Proof of the Conjecture of A. Grothendieck on the Fuglede-Kadison Determinant

Thierry Fack
Laboratoire de Mathématiques Fondamentales
Aile 45-46, 3^{e} étage,
4, place Jussieu, 75230 Paris Cedex 05 France
Communicated by A. Connes
Received July 1982

Soit M une algèbre de von Neumann munie d'une trace semi-finie fidèle τ. Pour les éléments τ-compacts x de M, A. Grothendieck introduit dans un "Séminaire Bourbaki," de 1955 une fonction Δ_{1+x} généralisant le déterminant de Fuglede-Kadison, et conjecture l'inégalité

$$
\Delta_{1+|x+y|} \leqslant \Delta_{1+|x|} \Delta_{1+|y|} .
$$

Dans cet article, nous démontrons cette inégalité. En corollaire, nous obtenons une démonstration directe des inégalités de Clarkson.

Let M be a von Neumann algebra with a faithful semifinite trace τ. For τ compact elements $x \in M$, Grothendieck introduced in "Séminaire Bourbaki," 1955 a function Δ_{1+x} generalizing the Fuglede-Kadison determinant, and conjectured that

$$
\Delta_{1+|x+y|} \leqslant \Delta_{1+|x|} \Delta_{1+|y|} .
$$

In this paper, the inequality is proved. As a corollary, a direct proof of the Clarkson inequalities is obtained.

Introduction

For any trace class operator x in a separable Hilbert space, the Fredholm determinant $\operatorname{det}(1+x)$ makes sense, and we have

$$
\operatorname{det}(1+x)=\prod_{n>1}\left(1+\lambda_{n}(x)\right)
$$

where $\left(\lambda_{1}(x), \lambda_{2}(x), \ldots\right)$ is a listing of all nonzero eigenvalues of x, counted up to algebraic multiplicity (cf. [6]). The fundamental inequality

$$
\begin{equation*}
\operatorname{det}(1+|x+y|) \leqslant \operatorname{det}(1+|x|) \operatorname{det}(1+|y|) \tag{1}
\end{equation*}
$$

was pro /en first by Grothendieck (unpublished; see [7]) by inspecting the terms of the classical expansion of the Fredholm determinant $\operatorname{det}(1+h)$ for a trace :lass operator h. Twenty years after Grothendieck, this inequality was rediscovered by Seiler and Simon in their study of the Yukawa ${ }_{2}$ quantum field theory (cf. [13, 14]). Several alternative proofs have been found by Rot'feld [12] and Lieb [8].

In [5] Fuglede and Kadison define a determinant function Δ for every $\mathrm{II}_{1}-$ factor M and prove that

$$
\Delta(x y)=\Delta(x) \Delta(y), \quad \forall x, y \in M .
$$

It is ratural to ask whether or not inequality (1) remains true in this setting. In fact, the situation is quite different from the classical one, because $\Delta(x)$ igrore the phase of $x \in M$ (i.e., $\Delta(x)=\Delta(|x|))$ and there is no continuo is analog for the notion of n-exterior power ($n \in \mathbb{N}$) of an operator. However. (1) remains true and not only for the Fuglede-Kadison determinant, tut also for its natural generalization to the case of an arbitrary von Neumanı algebra M with a faithful semifinite trace τ.

To be more precise, let $\mu_{s}(x)(s \geqslant 0)$ be the s th singular value of $x \in M$ (cf. $[4,10]$) and define the continuous product of the " t-first singular values" of x by

$$
\Delta_{x}(t)=\exp \int_{0}^{t} \log \mu_{s}(x) d s
$$

When τ is finite, $\Delta_{x}(\tau(1))$ is nothing but the Fuglede-Kadison determinant $\Delta(x)$. For τ-compact elements $x, y \in M$, we prove that

$$
\begin{equation*}
\Delta_{1+|x+y|} \leqslant \Delta_{1+|x|} \Delta_{1+|y|} . \tag{2}
\end{equation*}
$$

This inequality was conjectured by Grothendieck [7].
The peper is organized as follows: in Section 1, we make the necessary preliminary definitions, and prove the inequality

$$
\Delta_{(1+x)(1+y)} \leqslant A_{1+x} A_{1+y}
$$

for τ-cor mpact elements $x, y \in M$. This inequality replaces the multiplicativity of the Fuglede-Kadison determinant. In Section 2, we prove the main ines (uality (2). In Section 3, we give a direct proof of Clarkson's inequalities

$$
\begin{array}{r}
\|x+y\|_{p}^{p^{\prime}}+\|x-y\|_{p}^{p^{\prime}} \leqslant 2\left(\|x\|_{p}^{p}+\|y\|_{p}^{p}\right)^{p^{\prime} p} \\
\quad\left(1<p \leqslant 2 \text { and } p^{\prime}=p /(p-1)\right), \\
\|x+y\|_{p}^{p}+\|x-y\|_{p}^{p} \leqslant 2^{p-1}\left(\|x\|_{p}^{p}+\|y\|_{p}^{p}\right) \quad(2 \leqslant p<\infty)
\end{array}
$$

for $x, y \in M$, where $\|x\|_{p}=\tau\left(|x|^{p}\right)^{1 / p}$. The first one has been recently obtained by Zsido [16], using the more sophisticated interpolation techniques, and the second one goes back to Dixmier [2]. They imply uniform convexity for the L^{p}-spaces considered by Dixmier [2] and Segal [15].

In Section 4, we give some other applications of the fundamental inequality. We use the usual terminology of von Neumann algebras as in [3].

1. The Determinant Function

Let M be a von Neumann algebra with a faithful semifinite trace τ. Call $x \in M$ finite rank (relative to τ) if $\tau\left(\operatorname{supp}\left(x^{*}\right)\right)<\infty$, and compact if it is a norm limit of finite rank elements. The compact elements are easily seen to be a (two-sided) ideal $C_{\infty}=C_{\infty}(M, \tau)$ and the finite rank elements are the smallest ideal whose norm closure is C_{∞} (cf. [3, p. 14, Ex. 2]). The trace ideal $C_{1}=C_{1}(M, \tau)$ is defined as the set of all $x \in M$ such that

$$
\|x\|_{1}=\tau(|x|)<\infty .
$$

A basic tool in the investigation of the analytical properties of completely continuous operators in a Hilbert space is the notion of " nth singular value." Let us now recall the natural generalization of this notion to our framework.
1.1. Definition. Let $x \in M$ and $t \geqslant 0$. We call " t th singular value" of x the number

$$
\mu_{t}(x)=\inf \{\|x e\| \mid e=\text { projection in } M \text { with } \tau(1-e) \leqslant t\}
$$

We have

$$
\begin{align*}
& \text { For } x \in M, t \mapsto \mu_{t}(x) \text { is decreasing and } \mu_{0}(x)=\|x\| . \tag{1.1.1}\\
& \text { For } t \geqslant 0, x \mapsto 0, x \mapsto \mu_{t}(x) \text { is increasing on } M_{+} \tag{1.1.2}\\
& \mu_{t}(x)=\mu_{t}\left(x^{*}\right)=\mu_{t}(|x|) \quad(t \geqslant 0 ; x, y \in M) \tag{1.1.3}
\end{align*}
$$

Proofs may be found in [4]. Moreover, we have

$$
\begin{equation*}
\text { If } \tau(1)=\infty, \text { then } \mu_{s}(1+x) \geqslant 1(s \geqslant 0) \text { for any } x \in C_{\infty} \tag{1.1.4}
\end{equation*}
$$

In fact, we have $\|(1+x) e\| \geqslant 1$ for every infinite projection $e \in M$, because if not exe would be invertible in M_{e} and hence $C_{\infty}\left(M_{e}, \tau_{e}\right)=M_{e}$ for some infinite projection $e \in M$, a fact which is absurd.
1.2. Definition. Let M be a von Neumann algebra with a faithful semifinit $=$ trace τ. Call determinant function associated with $x \in M$ the function $\Delta_{x}: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$given by

$$
\Delta_{x}(t)=\exp \int_{0}^{t} \log \mu_{s}(x) d s \quad(t \geqslant 0)
$$

As we have $\log \mu_{s}(x) \leqslant \log \|x\|$ for $s \geqslant 0, \Delta_{x}(t)$ makes sense (of course, $\int_{0}^{t} \log \mu_{s}(x) d s$ may be understood as a lower integral).
1.3. R.mark. If $\tau(1)<\infty, \Delta_{x}(\tau(1))=\Delta(x)$, where Δ is the analytical extensior (in the terminology of [5]) of the Fuglede-Kadison determinant (see, for example, [4, 2.2.2]).
1.4. Li:mma. We have
(i) $\Delta_{1+x}=\Delta_{1+x^{*}} \leqslant \Delta_{1+|x|} \quad(x \in M)$.
(ii) $\Delta_{x y}(t) \leqslant\|x\|^{t} \Delta_{y}(t) \quad(t \geqslant 0 ; x, y \in M)$.
(iii) $x \mapsto \Delta_{1+x}(t)$ is increasing on M_{+}for each $t \geqslant 0$.

Proof. (i) Let $x \in M$ and $s \geqslant 0$. For any projection e in M, we have

$$
\|(1+x) e\| \leqslant 1+\|x e\|
$$

so that

$$
\mu_{s}(1+x) \leqslant 1+\mu_{s}(x)=1+\mu_{s}(|x|)=\mu_{s}(1+|x|)
$$

The result follows immediately.
(ii) We have $\mu_{s}(x y) \leqslant\|x\| \mu_{s}(y)(s \geqslant 0)$ by [4, Proposition 1.6(iv)] and the result follows.
(iii) We have $\mu_{s}(1+x)=1+\mu_{s}(x)$ and we get the result by (1.1.2).

Using the inequality

$$
\log \left(1+\mu_{s}(|x|)\right) \leqslant \mu_{s}(|x|)
$$

we deduce from 1.4(i) and [4, Proposition 1.11] that

$$
\Delta_{1+x} \leqslant \exp \left(\|x\|_{1}\right) \quad \text { for } \quad x \in C_{1} .
$$

1.5. Remark. If $\tau(1)=\infty, A_{1+x}(t)$ has a limit $(t \rightarrow \infty)$ for any $x \in C_{\infty}$ by virtue of (1.1.4). Put

$$
\Delta(1+x)=\lim _{t \rightarrow \infty} \Delta_{i+x}(t)
$$

Then Δ is a finite positive function on $1+C_{1}$, and it is easy to see that

$$
\Delta(1+|x|)=\exp \tau(\log (1+|x|)) \quad \text { for } \quad x \in C_{1} .
$$

However, $\Delta(1+x)$ does not generally coincide with $\exp \tau(\log |1+x|)$, so that it is not in any way a "generalized Fredholm determinant."

The main result of this section is the following, which is a natural generalization of [4, Theorem 2.3].
1.6. Theorem. Let M be a von Neumann algebra with a faithful semifinite trace, and $x, y \in C_{\infty}$. Then, we have

$$
\Delta_{(1+x)(1+y)}(t) \leqslant \Delta_{1+x}(t) \Delta_{1+y}(t) \quad \text { for } \quad t>0 .
$$

Proof. If M is finite, the result follows immediately from [4, Theorem 2.3]. Assume now that M is infinite and put $|(1+x)(1+y)|^{2}=1+h$, where $h \in C_{\infty}$. Fix $t>0$. Using (1.1.4) and (1.1.1), we may assume w.l.o.g. that $\mu_{s}(1+h)>1$ for $s<t$. Then, it is almost clear (and we shall come back to this point) that there exists two finite projections p, q in M such that

$$
\Delta_{(1+x)(1+y)}(t)=\Delta_{q(1+x)(1+y) p}(t) .
$$

As $q(1+x)$ and $(1+y) p$ are τ-compact elements in M, we get

$$
\Delta_{(1+x)(1+y)}(t) \leqslant \Delta_{q(1+x)}(t) \Delta_{(1+y) p}(t)
$$

by [4 , Theorem 2.3]. Using 1.4 (ii), we get the result.
Let us now indicate how to find p and q. Let $h=\int_{-1}^{\infty} \lambda d e_{\lambda}$ be the spectral decomposition of h. Using [4, Propsition 1.3] and (1.1.4), we get

$$
\mu_{t}(1+h)=1+\mu_{0},
$$

where $\mu_{0}=\min \left\{\mu \geqslant 0 \mid \tau\left(1-e_{\mu}\right) \leqslant t\right\}$. Assume first that $\mu_{0}>0$ and put $p=1-e_{\mu_{0}^{-}}$. Then

$$
\tau(p)=\lim _{\mu \rightarrow \mu_{0}^{-}} \tau\left(1-e_{\mu}\right) \geqslant t
$$

and we get

$$
\mu_{s}(1+h)=\mu_{s}(p(1+h) p) \quad \text { for } \quad s<t
$$

by [4, Proposition 1.5]. Then

$$
\begin{aligned}
\mu_{s}((1+x)(1+y)) & =\mu_{s}(1+h)^{1 / 2} \\
& \left.=\mu_{s}|(1+x)(1+y) p|^{2}\right)^{1 / 2} \\
& =\mu_{s}((1+x)(1+y) p) \quad(s<t) .
\end{aligned}
$$

But now $k=\left|p(1+y)^{*}(1+x)^{*}\right|^{2}$ is compact and there exists as in $[4$, Lemma .13] a finite projection q in M such that $\mu_{s}(k)=\mu_{s}(q k q)$ for $s<t$. It follows that

$$
\begin{aligned}
l_{s}((1+x)(1+y)) & =\mu_{s}(k)^{1 / 2}=\mu_{s}\left(\left|p(1+y)^{*}(1+x)^{*} q\right|^{2}\right)^{1 / 2} \\
& =\mu_{s}(q(1+x)(1+y) p) \quad \text { for } \quad s<t .
\end{aligned}
$$

If $\mu_{0}=C$, we put $p=1-e_{0}$ and choose q as before. We have $\tau(p)=t$ and $\mu_{s}((1+x)(1+y))=\mu_{s}(q(1+x)(1+y) p)$ for $\quad s<t$. The proof of Theorem 1.6 is then complete.
1.7 C(rollary. Let M be a von Neumann algebra with a faithful semifinit: trace, and $x, y \in C_{\infty}$. Let $w \in 1+C_{\infty}$ with $\|w\| \leqslant 1$. Then, we have

$$
\Delta_{(1+x) w(1+y)}(t) \leqslant \Delta_{1+x}(t) \Delta_{1+y}(t) \quad \text { for } \quad t>0 .
$$

We ara now in position to prove the main inequality.

2. Proof of the Main Inequality

2.1. Tifeorem. Let M be a von Neumann algebra with a faithful semifinit! trace. Let $x, y \in C_{\infty}$. Then, we have

$$
\Delta_{1+|x+y|} \leqslant \Delta_{1+|x|} \Delta_{1+|y|} .
$$

The proof is based on Theorem 1.6, combined with the following technical lemma which replaces the wrong inequality $1+x+y \leqslant 1+|x|+|y|$.
2.2. Limma. Let M be a von Neumann algebra and $x, y \in M$. Then, there exits an element $w \in M,\|w\| \leqslant 1$, such that

$$
1+x+y=\left(1+\left|x^{*}\right|+\left|y^{*}\right|\right)^{1 / 2} w(1+|x|+|y|)^{1 / 2} .
$$

Proof. Let $\left(e_{i j}\right)_{1 \leftarrow i, j \leqslant 3}$ be a system of matrix units for $M_{3}(\mathbb{C})$ and put

$$
\begin{aligned}
& a=1 \otimes e_{11}+|x|^{1 / 2} u^{*} \otimes e_{21}+|y|^{1 / 2} v^{*} \otimes e_{31} \in M \otimes M_{3}(\mathbb{C}) \\
& t=1 \otimes e_{11}+|x|^{12} \otimes e_{21}+|y|^{1 / 2} \otimes e_{31} \in M \otimes M_{3}(\mathbb{C})
\end{aligned}
$$

where u and v are the phases of x and y. We get by direct calculation

$$
|a|=\left(1+u|x| u^{*}+v|y| v^{*}\right)^{1 / 2} \otimes e_{11}=\left(1+\left|x^{*}\right|+\left|y^{*}\right|\right)^{1 / 2} \otimes e_{11}
$$

and

$$
|b|==(1+|x|+|y|)^{1 / 2} \otimes e_{11} .
$$

Let U (resp. V) be phase of a (resp. b). We get

$$
\begin{aligned}
a^{*} b & =|a| U^{*} V|b| \\
& =\left[\left(1+\left|x^{*}\right|+\left|y^{*}\right|\right)^{1 / 2} \otimes e_{11}\right]\left[w \otimes e_{11}\right]\left[(1+|x|+|y|)^{1 / 2} \otimes e_{11}\right],
\end{aligned}
$$

where $w \in M$ and $\|w\| \leqslant 1$. But $a^{*} b=(1+x+y) \otimes e_{11}$, so that the lemma is proved.

Proof of Theorem 2.1. Let $x, y \in C_{\infty}$ and $t>0$.
Step 1. Let us first show that we have

$$
\Delta_{1+x+y}(t) \leqslant \Delta_{1+x}(t) \Delta_{1+y}(t)
$$

for positive $x, y \in C_{\infty}$. We have

$$
1+x+y=(1+x)^{1 / 2}\left[1+\left|y^{1 / 2}(1+x)^{-1 / 2}\right|^{2}\right](1+x)^{1 / 2}
$$

and Theorem 1.6 implies

$$
\begin{aligned}
\Delta_{1+x+y}(t) & \leqslant \Delta_{(1+x)^{1 / 2}(t)}\left(t \Delta_{1+\left|y^{1 / 2}(1+x)^{-1 / 2 / 2}\right|^{2}}(t) \Delta_{(1+x)^{1 / 2}}(t)\right. \\
& =\Delta_{1+x}(t) \Delta_{1+\mid y^{1 / 2}(1+x)^{-1 / 2 \mid 2}}(t) .
\end{aligned}
$$

But $\Delta_{1+|z|^{2}}(t)=\Delta_{1+\left|z^{*}\right| 2}(t)$, and hence

$$
\Delta_{1+x+y}(t) \leqslant \Delta_{1+x}(t) \Delta_{1+y^{1 / 2}(1+x)^{-1} y^{1 / 2}}(t) .
$$

But $(1+x)^{-1} \leqslant 1$, and we get the result by 1.4 (iii).
Step 2. Let us now show that we have

$$
\Delta_{1+x+y}(t) \leqslant \Delta_{1+|x|}(t) \Delta_{1+|y|}(t) \quad \text { for } \quad x, y \in C_{\infty} .
$$

By Lemma 2.2, there exists a contraction $w \in M$ such that

$$
1+x+y=\left(1+\left|x^{*}\right|+\left|y^{*}\right|\right)^{1 / 2} w(1+|x|+|y|)^{1 / 2} .
$$

By Corollary 1.7, we get

$$
\Delta_{1+x+y}(t) \leqslant \Delta_{1+\left|x^{*}\right|+\left|y^{*}\right|}(t)^{1 / 2} \Delta_{1+|x|+|y|^{\prime}}(t)^{1 / 2} .
$$

By step 1, we get

$$
\begin{aligned}
\Delta_{1+\left|x^{*}\right|+\left|y^{*}\right|}(t) & \leqslant \Delta_{1+\left|x^{*}\right|}(t) \Delta_{1+\left|{ }^{*}\right|}(t) \\
& =\Delta_{1+|x|}(t) \Delta_{1+|y|}(t)
\end{aligned}
$$

and

$$
\Delta_{1+|x|+|y|}(t) \leqslant \Delta_{1+|x|}(t) \Delta_{1+|y|}(t),
$$

so that fiutally

$$
\Delta_{1+x+y}(t) \leqslant \Delta_{1+|x|}(t) \Delta_{1+|y|}(t) .
$$

End of the Proof. Let $x+y=U|x+y|$ be the polar decomposition of $x+y$. By step 2, we have

$$
\Delta_{1+|x+y|}(t)=\Delta_{1+U^{*} x+U^{*} y}(t) \leqslant \Delta_{1+\left|U^{*} x\right|}(t) \Delta_{1+\left|U^{*} y\right|}(t) .
$$

But $\Delta_{1+\left|\ell^{\prime *} x\right|}(t)=\Delta_{1+\left(x^{*} U U^{*} x\right)^{1 / 2}}(t) \leqslant \Delta_{1+|x|}(t)$ by [11, Proposition 1.3.8] and 1.4(iii), so that finally

$$
\Delta_{1+|x+y|}(t) \leqslant \Delta_{1+|x|}(t) \Delta_{1+|y|}(t) .
$$

From The orem 2.1, we shall now deduce many inequalities.

3. Minkowski and Clarkson's Noncommutative Inequalities

Let M be a von Neumann algebra with a faithful semifinite trace τ. For $x \in M$ an $\perp p>0$, set

$$
\|x\|_{p}=\tau\left(|x|^{p}\right)^{1 / p} .
$$

If $p \geqslant 1$, we have the well-known inequality of Minkowski

$$
\|x+y\|_{p} \leqslant\|x\|_{p}+\|y\|_{p}
$$

Let us first prove an inequality which replaces Minkowski's when $0<p<1$.
3.1. PRisposition. Let $x, y \in M$. Then, we have

$$
\tau\left(|x+y|^{p}\right) \leqslant \tau\left(|x|^{p}\right)+\tau\left(|y|^{p}\right) \quad \text { for } \quad 0<p \leqslant 1
$$

Note that 3.1 implies that $\delta(x, y)=\|x-y\|_{p}^{p}$ is a metric on $C_{p}=\left\{x \in M \mid\|x\|_{p}<\infty\right\}$ for $p \leqslant 1$.

The proof of 3.1 is based on the following technical lemma:
3.2. Lelama. Let φ be a positive function on \mathbb{R}_{+}.

Assume that φ is bounded and set

$$
\pi_{t}(r)=\exp \int_{0}^{t} \log (1+r \varphi(s)) d s \quad(t, r>0)
$$

Then, we have for each $p(0<p<1)$

$$
\int_{0}^{t} \varphi^{p}(s) d s=\frac{p \sin (\pi p)}{\pi} \int_{0}^{\infty} \frac{\log \pi_{t}(r)}{r^{p+1}} d r
$$

Proof. We have, for a fixed $t>0$

$$
\frac{d}{d r} \pi_{t}(r)=\pi_{t}(r) \int_{0}^{t} \frac{\varphi(s)}{1+r \varphi(s)} d s
$$

and hence

$$
\int_{0}^{\infty} \frac{d\left(\log \pi_{t}(r)\right)}{r^{p}}=\int_{0}^{\infty} \frac{1}{r^{p}}\left(\int_{0}^{t} \frac{\varphi(s)}{1+r \varphi(s)} d s\right) d r
$$

But

$$
\begin{aligned}
\int_{0}^{t}\left[\int_{0}^{\infty} \frac{\varphi(s)}{r^{p}(1+r \varphi(s))} d r\right] d s & =\int_{0}^{t} \varphi(s)^{p}\left[\int_{0}^{\infty} \frac{d u}{u^{p}(1+u)}\right] d s \\
& =\frac{\pi}{\sin p \pi} \int_{0}^{t} \varphi(s)^{p} d s<\infty
\end{aligned}
$$

so that we get by the Lebesgue-Fubini theorem

$$
\int_{0}^{\infty} \frac{d\left(\log \pi_{t}(r)\right)}{r^{D}}=\frac{\pi}{\sin p \pi} \int_{0}^{t} \varphi(s)^{p} d s
$$

On the other hand, we have

$$
\int_{0}^{R} \frac{d\left(\log \pi_{t}(r)\right)}{r^{p}}=\frac{\log \pi_{t}(R)}{R^{p}}+p \int_{0}^{R} \frac{\log \pi_{t}(r)}{r^{p+1}} d r
$$

As the left-hand side has a limit for $R \rightarrow \infty$, the two terms of the right-hand side must also have a limit, and the first one goes to zero. Henceforth, we have

$$
\int_{0}^{\infty} \frac{\log \pi_{t}(r)}{r^{p+1}} d r=\frac{\pi}{p \sin (p \pi)} \int_{0}^{t} \varphi(s)^{p} d s
$$

Proof of Proposition 3.1. This proposition has nontrivial content only if x and y are compact. The case $p=1$ is well known (see, for example, [4]), so that we shall assume that $0<p<1$. By Theorem 2.1, we get

$$
\log \Delta_{1+r|x+y|}(t) \leqslant \log \Delta_{1+r|x|}(t)+\log \Delta_{1+r|y|}(t) \quad(t, r>0)
$$

and hence

$$
\int_{0}^{t} \mu_{s}(|x+y|)^{p} d s \leqslant \int_{0}^{t} \mu_{s}(|x|)^{p} d s+\int_{0}^{t} \mu_{s}(|y|)^{p} d s
$$

by Lemma 3.2. By letting $t \rightarrow \infty$ and using [4, Proposition 1.6(ii)], we get the result.

The follc wing lemma, that we shall need to prove Clarkson's inequalities in full gentrality, contains the analog for $p \geqslant 1$ (and x, y nonnegative) of Proposition 3.1.
3.3. Lf mma. Let x, y be positive elements in M. Then, we have

$$
2^{1-p}\|x+y\|_{p}^{p} \leqslant\|x\|_{p}^{p}+\|y\|_{p}^{p} \leqslant\|x+y\|_{p}^{p} \quad \text { for } \quad p \geqslant 1
$$

Proof. We may assume w.l.o.g. that M acts on a Hilbert space H and that $\|x\|_{I},\|y\|_{p}$ and $\|x+y\|_{p}<\infty$. Let us first check the inequality on the left. Recall first the well-known inequality for positive numbers λ, ρ

$$
2^{1-p}(\lambda+\rho)^{p} \leqslant \lambda^{p}+\rho^{p} \quad(p \geqslant 1) .
$$

Using [4 Proposition 4.3], we get

$$
\int_{0}^{t} \mu_{s}(x+y)^{p} d s \leqslant \int_{0}^{t}\left(\mu_{s}(x)+\mu_{s}(y)\right)^{p} d s
$$

and the f revious inequality implies

$$
2^{1-p} \int_{0}^{t} \mu_{s}(x+y)^{p} d s \leqslant \int_{0}^{t} \mu_{s}(x)^{p} d s+\int_{0}^{t} \mu_{s}(y)^{p} d s
$$

The result follows by letting $t \rightarrow \infty$.
To prove the inequality on the right, we proceed essentially as in [9, Lemma 2.6]. We have $x, y \leqslant x+y$, so that there exists elements $u, v \in M$, $\|u\|,\|v\| \leqslant 1$, such that

$$
x^{1 / 2}=u(x+y)^{1 / 2}, \quad y^{1 / 2}=v(x+y)^{1 / 2}
$$

(cf. [3, P oposition 10, p. 11]).
Hence, we have

$$
x=u(x+y) u^{*}, \quad y=v(x+y) v^{*}
$$

We claim that $\tau\left(x^{p}\right) \leqslant \tau\left(u(x+y)^{p} u^{*}\right)$. In fact, let t be a positive number and let e be a projection in M with $\tau(1-e) \leqslant t$. For $\xi \in e(H),\|\xi\|=1$, put $\eta=u^{*} \xi$. We have

$$
(x \xi \mid \xi)^{p}=((x+y) \eta \mid \eta)^{p}=\left(\int_{0}^{\infty} \lambda d\left(e_{\lambda}(\eta) \mid \eta\right)\right)^{p}
$$

where $x-y=\int_{0}^{\infty} \lambda d e_{\lambda}$ is the spectral decomposition of $x+y$. But

$$
\left(\int_{0}^{\infty} \lambda d\left(e_{\lambda}(\eta) \mid \eta\right)\right)^{p} \leqslant\|\eta\|^{p-1} \int_{0}^{\infty} \lambda^{p} d\left(e_{\lambda}(\eta) \mid \eta\right)
$$

by Jensen's inequality (note that $t \mapsto t^{p}$ is convex for $p \geqslant 1$). As $\|\eta\| \leqslant 1$, we get

$$
(x \xi \mid \xi)^{p} \leqslant\left(u(x+y)^{p} u^{*} \xi \mid \xi\right) \quad \text { for any } \xi \in e(H) \text { with }\|\xi\|=1
$$

Hence, we have by [4, Remark 1.4.1]

$$
\mu_{t}(x)^{p} \leqslant \mu_{t}\left(u(x+y)^{p} u^{*}\right)
$$

and hence

$$
\tau\left(x^{p}\right) \leqslant \tau\left(u(x+y)^{p} u^{*}\right) .
$$

Similarly, we get

$$
\tau\left(y^{p}\right) \leqslant \tau\left(v(x+y)^{p} v^{*}\right)
$$

and hence

$$
\tau\left(x^{p}\right)+\tau\left(y^{p}\right) \leqslant \tau\left((x+y)^{p}\left(u^{*} u+v^{*} v\right)\right)
$$

Now, using cyclicity of the trace together with the obvious equality

$$
x+y=(x+y)^{1 / 2}\left(u^{*} u+v^{*} v\right)(x+y)^{1 / 2}
$$

we get

$$
\begin{aligned}
\tau\left(x^{p}\right)+\tau\left(y^{p}\right) & \leqslant \tau\left((x+y)^{p-1}(x+y)^{1 / 2}\left(u^{*} u+v^{*} v\right)(x+y)^{1 / 2}\right) \\
& =\tau\left((x+y)^{p}\right) .
\end{aligned}
$$

The inequality on the right is then proved.
We are now in position to prove the noncommutative analogs of the Clarkson inequalities [1].

3.4. Theorem. Let $x, y \in M$. We have

(i) $\|x+y\|_{p}^{p^{\prime}}+\|x-y\|_{p}^{p^{\prime}} \leqslant 2\left(\|x\|_{p}^{p}+\|y\|_{p}^{p}\right)^{p^{\prime} / p}$ for $1<p \leqslant 2$ and $p^{\prime}=p / p-1$,
(ii) $\|x+y\|_{p}^{p}+\|x-y\|_{p}^{p} \leqslant 2^{p-1}\left(\|x\|_{p}^{p}+\|y\|_{p}^{p}\right)$ for $2 \leqslant p<\infty$.

These inequalities are due to McCarthy [9] when M is the algebra of all bounded operators in a Hilbert space. The proof of (ii) for general semifinite von Neumann algebras goes back to Dixmier [2], and (i) has been recently obtained by Zsido [16]. Our proof, based on Proposition 3.1, is new and doesn't use the more sophisticated interpolation techniques.

Proof of (i). We may assume that M acts in a Hilbert space H and then choose elements $\boldsymbol{\xi}_{\alpha} \in H,\left\|\boldsymbol{\xi}_{\alpha}\right\|=1(\alpha \in I)$ such that

$$
\tau(u)=\sum_{\alpha}\left(u \xi_{\alpha} \mid \xi_{\alpha}\right)
$$

for each positive element u in M. Set

$$
a=x^{*} x+y^{*} y, \quad b=x^{*} y+y^{*} x
$$

The same computation as in [9, Theorem 2.7 (ii), p. 261-262] gives us $\|x+y\|_{p}^{p^{\prime}}+\|x-y\|_{p}^{p^{\prime}} \leqslant 2\left\{\sum_{\alpha} 2^{-1}\left[\left((a+b)^{p / 2} \xi_{a} \mid \xi_{\alpha}\right)+\left((a-b)^{p^{\prime / 2}} \xi_{\alpha} \mid \xi_{\alpha}\right)\right]\right\}^{p^{\prime} / p}$. But the f anction $t \mapsto t^{p / 2}$ is operator concave on \mathbb{R}_{+}(cf. [11]), so that we get

$$
\|x+y\|_{p}^{p^{\prime}}+\|x-y\|_{p}^{p^{\prime}} \leqslant 2\left[\sum_{\alpha}\left(a^{p / 2} \xi_{\alpha} \mid \xi_{\alpha}\right)\right]^{p^{\prime} / p}
$$

and hence

$$
\|x+y\|_{p}^{p^{\prime}}+\|x-y\|_{p}^{p^{\prime}} \leqslant 2\left\{\tau\left[\left(x^{*} x+y^{*} y\right)^{p / 2}\right]\right\}^{p^{\prime} p} .
$$

Using Proposition 3.1, we get then

$$
\|x+y\|_{p}^{p^{\prime}}+\|x-y\|_{p}^{p^{\prime}} \leqslant 2\left(\|x\|_{p}^{p}+\|y\|_{p}^{p}\right)^{p^{\prime} / p} .
$$

Proof $口 f($ ii). Set $q=p / 2$. We have

$$
\begin{aligned}
\|x+y\|_{p}^{p}+\|x-y\|_{p}^{p} & =\left\||x+y|^{2}\right\|_{q}^{q}+\left\||x-y|^{2}\right\|_{q}^{q} \\
& \leqslant\left\||x+y|^{2}+|x-y|^{2}\right\|_{q}^{q} \quad \text { (use } 3.3 \text { with } q=p / 2 \geqslant 1 \text {) } \\
& =2^{q}\left|\left\|\left.x\right|^{2}+|y|^{2}\right\|_{q}^{q}\right. \\
& \leqslant 2^{q} 2^{q-1}\left(\left\||x|^{2}\right\|_{q}^{q}+\left\||y|^{2}\right\|_{q}^{q}\right) \\
& =2^{p-1}\left(\|x\|_{p}^{p}+\|y\|_{p}^{p}\right) .
\end{aligned}
$$

4. Other Applications

4.1.

From the fundamental inequality 2.1 , we can derive many other inequalities by using [4, Corollary 4.2]. More precisely, we get

$$
\begin{array}{r}
\int_{0}^{a} g\left[1+\mu_{s}(x+y)\right] d s \leqslant \int_{0}^{a} g\left[\left(1+\mu_{s}(x)\right)\left(1+\mu_{s}(y)\right)\right] d s \\
\left(a>0 ; x, y \in C_{\infty}\right)
\end{array}
$$

for any nondecreasing continuous function $g:[0,+\infty[\rightarrow \mathbb{R}$ such that $t \mapsto g(\exp (t))$ is convex on $\left[-\infty,+\infty\left[\right.\right.$. Taking $g(t)=t^{p}(p>0)$ and using Hölder's inequality for functions, we get for a von Neumann algebra M with finite trace τ and $x, y \in M$

$$
\left\|1+\left|x+y\left\|_{D} \leqslant\right\| 1+|x|\left\|_{q}\right\| 1+|y| \|_{r} \quad \text { if } \quad 1 / p=1 / q+1 / r .\right.\right.
$$

4.2

Let M be a von Neumann algebra with a faithful semifinite trace τ. From Theorem 2.1, we may deduce the continuity of the function $x \mapsto \Delta(1+x)=$ $\exp \tau(\log (1+x))$ on the positive part of C_{1}. More precisely, let x, y be positive elements in C_{1} and $t>0$. We have

$$
\Delta_{1+x}(t)=\Delta_{1+|x-y+y|}(t) \leqslant \Delta_{1+y}(t) \Delta_{1+|x-y|}(t) \quad \text { (by Theorem 2.1) }
$$

and hence

$$
\Delta(1+x) \leqslant \Delta(1+y) \Delta(1+|x-y|)
$$

by letting $t \rightarrow \infty$. Then

$$
\Delta(1+x)-\Delta(1+y) \leqslant \Delta(1+y)[\Delta(1+|x-y|)-1] .
$$

Using the inequality

$$
e^{u}-1 \leqslant u e^{u} \quad \text { for } \quad u \geqslant 0,
$$

we get

$$
\begin{aligned}
& \Delta(1+x)-\Delta(1+y) \leqslant \Delta(1+y) \Delta(1+|x-y|) \int_{0}^{\infty} \log \left(1+\mu_{s}(|x-y|)\right) d s \\
& \leqslant \exp \left(\|y\|_{1}\right) \exp \left(\|x-y\|_{1}\right)\|x-y\|_{1} \\
& \leqslant \exp \left(\|x\|_{1}\right)\|x-y\|_{1} \quad \text { (by Lemma 3.3) } \\
& \leqslant \exp \left(\|x\|_{1}+\|y\|_{1}\right)\|x-y\|_{1} .
\end{aligned}
$$

By symmetry

$$
|\Delta(1+x)-\Delta(1+y)| \leqslant \exp \left(\|x\|_{1}+\|y\|_{1}\right)\|x-y\|_{1}
$$

so that $x \mapsto \Delta(1+x)$ is locally Lipschitz on the positive part of C_{1}.

References

1. J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396-41.1.
2. J. Dixn ier, Formes linéaires sur un anneau d'opérateurs, Bull. Soc. Math. France 81 (1953), 9-39.
3. J. Dixuier, "Les algèbres d'opérateurs dans l'espace Hilbertien (algèbres de von Neı mann)," Gauthier-Villars, Paris, 1969.
4. T. Fack, Sur la notion de valeur caracteristique, J. Operator Theory 7 (1982), 307-333.
5. B. Fugiede and R. Kadison, Determinant theory in finite factors, Ann. of Math. 55 (1952), 520-530.
6. I. C. G(hberg and M. G. Krejn, "Opérateurs linéaires non autoadjoints dans un espace Hilberti:n," (Dunod, Paris, 1971.
7. A. Grcthendieck, Réarrangements de fonctions et inégalités de convexité dans les algèbres de von Neumann munies d'une trace (mimeographied notes), in "Séminaire Bourbal i," pp. 113-01-113-13, 1955.
8. E. H. L EB, Inequalities for some operator matrix functions, Advan. in Math. 20 (1976), 174-174.
9. C. A. N cCarthy, c_{p} Israel J. Math. 5 (1967), 249-271.
10. F. J. M Jrray and J. von Neumann, On rings of operators, Ann. of Math. 37 (1936), 116-22!.
11. G. K. l'edersen, " C^{*}-Algebras and Their Automorphism Groups," Academic Press, New Yo k, 1979.
12. S. Yu. Lot'fecd, The singular numbers of the sum of completely continuous operators, Top. Mcth. Phys. 3 (1969), 73-8.
13. E. Seile r and B. Simon, An inequality for determinants, Proc. Nat. Acad. Sci. U.S.A. 72 (1975), 3277-3278.
14. E. Seili r and B. Simon, Bounds in the Yukawa ${ }_{2}$ quantum field theory: Upper bound of the pres ;ure, Hamiltonian bound and linear lower bound, Comm. Math. Phys. 45 (1975), 99-114.
15. I. Segal., A non commutative extension of abstract integration, Ann. of Math. 37 (1953), 401-45*.
16. L. Zsid'3, On the spectral subspaces of locally compact groups of operators, Advan. in Math. 35 (1980), 213-276.
