendieck on the 
Fuglede-Kadison Determinant 

THIERRY FACK 

Laboratoire de Mathimatiques Fondamentales 
Aile 4546, je &age, 

4, place Jussieu, 75230 Paris Cedex OS France 

Communicated by A. Connes 

Received July 1982 

Soit M une algtbre de von Neumann munie dune trace semi-finie fiddle r. Pour 
les elements r-compacts x de M, A. Grothendieck introduit dans un “Seminaire 
Bourbaki,” de 1955 une fonction A,,, geniralisant le determinant de 
Fuglede-Kadison, et conjecture I’intgalite 

A t+,r+y, GAt+,x,At+,y,. 

Dans cet article, nous demontrons cette inbgalite. En corollaire, nous obtenons une 
demonstration directe des inegalitbs de Clarkson. 

Let M be a von Neumann algebra with a faithful semifinite trace r. For r- 
compact elements x E M, Grothendieck introduced in “Seminaire Bourbaki,” 1955 
a function A ,+X generalizing the Fuglede-Kadison determinant, and conjectured 
that 

A t+,x+y, GA,+,r,At+,y,. 

In this paper, the inequality is proved. As a corollary, a direct proof of the 
Clarkson inequalities is obtained. 

For any trace class operator x in a separable Hilbert space, the Fredholm 
determinant det(1 + x) makes sense, and we have 

det(1 + x) = n (1 + A,(x)) 
n>l 

where (A,(x), A*(x),...) is a listing of all nonzero eigenvalues of x, counted up 
to algebraic multiplicity (cf. [6]). The fundamental inequality 

det(l + Ix +ul) < det(1 + 1x1) det(1 + (~1) (1) 
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was pro ien first by Grothendieck (unpublished; see [7]) by inspecting the 
terms of the classical expansion of the Fredholm determinant det(1 + h) for 
a trace :lass operator h. Twenty years after Grothendieck, this inequality 
was rediscovered by Seiler and Simon in their study of the Yukawa, 
quantum field theory (cf. [13, 141). Several alternative proofs have been 
found bl Rot’feld [ 121 and Lieb [8]. 

In [5] Fuglede and Kadison define a determinant function A for every II,- 
factor A4 and prove that 

&XY) =&)A(Y), Vx,yEM. 

It is I atural to ask whether or not inequality (1) remains true in this 
setting. II fact, the situation is quite different from the classical one, because 
A(x) igrore the phase of x E M (i.e., A(x) = A(lxl)) and there is no 
continua IS analog for the notion of n-exterior power (n E R\J) of an operator. 
However, (1) remains true and not only for the Fuglede-Kadison deter- 
minant, tat also for its natural generalization to the case of an arbitrary von 
Neumam~ algebra M with a faithful semifinite trace r. 

To be more precise, let ,uu,(x) (s > 0) be the s th singular value of x E M 
(cf. [4, 1111) and define the continuous product of the “t-first singular values” 
ofx by 

A,(t) = exp If log p,(x) ds. 
0 

When r is finite, A,(r(l)) is nothing but the Fuglede-Kadison determinant 
A(x). For r-compact elements x, y E M, we prove that 

A l+lxtyl~~lt,xl~l+lYl~ (2) 

This inequality was conjectured by Grothendieck [7]. 
The pc per is organized as follows: in Section 1, we make the necessary 

preliminary definitions, and prove the inequality 

A (ltx)(ltY)~Ad++xAl+Y 

for z-corlpact elements x, y E M. This inequality replaces the multi- 
plicativitj of the FugledeKadison determinant. In Section 2, we prove the 
main inecluality (2). In Section 3, we give a direct proof of Clarkson’s ine- 
qualities 

Ilx+Yll;‘+ lb-Yll,“‘< Nxll;+ IlYll;P 

(1 <p<2andp’=p/(p- 111, 

(Ix +yII:: + Ilx-Yll;< 2p-‘@lI; + llYll3 (2 GP < 00) 
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for x,y~M, where ]]x]],=r(]xJ ) p ‘lp. The first one has been recently 
obtained by Zsido [la], using the more sophisticated interpolation 
techniques, and the second one goes back to Dixmier [2]. They imply 
uniform convexity for the LP-spaces considered by Dixmier [2] and 
Segal [ 151. 

In Section 4, we give some other applications of the fundamental 
inequality. We use the asual terminology of von Neumann algebras as in [3]. 

1. THE DETERMINANT FUNCTION 

Let M be a von Neumann algebra with a faithful semifinite trace r. Call 
x E Mfmite rank (relative to r) if r(supp(x*)) < co, and compacf if it is a 
norm limit of finite rank elements. The compact elements are easily seen to 
be a (two-sided) ideal C, = C,(M, r) and the finite rank elements are the 
smallest ideal whose norm closure is C, (cf. [3, p. 14, Ex. 21). The truce 
ideal C, = C,(M, r) is defined as the set of all x E M such that 

ll4ll = 4xl) < 00. 

A basic tool in the investigation of the analytical properties of completely 
continuous operators in a Hilbert space is the notion of “n th singular value.” 
Let us now recall the natural generalization of this notion to our framework. 

1.1. DEFINITION. Let x E M and t > 0. We call “tth singular u&e” of x 
the number 

pu,(x)=inf{I]xe]]]e=projectioninMwitht(l -e)< t). 

We have 

For x E M, t w ,ul(x) is decreasing and pO(x) = ]lxl] . (1.1.1) 

For t > 0, x w  0, x w  p,(x) is increasing on M, . (1.1.2) 

flu,(x) =Pu,(x*) =Clr(bO (t>O;x,yEM). (1.1.3) 

Proofs may be found in [4]. Moreover, we have 

Ifr(l)=co,thenp,(l+x)>l(s>O)foranyxEC,. (1.1.4) 

In fact, we have ]I( 1 + x) e]] > 1 for every infinite projection e E M, because 
if not exe would be invertible in i%4, and hence C,(M,, te) = M, for some 
infinite projection e E M, a fact which is absurd. 
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1.2. DEFINITION. Let M be a von Neumann algebra with a faithful 
semifinit: trace 7. Call deferminnnt function associated with x f M the 
function d,: I?, + I?, g iven by 

A,(f) = exp (’ log pu,(x) ds (t 2 0). 
0 

As we llave log ,u,(x) < log /lx]] for s > 0, d,(t) makes sense (of course, 
]k log,uStx) ds may be understood as a lower integral). 

1.3. R$!mark. If t(1) < co, d,(r(l)) =d(x), where A is the analytical 
extensior (in the terminology of [5]) of the Fuglede-Kadison determinant 
(see, for example, [4,2.2.2]). 

1.4. LI:MMA. We have 

(9 4+x=4+.44+lxl WW. 
(ii) A,,(t) Q lI4I’A,(t) (f 2 0; X,Y E MI. 

(iii) x H A,+.(t) is increasing on M, for each t >, 0. 

Proof. (i) Let x E M and s > 0. For any projection e in M, we have 

ll(1 + 4 41 < 1 + bell 

so that 

PA1 +x)< 1 +Ps(x)= 1 +Pu,(14)=Px(l + La- 

The result follows immediately. 
(ii) We have ~,(xJJ) Q ]]x]],&J) (S > 0) by [4, Proposition 1.6(iv)] 

and the r:sult follows. 

(iii) We have ,Q 1 + x) = 1 +,D&x) and we get the result by 
(1.1.2). I 

Using the inequality 

loid1 +Ps(l4))<P,@I)~ 

we deduc: from 1.4(i) and [4, Proposition 1.111 that 

4+.~~w(llxllI) for xEC,. 

1.5. Remark. If r(1) = co, A,+Jt) has a limit (t + co) for any x E C, by 
virtue of (1.1.4). Put 

A(1 +x) = & A,+,(t). 
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Then A is a finite positive function on 1 + C,, and it is easy to see that 

A(1 + 1x1) = exp r(log(l + Ix])) for xE C,. 

However, A(1 + x) does ,not generally coincide with exp t (log I 1 + xl), so 
that it is not in any way a “generalized Fredholm determinant.” 

The main result of this section is the following, which is a natural 
generalization of [4, Theorem 2.31. 

1.6. THEOREM. Let M be a von Neumann algebra with a faithful 
semifinite trace, and x, y E C,. Then, we have 

A,,+.,,,+,,(t)~A,+.(t)A,+,(t) fir t> 0. 

Proof: If M is finite, the result follows immediately from [4, 
Theorem 2.3 1. Assume now that M is infinite and Put 
I(1 +x)(1 +y)(‘= 1 + h, where hE C,. Fix t > 0. Using (1.1.4) and (l.l.l), 
we may assume w.1.o.g. that p&l + h) > 1 for s < t. Then, it is almost clear 
(and we shall come back to this point) that there exists two finite projections 
p, q in M such that 

4+xw+JJf) =4u+x,,~+,,,w~ 

As q(l + x) and (1 + y)p are r-compact elements in M, we get 

A ~I+xw+ydf) ~Aq(*+x)(t)A(l+y,p(t) 

by [4, Theorem 2.31. Using 1.4(ii), we get the result. 
Let us now indicate how to find p and q. Let h = SE, I de, be the spectral 

decomposition of h. Using [4, Propsition 1.31 and (1.1.4), we get 

rur(l + h) = 1 +A,, 

where p0 = min(p > 01 r( 1 - e,) Q t}. Assume first that p0 > 0 and put 
p=l-e @;. Then 

r(p) = lim r(1 - e,) ) t 
rr-w; 

and we get 

P,U + h) =~u,(p(l + h)p) for s < t 

by [4, Proposition 1.51. Then 

PU,(U +x)(1 +Y)) =clsU + hY’* 

=&(I(1 +x)(1 +Y)P12)“2 

=Ps((l +x)(1 +y)p) (s < t). 
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But now k=]p(l +y)* (1 +x)*1’ is compact and there exists as in [4, 
Lemma .13 ] a finite projection q in A4 such that ,u,(k) = &(qkq) for s < t. It 
follows that 

A((1 +x)(1 +Y)>=lu,(k)“*=C1,(lP(l +y)* (1 +x)*q12)1’2 

=lu,w +x)(1 +Y)P) for s < t. 

If p, = C, we put p = 1 - e, and choose q as before. We have s(p) = t and 
~~((1 + J I(1 +Y)) =i&(l +x)(1 +Y)P) for s < t. The proof of 
Theorem 1.6 is then complete. m 

1.7 CC'ROLLARY. Let M be a von Neumann algebra with a faithful 
semiJinitz trace, and x, y E C,, Let w E 1 + C, with 11 w/ < 1. Then, we 
have 

A u+xbvu+y~(f) ~~1+&)~1+,0) for t > 0. 

We ar: now in position to prove the main inequality. 

2. PROOF OF THE MAIN INEQUALITY 

2.1. TIIEOREM. Let M be a von Neumann algebra with a faithful 
semz@nitl! trace. Let x, y E C, . Then, we have 

A ltlxtyl ~Alt,xlAltIr,' 

The proof is based on Theorem 1.6, combined with the following technical 
lemma H hich replaces the wrong inequality 1 + x + y < 1 + Ix] + 1 y 1. 

2.2. LI:MMA. Let M be a von Neumann algebra and x, y E M. Then, 
there exists an element w E M, II wII < 1, such that 

Proof. Let (efj)l<i,jc3 be a system of matrix units for M,(C) and put 

c=l@e,,+]xl “*u*@e2,+Iyl “*v*@e,,EM@M,(C) 

t=10ell+~x~120e21+Jy~1’20e3,E~OM~(@), 

where u urd v are the phases of x and y. We get by direct calculation 

lal=:(l +ulxlu* +v~y~v*)“*Oe,,=(1 +]x*]+Iy*])“*Oe,, 

and 

Ibl==(l +IxI+I~~)“~O~,,. 
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Let U (resp. v) be phase of a (resp. b). We get 

a*b = Ial U*Vlbl 

= [(l + lx*1 + lull)“* 0 eIll[w 0 e,,l[(l + I4 + IW2 0 e,,L 

where w  E A4 and ]] w]] < 1. But a*b = (1 +x +y) @ e,,, so that the lemma 
is proved. 1 

Proof of Theorem 2.1. Letx,yEC, andt>O. 
Step 1. Let us first show that we have 

A ,+.+,(t)~A,+.(t)A,+,(t) 

for positive x, y E C,. We have 

1 +x+y=(l +x)“2 [l +]y”2(1 +x)-“2]2](1 +x)“2 

and Theorem 1.6 implies 

A ,+x+y(f) <Au+,, ( 112 W,+,yw+x)-In, 4f)A~,+xdf) 

=A,+.WA ,+,y1’2(1+X)-1/2,2(f). 

But A ,+,,,2(t)=A,+,,.,2(f), and hence 

A I+x+y(f)~A,+x(f)A,+yll2(,+X)~lyl,2(f). 

But (1 +x)-l < 1, and we get the result by 1.4(iii). 
Step 2. Let us now show that we have 

A ,+.+,(t)~A,+,.,(t)A,+,,,(t) for x,yE C,. 

By Lemma 2.2, there exists a contraction w  E M such that 

1 +x+y=(1 +Ix*]+]y*1)1’2w(l +Ix]+lY])“2. 

By Corollary 1.7, we get 

A ,+.+,(t)9A,+,.~,+,,~,(t)“2A~+,.,+,,,(t)”2. 

By step 1, we get 

and 

A ,+,,*,+,,~,(t>~Al+,x*,(t)A,+,,*,(t) 

=A *+,x,wl+lYlw 

A ,+,,,+,,,(t)~A,+,~,(t)A,+,,,(t)~ 

580/50/Z-7 
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so that fittally 
A ,+.+,(t)~A,+,.,(f)A,+,,,(t). 

End oj the Proof: Let x + y = U Ix + y 1 be the polar decomposition of 
x + y. By step 2, we have 

A ,+,,+,,(~)=A,+.~.+,~,(~)~A,+,~~~,(~)A~+,~~,,(~). 

But A ,+,c-x,(t) =A ,+(X.vv.x,L,2(t) Q A,, ,Jt) by [ 11, Proposition 1.3.81 and 
1.4(iii), so that finally 

A ,+,,+,,(t)~A,+,,,(t)A,+,,,(t). m 

From The orem 2.1, we shall now deduce many inequalities. 

3. M [NKOWSKI AND CLARKSON'S NONCOMMUTATIVE INEQUALITIES 

Let M be a von Neumann algebra with a faithful semifinite trace r. For 
xEManip>O, set 

IblIp = e4pYp. 

If p > 1, !ve have the well-known inequality of Minkowski 

lb +YIlp G IblIp + II Yllp. 

Let us tint prove an inequality which replaces Minkowski’s when 0 <p < 1. 

3.1. PROPOSITION. Let x, y E M. Then, we have 

~~l~+~lP~~~~l~IP~+~~IYIP> for O<P< 1. 

Note th it 3.1 implies that 6(x, y) = IIx - ~11; is a metric on 
C, = {x E M IIIxIlp < co} for p < 1. 

The prc lof of 3.1 is based on the following technical lemma: 

3.2. LEMMA. Let cp be a positive function on R + . 
Assume that rp is bounded and set 

q(r) = exp ,f log( 1 + TV(S)) ds (t, r > 0). 
0 

Then, we have for each p (0 < p < 1) 

1 
t 
vp(s)ds= 

p sin(np) 
0 

7L j- 
m log n,(r) 

0 
rP+l dr* 
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Proox We have, for a fixed t > 0 

and hence 

I 
00 4log W) = 03 1 t (p(s) 

0 rP J 0 T 
ds dr 

’ r (1 0 1 + rep(s) ) 

But 

'(') 
rP(l + v(s)) 

a t 
= - 

sin pa I q(s)” ds < co, 
o 

so that we get by the Lebesgue-Fubini theorem 

I 00 d(log q(r)) K t 
= - 

0 rp sin pn I p(s)” ds. 
o 

On the other hand, we have 

’ 
I 

4log M9) = log n,(R) + p log M-) 
0 rp RP I” 0 

rP+l dr* 

As the left-hand side has a limit for R + co, the two terms of the right-hand 
side must also have a limit, and the first one goes to zero. Henceforth, we 
have 

I 
m log 7dr) 

0 
rp+, dr= ’ fq(s)Pds. I 

p sin(p) 0 

Proof of Proposition 3.1. This proposition has nontrivial content only if 
x and y are compact. The case p = 1 is well known (see, for example, [4]), 
so that we shall assume that 0 < p < 1. By Theorem 2.1, we get 

log A I+r,x+y,(t)~logA,+,,,,(t)+logA,+,,,,(t) (tn0) 

and hence 

j-js(Ix +W ds <j-j&4)” ds + lo’r,(lrl)” ds 

by Lemma 3.2. By letting t + co and using [4, Proposition 1.6(ii)], we get 
the result. I 
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The follcwing lemma, that we shall need to prove Clarkson’s inequalities in 
full generality, contains the analog for p > 1 (and x, y nonnegative) of 
Proposition 3.1. 

3.3. Lr MMA. Let x, y be positive elements in M. Then, we have 

2’-p 11.x +YII; < 11x11; + II YII:: G lb +yIIS for p> 1. 

Proof: We may assume w.1.o.g. that M acts on a Hilbert space H and 
that ]]x/]~, I] y]], and ]Ix + y]lp < co. Let us first check the inequality on the 
left. Recirll first the well-known inequality for positive numbers 1, p 

2’-p(/l+p)p<~p+pp (P > 1). 

Using [4 Proposition 4.31, we get 

f~s(x + ~1’ ds < (* 01,(x> + P,(Y))” dsv 
0 0 

and the previous inequality implies 

2l-p j’p,(x + y)” ds < (f p,(x)’ ds + j-;&(v)” ds. 
0 0 

The result follows by letting t + co. 
To prove the inequality on the right, we proceed essentially as in [9, 

Lemma 2.61. We have x, y < x + y, so that there exists elements u, v E M, 
Ilull, llvll < 1, such that 

x1’2 = u(x + y)“Z, y”Z = v(x + yy2 

(cf. [ 3, P *oposition 10, p. 11 I). 
Hence! we have 

x = u(x + y) u*, y=v(x+y)v*. 

We clam that r(xp) < r(u(x + y)” u*). In fact, let t be a positive number and 
let e be a projection in A4 with 7(1 - e) < t. For r E e(H), ]](]I = 1, put 
7 = u*(. We have 

WOp = (6 + Y) v Id” = (loa We,dvI v))“, 

where x -- y = j: Ade, is the spectral decomposition of x + y. But 

(I m 
0 

WeA( v))” G II VII”-’ ,foa J.Pd(eA(rlI rl) 
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by Jensen’s inequality (note that t w  tP is convex for p 2 1). As ]] q )] < 1, we 
get 

64 0” < (4x + Y) “u*<]r) for any <E e(H) with l]c]j = 1. 

Hence, we have by [4, Remark 1.4.11 

P,(X)” < Pto4X + Y)” 24 *I 

and hence 

Similarly, we get 

and hence 

5(xP) ( r(u(x + y)” 24 *). 

r(y”) < wx +ylP u*), 

5(xP) + r( y”) < r((x + y)” (24 *u + u *v)). 

Now, using cyclicity of the trace together with the obvious equality 

x +y = (x +yy* (u*u + u*v)(x +yy, 

we get 

r(xp) + r(yp) & r((x +Y)~-’ (x +y)“* (u*u + u*v)(x +y)“‘) 

= r((x + y)“). 

The inequality on the right is then proved. 1 

We are now in position to prove the noncommutative analogs of the 
Clarkson inequalities [ 11. 

3.4. THEOREM. Let x, y E M. We have 

(9 llx+~ll;‘+Ilx--~ll~‘~2(11xll~+II~II~)~”~ fir 1 <PG2 and 
P’=PIP- 1, 

(ii) lb +yIIg + Ilx -AI; < 2p-1(l141~ + II YllE)for 2 0 < 00. 

These inequalities are due to McCarthy [9] when M is the algebra of all 
bounded operators in a Hilbert space. The proof of (ii) for general semifinite 
von Neumann algebras goes back to Dixmier [2], and (i) has been recently 
obtained by Zsido [ 161. Our proof, based on Proposition 3.1, is new and 
doesn’t use the more sophisticated interpolation techniques. 
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Proof of (i). We may assume that h4 acts in a Hilbert space H and then 
choose elements r, E H, ]I <, I] = 1 (a E I) such that 

for each positive element u in M. Set 

u=x*x+y*y, ll=x*y+y*x 

The same computation as in 19, Theorem 2.7(ii), p. 261-2621 gives us 
llx+Yll;‘+ lb-VII;’ < qc, 2-‘[((a+W2 Q&J+w-w2 LIL)lY”p. 
But the f mction f w  tp12 is operator concave on IR + (cf. [ 11 I), so that we get 

lb +JJII,“‘+ lb-AI,“‘< 2 p @“‘5.1ca)]p”p 
n 

and hence 

J/x tJq1; t Ilx-yll;‘.a{~[(x*x tr*Y)p’2]}P”P. 

Using PI oposition 3.1, we get then 

lb t YII;’ t lb -VII;’ Q 2(llxll; t II Yll;>“““. 
Proof,d(ii). Set q =p/2. We have 

lb +YII;tIlx-Yll;=IllxtY1211::tlllx-Y1211:: 
< lllx +.A2 + Ix -YI’II: (use 3.3 with q =p/2 > 1) 

= z4 llb12 t I vl’ll: 
< 2q2q-‘(ll14211~ t Ill v1’118) 
= 2p-1(llxll; t II Yll,“). 1 

4. OTHER APPLICATIONS 

4.1. 

From the fundamental inequality 2.1, we can derive many other 
inequalities by using [4, Corollary 4.21. More precisely, we get 

,f= g[ 1 t ,us(x t y)] ds < p g](l + k(x))(l + r,(Y))] ds 
0 0 

(a > o;x,JJ E Cm) 
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for any nondecreasing continuous function g: [0, +co [ --, R such that 
tb g(exp(t)) is convex on [-co, +co[. Taking g(f) = tp(p > 0) and using 
Holder’s inequality for functions, we get for a von Neumann algebra M with 
finite trace 7 and x,y E M 

II 1 + Ix +Ylllp < II 1 + 1411q II 1 + I AIL if l/P = l/q + l/r. 

4.2 

Let M be a von Neumann algebra with a faithful semifinite trace 7. From 
Theorem 2.1, we may deduce the continuity of the function x t+ A( 1 + x) = 
exp r(log(1 + x)) on the positive part of C,. More precisely, let x, y be 
positive elements in C, and f > 0. We have 

and hence 

A(1 +x)<d(l +y)d(l +Ix-Yl) 

by letting t + co. Then 

A(1 +x)-A(1 +v)<d(l +y)[d(l +Ix--Yl)-- 11. 

Using the inequality 

e” - 1 < ue’ for u > 0, 

we get 

A(1 +x)-&4(1 +v)<d(l +y)d(l +Ix--Yl)J-)x(1 +Pu,(lx-Yl))~~ 

< ev(ll yll,) ev(llx -YllJlx -Ylh 
< exp(llW lb -AL (by Lemma 3.3) 

< ev(l1411 + II YllJlx -vlL. 

By symmetry 

l&l +x)--(1 +~)l~exp(llxll, + IIYIII)IIx-~lll 

so that x I+ A( 1 + x) is locally Lipschitz on the positive part of C, . 
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