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Soit M une algébre de von Neumann munie d’une trace semi-finie fidéle r. Pour
les ¢léments r-compacts x de M, A. Grothendieck introduit dans un “Séminaire
Bourbaki,” de 1955 une fonction A4,,, généralisant le déterminant de
Fuglede-Kadison, et conjecture I'inégalite

A1+|x+yl <Al+|x|A1+|yI'

Dans cet article, nous démontrons cette inégalité. En corollaire, nous obtenons une
déemonstration directe des inégalités de Clarkson.

Let M be a von Neumann algebra with a faithful semifinite trace 7. For -
compact elements x € M, Grothendieck introduced in “Séminaire Bourbaki,” 1955
a function 4,,, generalizing the Fuglede—Kadison determinant, and conjectured
that

Al+|—\‘+.v| <Al+|X|Al+I.V|'

In this paper, the inequality is proved. As a corollary, a direct proof of the
Clarkson inequalities is obtained.

INTRODUCTION

For any trace class operator x in a separable Hilbert space, the Fredholm
determinant det(1 + x) makes sense, and we have

det(1+x)= [] (1 +4,(x))

npl

where (4,(x), 4,(x),...) is a listing of all nonzero eigenvalues of x, counted up
to algebraic multiplicity (cf. [6]). The fundamental inequality

det(1 + |x + y|) < det(1 + [x[) det(1 + | y|) (1)
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was pro /en first by Grothendieck (unpublished; see [7]) by inspecting the
terms of the classical expansion of the Fredholm determinant det(1 + 4) for
a trace :lass operator h. Twenty years after Grothendieck, this inequality
was rediscovered by Seiler and Simon in their study of the Yukawa,
quantum field theory (cf. [13, 14]). Several alternative proofs have been
found by Rot'feld [12] and Lieb [8].

In [5] Fuglede and Kadison define a determinant function 4 for every II,-
factor M and prove that

Axp)=4x)4(y),  YxyEM.

It is ratural to ask whether or not inequality (1) remains true in this
setting. I1 fact, the situation is quite different from the classical one, because
A(x) igrore the phase of x€M (ie., A(x)=4(x|)) and there is no
continuo 1s analog for the notion of n-exterior power (7 € N) of an operator.
However. (1) remains true and not only for the Fuglede—Kadison deter-
minant, tut also for its natural generalization to the case of an arbitrary von
Neuman: algebra M with a faithful semifinite trace t.

To be more precise, let u,(x) (s > 0) be the sth singular value of x € M
(cf. [4, 10]) and define the continuous product of the “s-first singular values”
of x by

L
4. (t)=exp JO log u,(x) ds.

When r is finite, 4,(z(1)) is nothing but the Fuglede-Kadison determinant
A(x). For t-compact elements x, y € M, we prove that

Adisixey SAigndisiy @)

This inequality was conjectured by Grothendieck [7].
The peper is organized as follows: in Section 1, we make the necessary
preliminary definitions, and prove the inequality

A(l+x)(1+y) gAl+.chl+y

for 7-coripact elements x, y € M. This inequality replaces the muiti-
plicativity of the Fuglede-Kadison determinant. In Section 2, we prove the
main inequality (2). In Section 3, we give a direct proof of Clarkson’s ine-
qualities

2 2(x)IE + (| ylI2) e
(1<p<g2andp’ =p/(p—1)),
[x+p02+x—yIs<2? x5+ yl7) (2<p <)

Ix + 5"+ llx -yl
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for x,y €M, where |x|,=7(x|?)/?. The first one has been recently
obtained by Zsidé [16], using the more sophisticated interpolation
techniques, and the second one goes back to Dixmier [2]. They imply
uniform convexity for the LP-spaces considered by Dixmier [2] and
Segal [15].

In Section4, we give some other applications of the fundamental
inequality. We use the usual terminology of von Neumann algebras as in [3].

1. THE DETERMINANT FUNCTION

Let M be a von Neumann algebra with a faithful semifinite trace z. Call
X € M finite rank (relative to 7) if r(supp(x*)) < co, and compact if it is a
norm limit of finite rank elements. The compact elements are easily seen to
be a (two-sided) ideal C, = C(M, 1) and the finite rank elements are the
smallest ideal whose norm closure is C, (cf. 3, p. 14, Ex. 2]). The trace
ideal C, = C,(M, t) is defined as the set of all x € M such that

1, = 7(x]) < co.

A basic tool in the investigation of the analytical properties of completely
continuous operators in a Hilbert space is the notion of “nth singular value.”
Let us now recall the natural generalization of this notion to our framework.

1.1. DEFINITION. Let x € M and ¢ > 0. We call “tth singular value” of x
the number

u,(x) = inf{||xe|||e = projection in M with 7(1 —e) < t}.

We have
For x € M, t — u,(x) is decreasing and uy(x) = |/ x||. (1.1.1)
Fort>0,x+> 0, x> y,(x)is increasingon M , . (1.1.2)
sy =px*)=px)  (>0;x,y €M) (L.1.3)

Proofs may be found in [4]. Moreover, we have

Ift(1)=oco,thenu (1+x)>1(s >20)foranyx€ C,. (1.1.4)

In fact, we have ||(1 + x) e|| > 1 for every infinite projection e € M, because
if not exe would be invertible in M, and hence C_(M,, 7,) =M, for some
infinite projection e € M, a fact which is absurd.
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1.2. DEFINITION. Let M be a von Neumann algebra with a faithful
semifinitz trace . Call determinant function associated with x € M the
function 4,: R, - R, given by

A(t) = exp f logu(x)ds  (t>0).

As we have log u(x)<log|x|| for s >0, 4,(t) makes sense (of course,
% log u,1x) ds may be understood as a lower integral).

L.3. Remark. If (1) < 00, 4,(r(1))=4(x), where 4 is the analytical
extensior (in the terminology of [5]) of the Fuglede—Kadison determinant
(see, for example, [4, 2.2.2]).

14. LiMMA. We have
() 4,,x=4,, <4115 KEM)

(il) 44O x]"4,(5) (> 05x,y€M).

(it) x> 4d,, [(t) is increasing on M _ for each t > 0.
Proof. (i) Let x €M and s> 0. For any projection e in M, we have

I(1+x)ell < 1+ |xe]
so that
B(1+ ) < T+ pge) =14 py(|x]) = p(1 +|x]).

The result follows immediately.
(ii) We have u,(xy)<|x||#,(») (s>0) by [4,Proposition 1.6(iv)]
and the rzsult follows.

(iii) We have p(1+x)=1+pux) and we get the result by
(1.1.2). R

Using the inequality
log(1 + (%)) < a(x)),
we deduc: from 1.4(i) and [4, Proposition 1.11] that
4y, . <Lexp(lx|l,) for xeC,.

1.5. Remark. If (1) = o0, 4,, () has a limit (f > oo) for any x € C, by
virtue of (1.1.4). Put

AL+ %)= lim 4,,,(0)
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Then 4 is a finite positive function on 1 4+ C,, and it is easy to see that
A(1 + |x}) = exp 7(log(1 + | x])) for xeC,.

However, 4(1 + x) does not generally coincide with expz (log |1 + x]), so
that it is not in any way a “generalized Fredholm determinant.”

The main result of this section is the following, which is a natural
generalization of {4, Theorem 2.3].

1.6. THEOREM. Let M be a von Neumann algebra with a faithful
semifinite trace, and x, y € C . Then, we have

A(1+x)(l+y)(t) <A1+x(t)dl+y(t) Jor t>0.

Proof. If M is finite, the result follows immediately from [4,
Theorem 2.3]. Assume now that M is infinite and put
|(1 +x)(1 +p)|* =1+ h, where h € C,. Fix t > 0. Using (1.1.4) and (1.1.1),
we may assume w.l.o.g. that (1 + #) > 1 for s < ¢. Then, it is almost clear
(and we shall come back to this point) that there exists two finite projections
P, q in M such that

A(l+x)(l+y)(t) =Aq(1+x)(l+y)p(t)'

As g(1 + x) and (1 + y) p are T-compact elements in M, we get

A4t 0a4p) <dga10(E) A4 p,(0)

by (4, Theorem 2.3]. Using 1.4(ii), we get the result.
Let us now indicate how to find p and g. Let h = [, 4 de, be the spectral
decomposition of h. Using [4, Propsition 1.3] and (1.1.4), we get

(L +h)=1+u,,

where yy=min{u >0|7(1 —e,)<t}. Assume first that 44> 0 and put
p=1—e,;. Then

t(p)= lim t(1—¢,)>1¢
g
and we get
(1 +h)=p(p(1+h)p) for s<t
by [4, Proposition 1.5]. Then
#((1 +x)(1 + ) =p,(1 + h)'?
=p,((1 +x)(1 +y)p|)"?
=u(A+x)1+»)p) (s<0)
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But now k=|p(1+y)*(1+x)*|* is compact and there exists as in [4,
Lemma .13] a finite projection g in M such that y (k) = u,(gkq) for s < . It
follows that

1((1+x)(1 +3)) = uk)* = p (| p(1 + p)* (1 + x)* g|*)*?
=u(@1 +x)(1+y)p) for s<t

If uy=C, we put p=1—e, and choose g as before. We have 7(p) =t and
(L +2)1 +y)=ug(1 +x)(1+y)p) for s<t The proof of
Theorem 1.6 is then complete.

1.7 CoROLLARY. Let M be a von Neumann algebra with a faithful
semifinit: trace, and x, y € C,,. Let w€ 1 + C, with ||w|| < 1. Then, we
have

A(l+x)w(l+y)(t) <Al+x([)Al+v(t) Jor t>0.

We ar: now in position to prove the main inequality.

2. PROOF OF THE MAIN INEQUALITY

2.1. THEOREM. Let M be a von Neumann algebra with a faithful
semifinit trace. Let x, y € C_,. Then, we have

Al+|x+y| <Al+|x|Al+|yI'

The proof is based on Theorem 1.6, combined with the following technical
lemma which replaces the wrong inequality 1 + x +y < 1 + |x| +|y|.

22.LimMA. Let M be a von Neumann algebra and x, y € M. Then,
there exists an element wE M, ||w| < 1, such that

Ltxy=(+[x*+ ] p*D"2 wl +[x]+]y)".

Proof. Let (e;;),<;,j<3 be a system of matrix units for M,(C) and put
a=1®e, +|x|"*u* e, +|y]|" v*®e; €EM® M,;(C)
L=1@e, +|x[" ® ey +]y]" @ ey €M@ M,(C),

where u and v are the phases of x and y. We get by direct calculation
Jal== (1t u x| u* + 0]y o) @ ey = (1 +]x¥| +] y*) 2 @ ey,
and

bl==(1+ x| +]y)* ®ey,.
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Let U (resp. V) be phase of a (resp. b). We get
a*b=|a| U*V|b|
= [+ x*[+ [ y*)? @ ey]lw @ ey J[(1 + x| +1¥D"* @ ey,

where w € M and | w| < 1. But a*b=(1+x+y)®e,,, so that the lemma
is proved.

Proof of Theorem 2.1. Let x,y€ C_ and ¢ > 0.
Step 1. Let us first show that we have

A1+x+y(t)<Al+x(t)Al+y(t)
for positive x, y € C_,. We have
L4x+y=1+x)" 14|21 +x)" 221 + x)"?
and Theorem 1.6 implies
A1+x+y(t)<A(1+x)‘/2(t)A1+|y‘ﬂu+x)—'/2|2(t)A(1+x)”1(t)
=4, A4y 4 0-1212(0)-
But4,,,,{t)=4,,,,- (), and hence
A1+x+y(t)<Al+x(t)Al+y'/1(1+x)*'y'/2(t)'

But (1 +x)~'< 1, and we get the result by 1.4(ii).
Step 2. Let us now show that' we have

V2 PPN () RN P () 2 P ) for x,y€C,.
By Lemma 2.2, there exists a contraction w € M such that
Ltxy=(1+x*[+]y*D"2 wl + x| + |y
By Corollary 1.7, we get
7 NN (3 Y PP IRTRNI () L PRI ()
By step 1, we get

Al+|x‘|+|y‘|(t)<Al+|x*|(t)Al+|y‘|(t)

=Ax+|xl(t)A1+|yl(t)
and

v PRI (3 L PRI (J 2 PRI (52

580/50/2-7
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so that finally
Ay xey(t) S PR () PRI () 2

End of the Proof. Let x+y=U|x+y| be the polar decomposition of
X +y. By step 2, we have

Ay iy O =41 pexr vy KAy g () Ay ey ().

But 4, g (t) =414 xovveanrn(t) 4,4 5 (¢) by [11, Proposition 1.3.8] and
1.4(iii), so that finally

Al+|x+y|(t) < Al+|x|(t) A1+ IYI(t)' l

From Theorem 2.1, we shall now deduce many inequalities.

3. MINKOWSKI AND CLARKSON’S NONCOMMUTATIVE INEQUALITIES

Let M be a von Neumann algebra with a faithful semifinite trace z. For
XEM anip> 0, set :

lxll, = (| x|")".
If p > 1, we have the well-known inequality of Minkowski
lx+ 2l <llxll, + 1 yll,-
Let us fir:t prove an inequality which replaces Minkowski’s when 0 < p < 1.
3.1. PROPOSITION. Let x, y € M. Then, we have
(x+y”)<e(xP) +(ylP) Sfor O<p<L
Note that 3.1 implies that d(x,y)=|lx—p|5 is a metric on

C,={x€M||x|, < o0} for p< 1.
The proof of 3.1 is based on the following technical lemma:

3.2. LEiMA. Let ¢ be a positive function on R _ .
Assume that ¢ is bounded and set

¢
n(r)= expf log(1 + re(s)) ds ¢t r>0)
[1}
Then, we have for each p (0 <p < 1)

[ )0 25060) (= oa ),

o rp+l
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Proof. We have, for a fixed t >0

d _ o(s)
gﬂ:(")—ﬂp(f) T+ o)
and hence
© dlogn,(r)) 1 (¢ o(s)
J’o —T_Jo 77 ( omds) dr.
But

e e(s) (e d
) Uo Tt 00 d’]"“fo"'(s) Uo uP(1u+u)]ds

b4 t
= s} ds < o0,
sin pn J{o 0(s) <

so that we get by the Lebesgue—Fubini theorem

jw dllogn(r)) = f " o(s)? ds.

0 r? sin pm Jo

On the other hand, we have

dr.

® d(log m(r)) _ logm(R) log 7,(r)
J. 0 rP R? + 4 0 r P+l
As the left-hand side has a limit for R — oo, the two terms of the right-hand
side must also have a limit, and the first one goes to zero. Henceforth, we
have

©logm(r) , T t »
,[0 rP+! dr= p sin(pn) J; o(s)" ds. B

Proof of Proposition 3.1. This proposition has nontrivial content only if
x and y are compact. The case p =1 is well known (see, for example, [4]),
so that we shall assume that 0 < p < 1. By Theorem 2.1, we get

10gAl+r|.:c+_v|(t) < l0gAl+r|x|(t) + lOgAI+r|y|(t) (t9 r> 0)
and hence

t t {
[ mlx+y1y7 ds < [ xly? ds + [ w(y))” ds
0 [} 0

by Lemma 3.2. By letting ¢ —» oo and using [4, Proposition 1.6(ii)}, we get
the result. §
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The follcwing lemma, that we shall need to prove Clarkson’s inequalities in
full generality, contains the analog for p>1 (and x, y nonnegative) of
Proposition 3.1.

3.3. LiMMA. Let x, y be positive elements in M. Then, we have
2" P x+ylIE<lxla+ x5l + x5 for p2 L

Proof. We may assume w.l.o.g. that M acts on a Hilbert space H and
that |[x||,, || yl|, and [|x + |, < oo. Let us first check the inequality on the
left. Recall first the well-known inequality for positive numbers 4, p

24 p)P AP+ ().
Using [4 Proposition 4.3 ], we get

f

[L i+ ds <[ ) + 1,0 ds,

and the previous inequality implies
f ! t
2177 [yl +9)" ds < [ ) ds + [ u(y)° ds.
0 0 0

The result follows by letting £ — o0.

To prove the inequality on the right, we proceed essentially as in [9,
Lemma 2.6]. We have x,y < x +y, so that there exists elements u, v € M,
ll«|l, ]l €1, such that

xl/l — u(x +y)l/2, y1/2 — U(x +y)1/2

(cf. [3, P oposition 10, p. 11]).
Hence, we have

x=u(x +y)u*, y=v(x+y)v*
We clain that 7(x”) < t(u(x + y)” u*). In fact, let ¢ be a positive number and
let e be a projection in M with 7(1 —e)<t. For éce(H), |&|=1, put
n=u*f. We have

(210 = (@ +)nin) = (| Mdtestrin)).

where x -- y = [ Ade, is the spectral decomposition of x + y. But

(I adtesnmy> <linte= [ a2dtes i)
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by Jensen’s inequality (note that ¢ +— ¢7 is convex for p > 1). As ||5|| < 1, we
get

(x&1€)” < (ulx +y)" u*¢|&) for any L€ e(H) with ||| = L.
Hence, we have by [4, Remark 1.4.1]
%) < p(ulx + )" u*)
and hence
t(x?) < t(u(x + y)? u*).
Similarly, we get
t(¥?) < tulx +y)° v¥),
and hence
(x?) + 1(¥?) < t((x + »)? (u*u + v*v)).
Now, using cyclicity of the trace together with the obvious equality
x+y=x+y)" @*u+v*v)x +)"?
we get
T(x?) + (") < T(x + )77 (x + )7 (w*u + v*)(x +y)'?)
=7((x +7)").

The inequality on the right is then proved. [

We are now in position to prove the noncommutative analogs of the
Clarkson inequalities [1].

3.4. THEOREM. Let x,y € M. We have

@ Nx+y05 +lIx=pI5"<201x12+ 11 »I12)*7”? for 1<p<2 and
p' =p/p—1,
(i) fx+ylls+llx =yl <227 (x5 + || »lI5) for 2<p < .

These inequalities are due to McCarthy [9] when M is the algebra of all
bounded operators in a Hilbert space. The proof of (ii) for general semifinite
von Neumann algebras goes back to Dixmier [2], and (i) has been recently
obtained by Zsido [16]. Our proof, based on Proposition 3.1, is new and
doesn’t use the more sophisticated interpolation techniques.
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Proof of (i). We may assume that M acts in a Hilbert space H and then
choose elements &, € H, ||£,]| =1 (& €I) such that

) =3 (#8,1¢,)

for each positive element » in M. Set
a=x*x+y*y, b=x*y+ y*x

The same computation as in [9, Theorem 2.7(ii), p.261-262] gives us

x4yl + 1x=pl5" < 2{F, 27 (@ +5)"? &,1€.) + ((@a=b)"" &, IE)1H ™.
But the finction ¢z — ¢*/? is operator concave on R, (cf. [11]), so that we get

Il + =l <2 [ @reie)|
and hence

I+ pl17" + llx = pll5' < 2z[Ce*x + y*p)* 2]}
Using Proposition 3.1, we get then

o+ 215"+ llx = plI5" < 2(1 %115 + | »[15)7 7.
Progf of (ii). Set g=p/2. We have
o+ 2115+ 2 =yl = lllx + 213+ llx = » 11
<lix+yP+1x—pPll§  (use33withg=p/2>1)
=2%lxI* +{yI*l1§
<2727 1l 213 + 11l 17119
=27"1(xf7 + 1 vl1p)- B

4. OTHER APPLICATIONS

4.1.

From the fundamental inequality 2.1, we can derive many other
inequalities by using [4, Corollary 4.2]. More precisely, we get

[, €11+ mx+ )] ds < [ g0+ 0N+ 1) ds

a>0;x,yeC,)
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for any nondecreasing continuous function g:[0,+oco[— R such that
t— g(exp(t)) is convex on [—o0, +oo[. Taking g(t)=¢"(p > 0) and using
Holder’s inequality for functions, we get for a von Neumann algebra M with
finite trace 7 and x,yEM

I +1x+pll, <UL+ XN +IpII if 1p=1/g+ 1/r.

4.2

Let M be a von Neumann algebra with a faithful semifinite trace 7. From
Theorem 2.1, we may deduce the continuity of the function x+— A(l + x) =
exp 7(log(1 + x)) on the positive part of C,. More precisely, let x, y be
positive elements in C, and ¢ > 0. We have

A O) =414 oy iy (O <A1 ) (O 411 1x_y () (by Theorem 2.1)
and hence
A1 +x) <A1 +y)A(1 + |x—y|)
by letting ¢t —» co. Then

A(1 +x)—4(1 +p) <A1+ )41 + |x —y]) - 1].

Using the inequality

we get
o0
41 +x) =41+ ) <AL+ ) A1 +|x—y)) [ log(1 +u,(x = y])) ds
0

<exp(| i) exp(lx — yll)ilx — x|,
Sexp(xfl)flx—yl,  (by Lemma 3.3)
<

exp(l|x|l, + I ¥l llx =y,

By symmetry

|[4(1 +x) — 41 + p)| < exp(| x|}, + [ Y[l x —»lly

so that x +— 4(1 + x) is locally Lipschitz on the positive part of C,.
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