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Abstract
In this article, we study forced oscillatory properties of solutions to nonlinear
fractional differential equations with a damping term. Based on the properties of the
Riemann-Liouville fractional derivative, we establish a sufficient condition for
oscillation of all solutions.
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1 Introduction
The subject of fractional calculus (that is, calculus of integrals and derivatives of any ar-
bitrary real or complex order) has gained considerable popularity and importance during
the past three decades or so, due mainly to its demonstrated applications in numerous
seemingly diverse and widespread fields of science and engineering. It does indeed pro-
vide several potentially useful tools for solving differential and integral equations, and var-
ious other problems involving special functions of mathematical physics as well as their
extensions and generalizations in one and more variables.

The concept of fractional calculus is popularly believed to have stemmed from a ques-
tion raised in the year  by Marquis de L?Hôpital (-) to Gottfried Wilhelm
Leibniz (-), which sought the meaning of Leibniz?s (currently popular) notation
dny
dxn for the derivative of order n ∈ N := {, , , . . .} when n = 

 (What if n = 
 ?). In his re-

ply, dated  September , Leibniz wrote to L?Hôpital as follows: ?. . . This is an apparent
paradox from which, one day, useful consequences will be drawn. . . . ?

In addition, of course, to the theories of differential, integral, and integro-differential
equations, and special functions of mathematical physics as well as their extensions and
generalizations in one and more variables, some of the areas of present day applications
of fractional calculus include fluid flow, rheology, dynamical processes in self-similar and
porous structures, diffusive transport akin to diffusion, electrical networks, probability
and statistics, control theory of dynamical systems, viscoelasticity, electrochemistry of
corrosion, chemical physics, optics and signal processing, and so on.

Recently, there have been some books on the subject of fractional calculus and frac-
tional differential equations, such as [, ]. Many papers have investigated some aspects
of fractional differential equations, such as the existence and uniqueness of solutions to
Cauchy type problems, the methods for explicit and numerical solutions, and the stability
of solutions.
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However, to the best of our knowledge very little is known regarding the forced oscilla-
tory behavior of fractional differential equations up to now. On forced oscillation theory
of fractional differential equations only a few of papers have been published, such as [–].
We establish a sufficient condition for forced oscillation of all solutions by using the prop-
erties of the Riemann-Liouville fractional derivative. As far as we know, this approach has
never been used in other papers.

In this paper, we study forced oscillatory properties of solutions to nonlinear fractional
differential equations with damping,

(
D+α

+ y
)
(t) + p(t)

(
Dα

+y
)
(t) + q(t)f

(
y(t)

)
= g(t), t > , (.)

with initial condition (I–α
+ y)(+) = b, b is a real number, where α ∈ (, ) is a constant,

Dα
+y is the Riemann-Liouville fractional derivative of order α of y.
We will use the following conditions:
(A) p(t) ∈ C(R+, R), q(t) ∈ C(R+, R+), f ∈ C(R, R), and f (u)/u >  for all u �= ,

g(t) ∈ C(R+, R).

Definition . The solution y of problem (.) is called oscillatory if it is neither eventually
positive nor eventually negative. Otherwise, it is called non-oscillatory.

2 Preliminaries and lemmas
In this section, we introduce the definitions of fractional integral and fractional derivative.
There are several kinds of definitions of fractional integrals and fractional derivatives [].
In this article, we use Riemann-Liouville definition.

Definition . The Riemann-Liouville fractional integral Iα
a+y of order α ∈ R+ is defined

by

(
Iα

a+y
)
(t) =


�(α)

∫ t

a
(t – v)α–y(v) dv, t > a,α ∈ R+. (.)

Here �(α) is the gamma function defined by �(α) =
∫ +∞

 sα–e–s ds for α > , a ∈ R. This
integral is called the left-sided fractional integral.

Definition . The Riemann-Liouville fractional derivative Dα
a+y of order α ∈ R+ is de-

fined by

(
Dα

a+y
)
(t) =


�(n – α)

dn

dtn

∫ t

a
(t – v)–α+n–y(v) dv, t > a,α ∈ R+, (.)

with n = [α] + , where [α] means the integer part of α.

Lemma . ([]) Let α ∈ (, ) and (I–α
a+ y)(t) be the fractional integral (.) of order  – α,

then

(
Iα

a+Dα
a+y

)
(t) = y(t) –

(I–α
a+ y)(a)
�(α)

(t – a)α–. (.)
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Lemma . ([]) Let α ≥ , m ∈ N, and D = d/dx. If the fractional derivatives (Dα
a+y)(x)

and (Dα+m
a+ y)(x) exist, then

(
DmDα

a+y
)
(x) =

(
Dα+m

a+ y
)
(x). (.)

3 Main results
Theorem . Suppose that (A) and the following conditions hold:

lim inf
t→+∞

∫ t



(t – w)α–

V (w)

(
M +

∫ w

t

g(s)V (s) ds
)

dw < , (.)

lim sup
t→+∞

∫ t



(t – w)α–

V (w)

(
M +

∫ w

t

g(s)V (s) ds
)

dw > , (.)

here V (s) = exp
∫ s

t
p(v) dv, M is an arbitrary constant. Then each solution of problem (.)

oscillates.

Proof For the sake of contradiction, let y(t) be a non-oscillatory solution of (.). Without
loss of generality, we can assume that there exists T > , t ≥ T , such that y(t) >  for all
t ≥ t. According to (.) and (A), the following inequality is satisfied:

[(
Dα

+y
)
(t)V (t)

]′ =
(
D+α

+ y
)
(t)V (t) +

(
Dα

+y
)
(t)p(t)V (t)

= –q(t)f
(
y(t)

)
V (t) + g(t)V (t)

< g(t)V (t).

Integrating both sides of the above inequality from t to t, we get

(
Dα

+y
)
(t)V (t) <

(
Dα

+y
)
(t)V (t) +

∫ t

t

g(s)V (s) ds = M +
∫ t

t

g(s)V (s) ds, (.)

where M = (Dα
+y)(t)V (t). From Lemma . and (.), we can obtain

y(t) <
(I–α

+ y)()
�(α)

tα– + Iα
+

[
M

V (t)
+


V (t)

∫ t

t

g(s)V (s) ds
]

=
b

�(α)
tα– +


�(α)

∫ t



(t – w)α–

V (w)

(
M +

∫ w

t

g(s)V (s) ds
)

dw.

Taking t → +∞, from the above inequality, we can obtain

lim inf
t→+∞ y(t) ≤ lim inf

t→+∞
b

�(α)
tα–

+ lim inf
t→+∞


�(α)

∫ t



(t – w)α–

V (w)

(
M +

∫ w

t

g(s)V (s) ds
)

dw

< ,

which contradicts the assumption that y(t) > .
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On the other hand, we can assume that there exists T > , t ≥ T , such that y(t) <  for
all t ≥ t. According to (.) and (A), the following inequality is satisfied:

[(
Dα

+y
)
(t)V (t)

]′ =
(
D+α

+ y
)
(t)V (t) +

(
Dα

+y
)
(t)p(t)V (t)

= –q(t)f
(
y(t)

)
V (t) + g(t)V (t)

> g(t)V (t).

Integrating both sides of the above inequality from t to t, we get

(
Dα

+y
)
(t)V (t) >

(
Dα

+y
)
(t)V (t) +

∫ t

t

g(s)V (s) ds = M +
∫ t

t

g(s)V (s) ds, (.)

where M = (Dα
+y)(t)V (t). From Lemma . and (.), we can obtain

y(t) >
(I–α

+ y)()
�(α)

tα– + Iα
+

[
M

V (t)
+


V (t)

∫ t

t

g(s)V (s) ds
]

=
b

�(α)
tα– +


�(α)

∫ t



(t – w)α–

V (w)

(
M +

∫ w

t

g(s)V (s) ds
)

dw.

Taking t → +∞, from the above inequality, we can obtain

lim sup
t→+∞

y(t) ≥ lim sup
t→+∞

b
�(α)

tα–

+ lim sup
t→+∞


�(α)

∫ t



(t – w)α–

V (w)

(
M +

∫ w

t

g(s)V (s) ds
)

dw

> ,

which contradicts the assumption that y(t) < . This proof is complete. �

4 Example
Example . Consider the fractional differential equation

(
D



+y

)
(t) –

(
D



+y

)
(t) + tyey = et sin t, t > , (.)

where α = 
 , p(t) = –, q(t) = t, f (u) = ueu, V (s) = et–s, g(t) = et sin t. Then

∫ w

t

g(s)V (s) ds =
∫ w

t

es sin s · et–s ds =
∫ w

t

et+s sin s ds.

Set t = π
 . Hence, we can obtain

∫ t



(t – w)α–

V (w)

(
M +

∫ w

t

g(s)V (s) ds
)

dw

=
∫ t


(t – w)– 

 ew– π


(
M +

∫ w

π


e
π
 +s sin s ds

)
dw

=
∫ t


(t – w)– 



(
Mew– π

 +
√




ew sin

(
w +

π



))
dw.
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Set t – w = s, then the above integral can be written as the following form:

∫ 

√
t


s

(
Met–s– π

 +
√




e(t–s) sin

(
t – s +

π



))
(–s) ds

= Met– π


∫ √
t


e–s

ds +
√

et
∫ √

t


e–s

sin

(
t – s +

π



)
ds

= Met– π


∫ √
t


e–s

ds +
√

et sin

(
t +

π



)∫ √
t


e–s

cos s ds

–
√

et cos

(
t +

π



)∫ √
t


e–s

sin s ds.

Let t → +∞, because |e–s
cos s| ≤ e–s and limt→+∞

∫ √
t

 e–s ds =
√

π
 , we know that

limt→+∞
∫ √

t
 e–s

cos s ds is convergent. Similarly, limt→+∞
∫ √

t
 e–s

sin s ds is convergent
as well. Set limt→+∞

∫ √
t

 e–s
cos s ds = A, limt→+∞

∫ √
t

 e–s
sin s ds = B.

Select the sequence {tk} = { π
 – π

 + kπ – arctan –B
A }, limk→∞ tk = +∞, then we calculate

lim
k→∞

{
etk

[
Me– π



∫ √
tk


e–s

ds +
√

etk

(
sin

(
tk +

π



)∫ √
tk


e–s

cos s ds

– cos

(
tk +

π



)∫ √
tk


e–s

sin s ds
)]}

. (.)

Firstly, we consider the following limit:

lim
k→∞

{
sin

(
tk +

π



)∫ √
tk


e–s

cos s ds – cos

(
tk +

π



)∫ √
tk


e–s

sin s ds
}

= A · lim
k→∞

sin

(
π


+ kπ – arctan

–B
A

)
– B · lim

k→∞
cos

(
π


+ kπ – arctan

–B
A

)

= A · sin

(
π


– arctan

–B
A

)
– B · cos

(
π


– arctan

–B
A

)

=
√

A + B sin

(
π


– arctan

–B
A

+ arctan
–B
A

)

=
√

A + B sin

(
π



)

= –
√

A + B.

Secondly, we know that limk→∞ etk = +∞ and limk→∞ Me– π


∫ √
tk

 e–s ds = Me– π
 ·

√
π

 =√
πMe– π

 . Hence, for (.), we have

lim
k→∞

{
etk

[
Me– π



∫ √
tk


e–s

ds +
√

etk

(
sin

(
tk +

π



)∫ √
tk


e–s

cos s ds

– cos

(
tk +

π



)∫ √
tk


e–s

sin s ds
)]}

= (+∞) · [√πMe– π
 + (+∞) · (–

√
A + B

)]

= –∞.
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Then we obtain

lim inf
t→+∞

∫ t



(t – w)α–

V (w)

(
M +

∫ w

t

g(s)V (s) ds
)

dw

≤ lim
k→∞

{
Metk – π



∫ √
tk


e–s

ds +
√

etk sin

(
tk +

π



)∫ √
tk


e–s

cos s ds

–
√

etk cos

(
tk +

π



)∫ √
tk


e–s

sin s ds
}

= –∞ < .

Similarly, selecting the sequence {tj} = {π
 – π

 + jπ – arctan –B
A }, we can obtain

lim sup
t→+∞

∫ t



(t – w)α–

V (w)

(
M +

∫ w

t

g(s)V (s) ds
)

dw ≥ +∞ > .

Therefore, by Theorem . all solutions of (.) are oscillatory.

5 Remark
In this paper, we did not mention oscillation of fractional differential equation with time
delay. Actually, we have considered the following equation:

(
D+α

+ y
)
(t) + p(t)

(
Dα

+y
)
(t) + q(t)f

(
y(t – τ )

)
= g(t), t > , (.)

where τ ≥  and (A) are satisfied. The conclusion is that if (.) and (.) hold, then each
solution of problem (.) oscillates. That means the time delay τ in f (y(t – τ )) has no effect
on the oscillatory property.

However, we have not considered the problem in which time delays are on (D+α
+ y)(t)

and (Dα
+y)(t), since it is more complicated than discussions in this paper. In our future

research, we would like to discuss this case and hope to acquire the desired results.
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