Impact of Diabetes Mellitus on Abnormal Heart Rate Recovery After Exercise
Andrea De Lorenzo, Adriana J. Soares, Ronaldo L. Lima, Estacio de Sa University, Rio de Janeiro, Brazil, Federal University of Rio de Janeiro, Brazil

Background: Abnormal heart rate recovery (HRR) after exercise has been the subject of extensive investigations due to its association with increased mortality. Its pathophysiology has been linked to autonomic imbalance and is still a matter of debate. This study aimed to determine the relationship between diabetes mellitus, a condition with a known high prevalence of autonomic neuropathy, and abnormal HRR after exercise. Methods: 2,189 consecutive patients (59% males, age 56.7 ± 10.5 years) who underwent exercise/rest Tg evaluation at 99m Tc sestamibi myocardial perfusion single-photon emission computed tomography (SPECT) were studied. Patients taking beta-blockers or calcium-channel antagonists were excluded. A symptom-limited exercise treadmill test (ETT) was performed according to a Bruce protocol. Myocardial perfusion SPECT was semiquantitatively analyzed using a 17 segment left ventricular model and a 5-point scale (graded from 0-normal tracer activity, to 4-absence of detectable tracer activity). Summed stress and rest scores (SSS, SRS) were obtained by adding segmental scores from stress and rest images, respectively; the summed difference score (SDS) was calculated as the difference between SSS and SRS. A multivariate analysis was used to determine the independent predictors of abnormal HRR among clinical, ETT and SPECT variables. Results: 253 patients (11.6%) were diabetics. Abnormal HRR at 1 minute after exercise was more prevalent among diabetic than nondiabetic subjects (17.4% vs 13.4%; p=0.05). On multivariate analysis, however, after adjustment for other variables, diabetes was not an independent predictor of abnormal HRR. For the overall population, as well as for the subgroup of diabetic patients, the significant predictors of abnormal HRR were age (p<0.0001), resting heart rate (p=0.0001), inability to reach >85% of maximal predicted heart rate (p=0.0005), exercise duration (p<0.0001), and the SRS (p=0.01). Conclusion: The mechanisms underlying abnormal HRR may be unrelated to diabetic autonomic neuropathy. Abnormal HRR is significantly related to perfusion defect extent and severity at rest and may most likely be a consequence of previous myocardial damage.

Optimizing Exercise Protocols for Heart Failure Trials
Rochelle L. Goldenstein, Joshua W. Trafton, Gillian M. Mueller, M. Allison Arwady, Daniel Burkhoff, Columbia University, New York, NY

Background: Peak oxygen consumption (PVO₂) is often the primary endpoint in heart failure (HF) trials. Ramped treadmill protocols 8-12 min in duration yield cleaner PVO₂ data and a more accurate estimate of exercise capacity. We sought to provide a framework for developing ramped protocols consistent with these guidelines that target CHF populations of various severities.

Methods: We conducted a retrospective study of 465 consecutive exercise tests of CHF pts with PVO₂ ≥10.0 ml/kg/min. All tests were done on the Modified Naughton treadmill protocol (VAMKN) using the standard protocol for testing CHF pts. We excluded all sub-maximal tests (RER ≤1.09) and stratified severity of CHF by defining ranges of PVO₂. To quantify peak workload, we converted the speed and grade reached by each pt to METs using the American College of Sports Medicine algorithm (e.g., 2.0 mph, 7.0% grade=4.6 METs during min 8 of the MNTP).

Results: The table indicates the mean peak workload achieved by pts in each PVO₂ range.

<table>
<thead>
<tr>
<th>Peak PVO₂ (ml/kg/min)</th>
<th>Peak Workload (METs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤10.0</td>
<td>3.44 ± 1.28</td>
</tr>
<tr>
<td>10.0 < PVO₂ ≤12.0</td>
<td>4.24 ± 1.15</td>
</tr>
<tr>
<td>12.0 < PVO₂ ≤14.0</td>
<td>5.24 ± 1.19</td>
</tr>
<tr>
<td>14.0 < PVO₂ ≤16.0</td>
<td>5.92 ± 1.30</td>
</tr>
<tr>
<td>16.0 < PVO₂ ≤18.0</td>
<td>6.70 ± 1.25</td>
</tr>
<tr>
<td>18.0 < PVO₂ ≤20.0</td>
<td>7.26 ± 1.65</td>
</tr>
</tbody>
</table>

The MNTP tests performed by pts with PVO₂ ≤12 ml/kg/min or >16ml/kg/min were too short or too long, respectively, to fall in the range 5.4–6.4 METs demanded at min 8-12 of the MNTP.

Conclusion: Given the peak workload guidelines above, new ramped protocols can be tailored to a trial’s target CHF functional class. For example, a ramped protocol that increases 1 mph and 1% grade each min would reach a workload range of 3.9–5.8 METs in min 8-12, which would be appropriate for patients with moderate to severe CHF.

Ventilatory Response to Early Phase of Exercise: An Useful Index for Comprehensive Clinical Assessment of Patients With Heart Failure and Novel Predictor of Prognosis
Tomasz Wikiewicz, Ewa Jankowska, Robert Zymlinski, Agnieszka Kus-Klinowska, Waldemar Banaś, Piotr Ponikowski, Military Hospital, Warsaw, Poland

Background. Assessment of ventilatory response to exercise has been applied for the clinical evaluation and risk stratification in pts with chronic heart failure (CHF). In most studies ventilatory data were derived from the whole maximal cardiopulmonary exercise testing (CPX). Whether, ventilatory response to early phase of exercise carries comparable clinical and prognostic information remains unknown.

Methods. We investigated 205 consecutive CHFs (715 men, age:54±11 yrs, NYHA class III/IV) performed in our hospital. LVEF: 32±8%; who underwent CPX. Ventilatory response to exercise, expressed as VE/VCO₂ slope was calculated 1) throughout the whole CPX (VE/VCO₂ 100%) and 2) throughout early phase of exercise - i.e. during the first 180 seconds (VE/VCO₂ 180s).

Results. CHF pts demonstrated decreased peak oxygen consumption (peakVO₂, mean values of VE/VCO₂ 100% and elevated VE/VCO₂ 180s (mean:35.8 and 34.4, respectively, all p<0.0001 vs reference values in our laboratory). Ventilatory response to early and whole exercise were strongly interrelated (r=0.63, p<0.0001). Augmented VE/VCO₂ 180s identified pts with more advanced disease by the relationship with peakVO₂ (r=0.38, p=0.0001), quality of life assessed using Minnesota questionnaire score: r=0.26 (p=0.05), NYHA class: r=0.23, p=0.001. VE/VCO₂ 180s did not correlate with age, LVEF, CHF aetiology. VE/VCO₂ 180s had good reproducibility with variability coefficient=8.5% (2 CPX within 2-7 days, in 14 patients). During the follow-up (mean: 663±368 days) 40 (20%) patients died. Elevated VE/VCO₂ 180s (r> mean±2SD of age-matched controls, i.e VE/VCO₂ 180s >32.5) was related to impaired survival in univariate analysis (hazard ratio 2.8, 95%CI: 1.5-5.5, p=0.002). Multivariate analysis identified only VE/VCO₂ 180s (p<0.05), but not NYHA class (p=0.1) and peakVO₂ (p=0.2) as conveying significant independent prognostic information.

Conclusions. In pts with CHF an excessive ventilation to early phase of exercise carries an important clinical and prognostic information. Our findings extend the application of the ventilatory assessment for prognostic stratification to CHF pts who are not able to perform maximal CPX.
Correlation Between Brain Natriuretic Peptide and Cardiopulmonary Exercise Test Parameters in Patients With Chronic Heart Failure

Angela Beatrice Scardovi, Nadia Aspromonte, Claudio Coletta, Elena Cerquetani, Mauro Romano, Tiziana Di Giacomo, Manuela Greggi, Vincenzo Ceci. S. Spirito Hospital, Rome, Italy

We sought to evaluate if brain natriuretic peptide (BNP) levels are associated with exercise capacity determined by cardiopulmonary exercise test (CPX) in patients (pts) suffering from CHF. One-hundred sixty-five consecutive pts with CHF (age 70; beta blockers 52%; ischemic CHF: 52%; mean ejection fraction 41%; NYHA class I: 8%; II: 68%; III: 24%) were considered. Mean BNP was 228 ± 277 pg/ml (Biosite Diagnostic, Triage BNP Test). CPX parameters were: VO2 peak (PV02) (12.35±4.48 ml/Kg/min), anaerobic threshold (AT) (9.43±2.80 ml/Kg/min), ventilation and carbon dioxide production ratio (VE/VO2) (38.02±8.27), VE/VO2 slope (33.82±7.78).

Results: A reverse statistically significant correlation between BNP level, PV02 (r = -0.297; p < 0.0001) and AT (r = -0.271; p < 0.05) was respectively observed. A significant correlation between BNP and abnormally high ventilatory response to exercise, expressed as VE/VO2 (r = 0.345; p < 0.0001) and VE/VO2 slope (r = 0.432; p < 0.0001) was observed. The ROC curves demonstrated BNP > 97 pg/ml to be the best cut-off for determining PV02 <14 ml/Kg/min, with overall accuracy of 71% (sensitivity: 65%; specificity: 65%); area under the curve (AUC): 0.69. Moreover, ROC demonstrated BNP > 138 pg/ml to be the best cut-off for determining PV02 <10 ml/Kg/min, with overall accuracy 62% (sensitivity: 67%; specificity: 64%); AUC 0.72. BNP offers an alternative tool for distinguishing pts with moderate-to-severe reduction of exercise capacity.

Increase Plasma Levels of Nt-ProANP and Nt-ProBrain Natriuretic Peptide as Predictors of Clinical Course in Septic Patients

Ursula Hofmann, Martina Brueckmann, Thomas Bertsch, Claudia Liebetrau, Martin Borggrefe, Guenter Huhle, Karl K. Haase. University Clinic Mannheim, Mannheim, Germany

Background: The family of natriuretic peptides comprises several structurally-related 22-53-amino acid peptides, such as atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), which are vasoactive peptides that have vasodilator and diuretic properties and play an important role in cardiovascular homeostasis. The salutary cardiovascular effects of natriuretic peptides suggest that ANP and BNP have a pathophysiological significance in cardiac depression in septic patients. Aim of the present study was to determine plasma levels of the stable N-terminal prohormone forms of ANP (Nt-proANP) and BNP (Nt-proBNP) in septic patients and healthy controls.

Patients and Methods: Nt-proANP and Nt-proBNP levels were measured in plasma samples from 18 septic patients at day 1 of severe sepsis and 13 healthy controls by ELISA methods.

Results: The mean APACHE-Score of septic patients was 16.8 ± SD= 4.0 on day 1. Ten of the 18 septic patients died (55% = non-survivors). Significantly higher concentrations (p=0.006) of Nt-proANP were measured in non-survivors (MW=1341 fmol/ml ± SEM = 3640) as compared to controls (MW=2274 fmol/ml ± SEM= 1043). There was also a significantly difference between Nt-proANP levels in controls and survivors (p= 0.019). There were no differences of Nt-proANP levels between survivors and non-survivors (p=0.189). Levels of Nt-proBNP were also significantly higher in non-survivors (MW=3439 fmol/ml ± SEM=1246; p=0.010) and survivors (MW=1009 fmol/ml ± SEM= 2632±0.001) as compared to controls (MW = 200 fmol/ml ± SEM=24). There was no significant difference between concentrations of Nt-proBNP in the non-survivor and the survivor group.

Conclusion: Nt-proANP and Nt-proBNP levels are elevated in the early course of septic patients, possibly reflecting myocardial depression in severe sepsis.

Endothelial Marker Big Endothelin-1 Is More Discriminant Than Brain Natriuretic Peptide to Categorize Patients With Congestive Heart Failure

Ronald Van Beneden, Michel P. Hermans, Sylvia A. Ann, Jean-Marie Ketelslegers, Michel F. Rousseau. University of Louvain, Brussels, Belgium

Background: Brain Natriuretic Peptide (BNP) and Big Endothelin-1 (BigET-1) are becoming central as diagnostic and prognostic neurohormonal markers to the management of patients with congestive heart failure.

Methods: The Discriminant Ratio (DR) method (Levy JC et al. Am J Physiol 276: E365-E375, 1999) was used to compare the respective performance of BNP and BigET-1 to rank patients according to heart failure severity. The DR estimates the ability of a method to discriminate subjects. It is obtained from the ratio of the underlying between-subject standard deviation (SDu) to the within-subject SD (SDw). DRs were calculated from BNP and BigET-1 duplicates, sampled on 2 consecutive days. Significance of differences in DRs was p<0.05. Correlation coefficients between pairs of measurements were adjusted in order to include an estimate of the underlying correlation, since standard coefficients, due to the presence of within-subject variation, tend to underestimate the true correlation between tests through attenuation. An unbiased estimation of the linear relationship equation between methods was also derived.

Results: Plasma concentrations of BNP and BigET-1 were measured in duplicates in 31 heart failure patients (NYHA II-IV, mean EF 23%). Mean values of day 1 and day 2 (SDD) were 75 (52) and 77 (52) pg/ml for BNP [normal values (range): 5.4 (2.5-12.8) pg/ml], and 12.5 (7.4) and 12.0 (8.1) pg/ml for BigET-1 [normal values (range): 5.7 (4.0-7.6) pg/ml], respectively. The difference between the DRs of BNP and BigET-1 (2.73 and 4.61 respectively) was statistically significant (p<0.05) in favor of a better discriminating ability for BigET-1. Unadjusted Pearson coefficient between methods was 0.70, rising up to 0.83 following attenuation. Slope and intercept of the unbiased estimation of the linear relationship equation between measurements were 0.18 and -1.47 pg/ml, respectively.

Conclusions: According to the DR method, BigET-1 appears able to better discriminate a heart failure population than BNP. Although both markers are highly correlated in this population, BigET-1 is the choice method to categorize patients with congestive heart failure.

Natriuretic Peptides as Predictors of Clinical Course in Patients With End-Stage Heart Failure

Evgenij V. Potapov, Frank D. Wagner, Felix Henning, Christian Müller, Rainer Michael, Hans B. Lehnhukle, Roland Hetzer. Deutsches Herzszentrum Berlin, Berlin, Germany, Charité, Humboldt University, Germany

Background: The optimal timing for heart transplantation (HTx) or implantation of a ventricular assist device (VAD) in patients with end-stage heart failure is a key issue.

Methods: In 86 patients with end stage heart failure requiring inotropic support and scheduled for HTx or VAD implantation blood was sampled daily. Big endothelin-1 (Big ET-1) and natriuretic peptides (pro-ANP, ANP, Nt-proBNP and BNP) were measured at the end of the study. Clinical and hemodynamic parameters were also evaluated daily. The patients were divided into groups with regard to the following endpoints: Group I – immediate VAD placement due to profound cardiogenic shock on admission (n=10); Group II – deterioration into cardiogenic shock after an initially stable clinical course (n=26); Group III – stable clinical course allowed urgent HTx or VAD implantation (n=41); Group IV – weaning from inotropic support (n=9). The data are presented as median values.

Results: On admission there were no differences in clinical parameters between the