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We examine proper embeddings of the real line into open j-manifolds and their proper isotopy 

classes, i.e., proper knots and their equivalence classes. In particular, for proper knots running 

between distinct ends of an open 3-manifold Xf, we give conditions on the structure of the ends 

of M under which proper homotopy implies proper isoropy. To prove this result, geometric 

techniques are employed which enable one to properly isotope a proper knot that is wild in the 
neighbourhood of an end to one that is tame. 
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1. Introduction 

In this paper, we give an isotopy classification of proper knots in open 3-manifolds 

in the case that the proper knots run between two distinct ends of the manifold 

where one of these ends has the structure S’x [0,x) and the other is a “ladder” 

end (as explained in Section 2; the definition of ladder ends includes ends with the 

structure NZ x [O, CO) as a special case where N’ is any closed, connected surface). 

Recall that a continuous mapf: X + Y is proper if for all compact K c Y,f’( K) 
is compact in X. A proper kriot is a smooth, proper embedding f: Iw + M where M 
is a smooth, open 3-manifold. We define two proper knots to be equivalent or 

properly isotopic if they can be connected by a smooth isotopy H : R x I + M which 
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is itself a proper map from 88 x I to M. Other definitions of equivalence are possible, 
e.g., proper concordance, PL proper isotopy, etc. These are interesting but will not 
be dealt with in this paper. 

The main rest& of this paper, Theorem 4.2, shows that for proper knots running 
between an end with the structure Sz x [0, 00) and a ladder end, proper homotopy 
of knots implies proper isotopy, i.e., the isotopy classification reduces to a proper 
homotopy problem. However, it is not clear, in general, how to reduce a proper 
homotopy problem to a group theory problem. 

A problem which motivated this research is the isotopy classification of proper 
knots in N* x R where N2 is a connected, closed surface. In case N’ = S’, Corollary 
3.4 (a special case of the main theorem) and Proposition 2.2 show that there are 
exactly four equivalence classes of proper knots in S’x R. In case N’ # S”, Theorem 
4.2 does not apply and the isotopy classification is unknown. Lacking suitable 
algebraic invariants in a nonambient setting, it is not known if there are only finitely 
many equivalence classes of proper knots in N’ x R, N2 f: S’. Indeed, it is not even 
known if there are any nontrivial proper knots that run between the two ends of 
N’xR. 

This paper continues the research initiated in [7] on proper knots in open 
S-manifolds. In [7], a geometric technique of “combing out” along a vector field is 
introduced to construct proper isotopies (nonambient in general). This technique 
is briefly described and applied in Proposition 2.2 below. In a different direction, 
the problem of proper embeddings of planes in noncompact manifolds is studied 
in [4-63. 

One of the distinguishing characteristics of this version of proper knot theory is 
that, in general, it is a nonambient theory. Artin and Fox in [2] give an example of 
a wild arc in R3 that has a nonsimp~y connected complement. By putting this arc 
in S3 and deleting its endpoints, it can be thought of as a proper knot running 
between the two ends of S* x 88 with a nonsimply connected complement in S’ x R 
By Corollary 3.4 of this paper, this proper knot is equivalent to the trivial proper 
knot which follows {p} x 08 (some p E S’). Hence any proper isotopy realizing this 
equivalence cannot be covered by an ambient isotopy of S* x R. 

The proof of Theorem 4.2 relies, in part, on a geometric technique-a “lasso’*- 
which enables one to interchange over- and undercrossings in knot diagrams. In 
addition, Theorem 4.2 employs the technique, introduced in 171, of combing out 
along vector fields. Theorem 4.2 is in marked contrast to the case of proper knots 
which send both ends of IR’ to the same end of an open 3-manifold. Examples in 
[7) show that in this case, proper homotopy does not imply proper isotopy in general. 

2. Preliminaries 

The following notation will be used throughout: The closed unit interval is denoted 
by I. The n-disc (open n-disc) of radius r and centred at OE W” is denoted by D”(r) 
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(OD”(r)). As usual, 0 denotes the closure of U in M andJA is the restriction of 

f:X+ Y to AcX. 
Simple examples of equivalences between proper knots are generated by the 

following elementary lemma: 

Lemma 2.1. Letf: R + M be a proper knot and let G : M x I + M be a smooth ambient 
isotopy of M. Then the map H :R x I +M, deJined by H(t,p)=G(f(t),/*), is an 
equivalence of proper knots. 

Let N be a noncompact manifold. We now recall the’definition of the set of ends 

ofN(see,e.g.,~l,3]).Let~Ki~i=l,2 ,.._ } be an exhaustion of N by compact sets, 

i.e., Vi, Ki is compact, Ki C int Ki+, and N = Uj Ki. Now form sequences U, 53 Uz 2 

u,=J** . where each U, is chosen to be a path component of N - K, and each U, 

has noncompact closure, i.e., { CJi} is a nested sequence of nonempty, open, connected 

subsets of N such that Vi, Vi has compact frontier, it, is noncompact and ni CJ, = 0. 
Suppose that { y} is another such sequence generated as the path components of 

the complements of another compact exhaustion of N. Then we say that {U,} and 

( Vj} are equivafent if they are cofinal, i.e., Vi, 3j such that Vj c Ui and Vm, 3n such 

that U,, c V,. An equivalence class of such sequences is called an end of N. The 

set of ends of N is denoted by e(N). 

Let M be a. smooth, open 3-manifold. Then r E e(M) is called a collared end if 

3{ vi) E I’ and 3j such that q is diffeomorphic to W x [0, a) where W is a smooth, 

closed, connected surface. We shall also refer to f as a Wend. An end A E e(M) 
is called a ladder end if ME A and 3j such that oi is a smooth submanifold of 

M and Gj admits a smooth, proper Morse function m : uJ + R satisfying 

(i) m( V;) = t0, m), 
(ii) 0 is a regular value of m such that m-‘(O) =aq, 

(iii) the critical points of m are all of index 1. 

An example of a manifold with a single, ladder end is provided by the interior 

of the solid, semi-infinite ladder T # T # T # - - * where T is the solid torus and 

# denotes disc sum along the boundary. Note that a collared end is a special case 

of a ladder end whose associated Morse function has no critical points. In this case 

the “collar” is m-‘(O) x [0, CO). 
Let g : A + B be a proper map between manifolds and let {Vi} E I-‘+, E e(A) and 

{ Vj}e r, E e(B). Then g sends r_+ to rB if Vj, 3i such that g( Ui) c Vj. It is easy to 

show that g induces a well-defined map, denoted by 2: e(A) + e(B), where VT E 

e(A), g sends r to g(F). Denote the two ends of 88 by fog, i.e., e(R) = (+a, -CC). 

Given a proper knot fo: R --, M and two ends Fi, F2 E e(M), we say that f. runs 
betwpeen T, and T2 if jb({+c~, -a)) = (F,, Fz}. If, furthermore, jb(-a) = r, and 

_&( +a) = r,, then f. is said to runfrom r, to T2. Note that in this case, if H : 54 x I --* M 
is an equivalence between f. and another proper knot f, : R + M, then f, also runs 

from r, to r,. 
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Combing out. There is a geometric technique which is used to construct equivaiences 
(nonambi~nt in general) between proper knots. Given two equivalent proper knots 
f; g :R+ M, the idea is to use a suitable vector field V on M (usually a gradient 
vector field) such that g is parallel to trajectories of K The flow of V is then used 
to produce a proper isotopy which pushes f to g. This construction, known as 
“combing out*’ the knotf, is explained in detail in [73. Another way of viewing this 
in the case where M has only 0- and l-handles is the following: The cores of the 
0- and l-handles form a one-dimensional complex and f and g can be properly 
isotoped to avoid this complex. M minus the complex has a product structure and 
this can be used to “straighten” f and g so that they run along fibres out to the 
ends of M. After performing this procedure, the equivalence between f and g is 
easily constructed. To illustrate combing out in a case useful for the proof of the 
main theorem, we prove the following proposition: 

Proposition 2.2. Let M’ be a smooth, closed surface and let 1; g : R --* M2 x R be two 
proper knots. Denote the two ends of M’ x 138 by M’ x {fw} and M’ x (--CC}, 

(a) Suppose that f runs from M’ x { -00) to M’ x {+x} and that for some r E W, f 
meets M”x{r} transversely in a single point (p, r) E M’xR. Then f is equiualent to 

a proper knot $: tM( p, t). 
(b) rff andg both run from M’x {+a) to M’x (+a) (or both run from M’x (-a] 

to M’ x {-OO)), then f and g are equivalent (i.e., if they both “stay in the same end”, 
then they are equivalent). 

Proof. (a) By lemma 2.1, we may assume r =O. We may further assume that for 
some E > 0, f(t) = (p, I) t/t E [--E, E J. Now construct a combing out vector field V 
on M’x R which is parallel to lines (q} xR (q E M’) given by V(q, I) = (0, t) E 

T,M’x T,!R (t E 82). Then use the flow of V to push f to f, i.e., f([-e, E]) gets pushed 

Fig. 1. 
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to f(R) and f(R - [--E, E]) gets pushed to the ends of IV’ x Ft. For more details on 

the reparametrization involved, see [7]. 

(b) Suppose that f and g both run from M2 x { +a} to M2 x { +w}. We may assume 

that f and g are both bounded away from M’x (0) and that fl D’ = g 1 D’. Let 

h : D”+ M’ be a chart for M’. Then by a piping move, we may isotope fl D’(~E) 

(some small E > 0) such that it hits M’ x (0) transversely at the two points h(S”) x (0) 

and thatf(D’(3&)-OD’(&))=h(S”)x[- P, E] (see Fig. 1). It can be assumed that 

g( D’(~E) was isotoped simultaneously with f in the same fashion. The flow of a 

combing out vector field parallel to lines {q}xR, q E M’, which vanishes on M’x 

(-00,0] and whose flow pushes f and g in M’ x [0, X) to h(S”) x [0, ~0) then gives 

rise to the desired equivalence. Cl 

3. Lasso constructions 

In the following, M will always denote a smooth, connected, open 3-manifold 

with at least two ends f,, r>~ e(M). r, will always be assumed to be an S’ end, 

i.e., a collared end such that W = S’ (see the definition in Section 2). Denote the 

associated collar by E, = W x [0, ~0) = S’ x [0, s) c M and identify I-, with S’ x {a}. 

Interchanging under- and overcrossings. Suppose that f: W + M is a proper knot that 

runs from r, to r, and that near r,, f follows a collar line, i.e., for some 1, r E Iw 

and for some p E S’, f([ f, ~0)) = {p} x [r, 0~) c E, . Let 0 : U + R3 be any chart of M 

where f(R)n U consists of a finite number of embedded open arcs. If we have a 

regular projection (see, e.g, [S]) of e(f(R) A U), then under- or overcrossings off 

in U (i.e., the embedded arcs) may occur relative to this projection. The claim is then: 

Lemma 3.1. Any under- (over-) crossing off in U can be changed into an over- 

(under-) crossing by a smooth, compactly supported isotopy of J: 

Proof. The general scheme is to pull an under- or overcrossing arc into a tubular 

neighbourhood that follows f from the crossing point X out to the S’ end (see Fig. 

2(i)). Flip this around the back of S’ (Fig. 2(ii)) and shrink back to the crossing 

point (Fig. Z(iii)). Note that for arcs being pushed out in the S’X {a} direction 

along 1; there are two possible choices, i.e., the under- or overcrossing arc could be 

chosen. One choice will always head back to the crossing X (Fig. 2(iv)) and the 

other heads out to S’x{oo} without ever encountering X (relative to the regular 

projection off in U). The latter choice is the one that we make here. 0 

The dashed arc depicted in Fig. 2(i)-(iii) is called a lasso. If, relative to some 

projection, it is formed by stretching an under- (over-) crossing piece of arc, then 

it is called an under- (over-) crossing lasso. 

The following “folk” theorem of classical knot theory is an easy consequence of 

Lemma 3.1 (see [13]): 
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(iii) 

(ii) 

Fig. 2. 

Theorem 3.2 (“Light bulb”). Let p E S’ be a basepoint. Let f: I+ S’ x I be any tamely 
embedded arc connecting (p} x (0) to {p} x { 1) such that f((0, 1)) c S’x (0, 1). Then 
f is equivalent to {p} x I by an ambient isotopy that fives S”X (0, 1). 

The uses of lassos include unlinking tangles of arcs and isotoping proper knots 
so that they meet a given surface transversely in a single point. These uses are 
ihustrated in the next three propositions which form the principal technical rest&s 
of this section. 

Proposition 3.3. Let f: 8%’ -+ M be a proper knot such that f(t) runs from T2 to I’, . 
Then there is a smooth, proper isotopy off that moves f in E, onto a collar line 

{ p} x [r, 00) (for some p E S2, r 3 0). Furthermore, this isotopy fixes f in A4 - E, . 

Proof. Since f is proper, we may assume f meets X0= S* X (0) transversely in a 
finite number of points. Let p,, = f( tO) be the first point and pb = f (th) (to G t;) be 
the last point of intersection off with X0, i.e., f(t) ~2 El if t -=T to and f(t) E E, if 
t 3 t&. Now consider another sphere 2” = S’x {rl}, r, > 0. Again we may assume 
that f meets 2” transversely in a finite number of points: let p1 = f (t,), respectively 
pj =f(t;) (t, s I;) be the first, respectively the last, points of intersection off with 
E’, i.e.,f( t) & Sz x [r,, co) if t c t, andf( t) E S’x [r,, CO) if t B t;. Fu~he~ore, since 
f(( -00, th]) is bounded away from S2 x {co}, r, > 0 can be chosen large enough so 
that tA< t,. Hence f,~ th< t,C ti (see Fig. 3). 

Now form two proper knots f0 and f, by smoothly joining on collar lines {p%X 

LO, 00) and {pl) x 1 r, , m) to f ((-a& t&l) and f(( -cc, 1;)) respectively (f may have to 
be perturbed slightly to avoid self-intersections in f. and ft). 



--. 
-- S’x(-1 0 

Fig. 3. 

We claim that 1; is equivalent to fl by a smooth ambient isotopy that moves J, 

onto fU and leaves M - E, fixed. To see this, first consider the arcs A !,. . . , Ac 

formed by f([f,,, rh]) n E, (in Fig. 3 we have shown two such arcs, A, and A,). 

Considering E, as a subset of W”, we may assume that we have a regular projection 

ofJOandf, in E,.ThenwheneveroneoftheA, overcrossesf,([fh, r{])(=f([li,.r;])). 

turn it into an undercrossing by sending an overcrossing lasso around Sax(~) in 

accordance with the scheme given in Lemma 3.1. Note that the isotopy realizing 

the lasso fixes M - El as the lasso is pushed out in the S’x {m} direction and hence 

must stay in El. Now deform any overcrossings of the A, with (pk>x[O,m) to 

undercrossings (we do not have to use lassos to accomplish this). Then f,([f&, a)) 

and ph x [0, m) lie in a subset of Iw’ separated from IJ, A, by a plane of constant 

level. Hence, in a manner similar to the Light bulb theorem, 1;([,;1,00)) can now be 

unknotted and isotoped to {p;) x [0, co) by an isotopy that is fixed below this plane, 

thus avoiding Uj A,. In restoring the overcrossings of the A, with {p;} x [0, cc) by 

using undercrossing lassos, we complete the proof of the claim. 

Summarizing the above process: Given the two concentric spheres E* and 2’ 

and given the proper knot f0 where Jo(r) =f(r) V!E (--a, r;], then by an ambient 

isotopy that leaves M - S’ x [0, 00) and j] ( -00, rO] fixed, we can move fu onto the 

proper knot fi where now f,(t) =f( t) Vr E (-CC, t;] =I (-co, I;]. This isotopy of f0 is 

proper and can be covered ambiently. 

We now repeat all of the above, this time using 2’ and X2= S’ x{rz} for an 

appropriately chosen rl> r, in place of Z” and I’. This would give an ambient 

isotopy of M that leaves M - S’ x [ rl, 00) and f] (-cc, r,] fixed, and moves proper 

knot f, onto proper knot fz where fi( t) =f,( 1) Vi E (-cc, ti] = (-co, t;]. This isotopy 

off, is proper, etc. In this way, we can produce a nested sequence of spheres X0, 

I’, E’, . . _ at collar levels r,= 0, r,, r,, _ . , where r, -* M as j + CO, and a sequence 

ofproperknotsiI,fI,Jz,... and points p, =f( f, ), pJ =f( I;) where 

tj E t: < f,+l S ti+l 

andp,,p;EXj,j=O, 1, 2 ,... with the following properties: Vj, 
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(i) f meets Z’ transversely, 
(ii) h(t) =f( t) Vt 6 tJ (and so lj, ti + 00 because f is proper), 

(iii) fi((t;,oo))=(p:)x(rj,oo) Vt> ti, 

(iv) J is properly isotopic to f;+, via an ambient isotopy of M, say F’ : M x 13 M, 

which leaves M - S’ x [ 5. co) and f 1 (-00, 51 fixed. 
Let G’= Fj(A( a), +) :R x I + M, i.e., G’ is the proper isotopy connecting & and 

A:+,. We wish to produce a map that has the effect of Go followed by G’ followed 
by G’ etc. So smoothly concatenate the G’ in the usual way to produce G: R x [0, 1) + 
M. That is, we have an infinite sequence 0 = go =C ,u, < pz <. * . where pi + 1 as j + CO 
and nondecreasing, onto functions 8’: rj = [p,, p,_,] -, [0, I] satisfying 

G(+,&=G’(,,B’(~)) V,UE~. 

Define H:iRxl+ M by 

ify E LO, If, 
ifj_c=l. 

Then the isotopy we seek is N( *, 1 -E.L) which moves f to f. as ,LL goes from 0 to 1. 
We now show that H is a proper map. Note that by (iv) above, given any compact 

set Kc M, there exists n > 0 such that VJ.L 2 p,,, 

[ff(*, Ffl-‘W) =f’(K)* 

Hence H-‘(K)=AuB where A=f’(K)x[p,,, I] and B=(GIRx[O,pn])-‘(K). 

But f is proper and so A is compact. Also, G 1 R = [0, p,,] is just the concatenation 
of the proper maps Go, G’, . . . , G”-’ and hence is itself a proper map. Thus B is 

compact. Cl 

In Proposition 3.3, we constructed f “a piece at a time”, i.e., at the jth stage, f 
was assembled from a straight line segment between the two concentric spheres Z;/ 
2;“’ and the {Xi} converged to Sz x(00). In the case M = S’xR, we could have 
equally as well directed this “building up” process out to S* x {-co} using concentric 
spheres. So if we start with an arc {p} x (-co, cc), p E S’, we can construct any arc 
we like that runs between S’ x (-CO} and S’x (0~) by “building up” out to S2 x (OO} 
followed by “building up” out to S* x {-~3). In other words: 

Corollary 3.4. Up to equivalence, there are exactly two proper knots that run between 

the two ends of S’ x R and these knots are distinguished by orientation. 

We remark that Proposition 2.2(b) together with Corollary 3.4 gives a classification 
of proper knots in S2 x BB up to equivalence, i.e., we have four possible equivalence 

classes given by the following representatives: Any open arc running 
(i) from S’ x {-co} to S’ x (+fo), 

(ii) from S’x{+co} to S’x(-co), 
(iii) from S” X {+03} to S’x {+oO}, 
(iv) from S’ x (-00) to S-‘X {-Co}. 
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Proposition 3.3 shows that we may “straighten” a proper knot near f, = an S’ 
end. We now examine conditions under which it is possible to achieve the same 
result near r, when T2 is not necessarily an S’ end. 

Proposition 3.5. Let r, be a collared end determined by E, = T2 x [0, 00) c M where 
Tz is a smooth, closed surface and E2 n E, = 0. Let f: R+ M be a proper knot that 
runs from Tz to r, and suppose that f follows a collar tine in E,. 7Ien by a smooth, 
compactly supported, ambient isotopy of M, f can be moved so that it intersects Tt x { rO} 
(any r,> 0) transversely at a single point. 

Proof. We may assume that f is transverse to Tz x { rO}. Recall that f(t) + Tz x {CO} 

as t -+ -co. As f is proper, 3t,, t;, tl,c to, such that Vt>t,, f(t)E T,x[r,,m) and 
Vtstb,f(t)ET~x[r,,oo).NowconsiderthearcsA,,...,Atformedbyf([t~,ro])n 
T, x [r,, CO). These are whohy contained in Tz x [rO, r,] and do not meet Tz x (rt} if 
r, (> rO) is large enough (see Fig. 4). Again, we may assume that f is transverse to 
T2 x {r,}. By perturbing f in Tz = [r,, r,] and using the projection 7r : T2 x [rO. ri ] --, 
Tt x {rQ} defined by the collar lines, we may produce a regular projection off in 
T2 x [r,,, rl] onto T, x {rh). By sending lassos around the S’ end, then relative to rr, 
any undercrossing off (( -0, th]) with the Aj can be turned into an overcrossing, 
i.e., we are modifying f((--to, t&j) in such a way that it always sits “above” the Aj 

with respect to the projection 71: The proof is then completed when we push the Aj 

down, via collar lines, into 

Tzx[rO-2e, rO--E] (some e>O) 

leaving f( t&) as the single transverse crossing point. El 

Fig. 4. 



Corollary 3.6. Let f be as in Proposition 3.5. Then f is equivalent to a proper knot 

which follows a collar line {T} x [ r,), a)), some r E TL, r, > 0. The equivalence fixes f in 

M-E?. 

Proof. By Proposition 3.5, we may assume thatf has a single, transverse intersection 
point with Tz x {r,,}. A combing out vector field which is parallel to the collar lines 

and zero on M - T2 x [ r,,, co] is then used to generate the required isotopy (this is 
similar to Proposition 2.2(a)). •! 

Corollary 3.6 may, by using Proposition 3.5, be extended to the case where Tz is 
a ladder end. Referring to the notation used in the definition of a ladder end in 
Section 2, there is an open set U = U,E{U,}E~, and a smooth Morse function 
m: ii-+&! satisfying conditions (i)-(iii) of the definition. Denote the submanifold 
arf by W,. 0 has a smooth vector field V which is a gradient vector fietd of m (see 

[12]) and the trajectories of V are all defined on [O, co), i.e., V has flow ,y: 0 x 

[0, CO) + a. The next proposition is then: 

Proposition 3.7. Let f: R + M be a proper knot that runs from the ladder end I”? to 

the S’ end T, . Then f is equivalenr to a proper knot $: 88 + M which follows a flow line 

of V in the madder end, say x( u, [to, 00)) ( some u E U, t,> 0), and 7 also follows a 

collar line in the S2 end (i.e., f can be “straightened” at both ends). 

Proof. We may assume that m has only one critical point per critical level. Now 
construct an auxiliary vector field VI on 0 in the following way: Let c > 0 be the 
lowest criticaf value of m (we assume that there is at least one critica point or else 
we just have the previous case where F2 was a collar end). Let V, / m-‘([$, ~a)) = 

VI m-‘([ic, 00)) and let V, be parallel to V in m-‘((O,$c)) but arrange for V,(p) +O 

as p + W, = m-‘(O), i.e., V, 1 W, = 0 and V, is nonzero off W, and critical points of 
m. In addition, V, 1 U has all its trajectories defined on all of IF4 and these run along 
the same track and in the same direction as trajectories of K Hence V, is a complete 
vector field with flow x, : D x R + rf. Define a critical trajectory of V, to be a trajectory 
that runs between two critical points of m or between W, and a critical point of m. 

By Proposition 3.3, it can be assumed that f follows a collar line in E,. 
The first step is to perturb f so that it is transverse to W,, say f~&. Then take 

a tubular neighbourhood of f0 and find a parallel translate of f0 in the tubular 
neighbourhood which avoids all critical points and critical trajectories of V,, say 

j+fi (see f7J for details), i.e., in a ladder end, f0 can be pushed off the critical 
trajectories of V,. This allows us to comb out f, parallel to trajectories of V once 
we have arranged f, to be transverse in a single point to some noncritical surface 
of m. This is what we shall do next. 

Now 3f,, t& t&s to such that Vf > r,, f,(t)~ if and Vt c t&, f(t) E a Choose a 

regular value of m, b>O (say), large enough so that f,([tA, to]) does not meet 
m-‘(b) = W, and so that f, is transverse to W,. Notice that W, x[O, Co) z 

,y,( W, , (-co, 01) c i”l where Vu 2 0, W, x {a} corresponds to x,( W,, -a). Also, since 
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f, avoids all critical trajectories and critical points of V, and since the only trajectories 
of V, starting in W, x (0, ~0) that fail to pass through W, (= W, x (0)) are critical 
trajectories, it follows that f,(W) n m-‘([0, b]) c W, x [0, cc). We now use arguments 

similar to those in Proposition 3.5 to properly isotope 

f,(R) n W, x [O, CO) which consists of arcs A,, A,, . . . , A,n starting and 
~nishing at W, x (0) and (open) arcs B, , B,, . . . , B, starting and finishing at W, x {co} 

together with an arc C which starts at p E W, x (0) and finishes at W, x (00) (s W,). 

Let 7r: W,x[O,a3)+ W,= W, x (0) be projection onto W, . We may assume that we 
have a regular projection of S onto W, relative to 7i: By using lassos, arrange for 
the Ai to undercross both C and the B,. Then push the A, down through W, x (0) 

so they lie in W, x E-E, 0) (some E > 0). The new proper knot that is formed in this 
way is the required f2 which hits W, transversely in the single point p E W, and p 
lies on a noncritical trajectory of V, . 

It can be assumed that f2 also misses all critical points and critical trajectories in 
m-‘([&CO)). So to complete the proof of the proposition, comb out f2 from W, 

parallel to trajectories of V using another vector field V,. V, is constructed from V 

in a way that is similar to V, except that this time, we arrange for Vz to be zero on 
al1 of m-‘([0, b]). q 

4. Theorems 

We need a lemma about level preserving maps for use in the main theorem. A 
fuller discussion of the ideas employed here may be found in [9]. 

Lemma 4.1. Let F’ :R x I + M be a smooth proper map such that 
(a) there is an E E (O,%) such that for each t.~ E [0, e] u [I - E, I], F’( 0, p.) is a 

smooth embedding, 
(b) there is a j3 > 0 such that for each p E I, F’( t, p) is a smooth embedding when 

restricted to values oft where 1 tl a /3. 

Then we may perturb F’ x id, : R x I + M x I to a smooth, level preserving map 
F’*:Rxl+MxI where 

(i) F’” is an immersion whose singularities consist of a finite number of transverse 
double points, 

(ii) F”=: vM o F’“. . R x I* M is a proper map and V~.L E I, I;‘( *, IC.) is an immersion 
with at most one singularity and that is a double point, 

(iii) F’agrees with F’ on {(t,p)IpE[O,6]w[l-S,l] or /tl2y} where O<S<E 

and y>/3. 

Proof. Let A be the rectangle {(r, EL) 1 JA E [E, 1 - E] and 1 t( s p}, Then by hypotheses 
(a) and (b), F = F’ x id, is already an embedding on 88 x I -A. Since dim(M x f) = 
4 = 2 * dim@ x I), then using standard arguments, we need only alter F on a rectangle 



B, where A c int B c: B c R x (0, l), so that F is in general position with itself (see, 
e.g., [LO]). So say we produce a map G: R x I --, M x I which is an immersion with 
transverse double points. We may assume that G agrees with F on R x I - B and 
that the singular set of G is contained in B. G is atso a proper map and hence, 
since B is compact, G can only have a finite number of singularities. Furthermore, 
by composing G with a suitable diffeomorphism of M x I which is close to the 
identity and is supported in a neighbourhood of the double point set, one may 
arrange, if necessary, that distinct double points of G lie on distinct levels of M x I. 

The next task is to change G so that it is level preserving. So now write 

G(r, P) = (G,(r, P), Gz(r, P)). 

Because we can choose G2 : R x I + I to be arbitrarily close to rl! : IL! x I + I (where 
?rz( r, p) = p) in the Whitney C” topology, we may choose the map n : R x I + iw x i 

given by ~(r, JJ) = (t, G,( r, p)) to be arbitrarily close to id,,, and hence we may 
assume that 77 is a C” diffeomorphism (see, e.g., [II]), equal to idwxr on Rx I-B. 
Let n-‘( r, A) = (t, H( r, A)) and set F” = G 0 77-l. We claim F’” is now level 
preserving: 

F’*(r,h)=G(t,H(r,A)) 

= (G,ft, H(t, All, GJt, H(t, A))), 

but 

=+G2(r, H(t, A)) = A. 

So F’“(r,A)=(G,(r, H(t,A)),A). Note that as F’” is just a reparameterization of 
G(!R x I); then F’” still only has a finite number of transverse double points as 
singularities and distinct double points of F’* occur on distinct levels of M x I. 
Furthermore ?rM 0 F’” agrees with F’ as in (iii) above. It follows that the map 
F” R x I --, M x I satisfies 

Theorem 4.2. Let Ti, r, be distinct ends of a smooth, open 3-manifold M such rhat 
r, is an S2 collar end and I+, is a ladder end. Let& g : R -+ 134 be any two proper knots 

that run between r, and r, such that f and g can be connected by a smooth, proper 

homotopy. Then f and g can be connected by a smooth, proper isotopy (i.e., they are 

equivalent). 

Proof. Let LJ and m : 0 + 58 be the open submanifold and Morse function associated 
to the ladder end r, and let V be an associated gradient vector field of m. 

One may suppose that f and g both run from f, to T,. 



We are given a smooth, proper homotopy H”: R x Z + M connectingf to g. Hence, 

by Proposition 3.7, there is a smooth, proper homotopy H’ : R x I + M connecting 

f to f to g to g where f and S are the end straightened versions off and g. Calf 

a trajectory of V critical if it runs from aii to a critical point of m or if it runs 

between critical points. Now find f’, t, E R and a regular value of m, b > 0 (say), 

such that J(r,), go U and m(f(t,)), m(g(td)<b and Vt< 1,, Vt’<t,,f(t) and 

g( t’) follow noncritical trajectories of V These trajectories will pass through m-‘(b) 

transversely in single points. Also find r 20 such that f and g fotiow collar lines 

in S’x[r,a)c E,. 

The first step is to change Z-Z’ so that the whole homotopy is “end straightened”. 

The idea is to replace the ends of H’ by collar lines in E, and by noncritical 

trajectories of V in U (we may assume E, n iJ = 0). This is easy to accomplish in 

E, but requires a bit more care in U. So, choose c > 0 large enough so that Vt s -c, 

H’(r, Z)c m-‘((b,a))=X and Vt 2 c, H’( t, I) c S’ x [r, s). Denote H’( -c, . ) and 

N’( c, *) by a( -): Z + X and y( . ) : I + E, respectively. What we would like is to 

have LY( I) missing ail critical points and critical trajectories. The following argument 

shows how to alter H’ in order to achieve this. Now there exists a smooth homotopy 

of LY, rel(0, l}, that improves LY to an embedding (Y’: I + X. Consider a “pinched” 

tubular neighbourhood of (Y’ (i.e., the neighbourhood squeezes to points (~‘(0) and 

(~‘(1) at 0 and 1 respectively). Then on (0, l), there is a translate of (Y’ in this 

neighbourhood which avoids all critical points and critical trajectories of V (see 

[7]). This provides a smooth isotopy, rel(0, l}, between LY’ and (Y”: Z --, X (say) and 

(Y” avoids all critical points and critical trajectories. Hence we may construct a 

smooth homotopy A : I x Z --, X which deforms (Y to (Y” and then back to Q (rel(0, 1)) 

whereA( *, $) = a”( .).SpliceAinto H’bycutting H’alongthestrut H’(-c;) = (Y(B) 

and smoothly insert A to produce a new smooth homotopy H’ : R x Z + M such that 

H2(-~;)=H2(-c-1;)=~(~)andH’(-c-~;)=a”(~).NoticethatN’(f,0)and 

H’( I, 1) follow the image off(t) and S(t) respectively, but for 1 E [-c - 1, -cl, we 

no longer have embeddings (as A moved LY rel{O, 1)). However, H’( . , 0) and H’( . , 1) 

are clearly homotopic to x g respectively by smooth, proper homotopies that merely 

reparametrize Zf’(R, 0) and H’(R, 1). In this way, we obtain a smooth, proper 

homotopy H3: R x Z + M connecting f to H’( . , 0) to Zf’( a, 1) to g and the strut 

H3(-c -4, *) = (u( * ) : Z --, X still misses a11 critical points and critical trajectories. SO 

Zf3 is the required modification of H’ and 5 the curve with the required properties. 

By keeping Zf3( -, p) stationary near p = 0, 1, it can also be arranged that 

&(.)=H3(. p)= 
iL , 

i 

<(*) ~~EEO~El~ 

g(.) VpEr1-5 11. 

Now that we have the curves G( .) = H3(-c-i, .) and y( *) = H3(c, e), H3 can 

be repIaced by an “end straightened” Co proper homotopy H’: R x Z + M. This is 

constructed from H3 by cutting H’ off at iu and y and joining on noncritical 

trajectories of V at cF( Z) and collar lines of E, at y(Z) in a Co fashion to fi’= 

H3] (( f, h)] p E Z, t E [-c -$, c]). Note that this construction does not alter the 
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homotopy near p = 0, 1, i.e., 

H4 (. ) = H4(. 
P 9 

cL) = l<(. ) v/J E [O, &I* 

(d-) V/_&E[l-&,l]. 

By using standard approximation techniques, we may improve H” to a C” proper 

homotopy H’:RxZ+M such that for some c’>c+& O<~‘<E, i ?= 

~(4CL)ICL~[O,4~[1- E’, I] or 1112 c’}, then H5jZ3 = H’I B. So H” is a smooth, 

proper homotopy connecting f to g such that VP E Z, ZZ5( -, p) eventually follows 

trajectories of V in U and collar lines in E,. 

From the construction of H’, it can be seen that Lemma 4.1 applies and so we 

get another smooth, proper homotopy H6:R x I-, M such that Hg= Hi and HT= 

Hz. Furthermore, H6 x id, : Iw x Z + M x Z has only a finite number of singularities 

and these are transverse double points. Also, VP E Z, H6, is an immersion which 

has at most one singularity and that is a double point. 

Now examine H6, singular points for each singular level puo E I. Suppose H6,,( r,) = 
HE,( t2), r, # r2. Then by part (i) of Lemma 4.1, as cc. goes from p0 - Y to pO+ v 

(some small v > 0), locally, we would see two arcs approach each other, cross at a 

single point H6,,( r,) and then separate. But that is the same as changing an overcross- 

ing to an undercrossing by passing one arc through the other. As there is only one 

crossing point at each singular level, VP E Z, H6, can be changed into an embedding 

by using a lasso at singular levels. In the case of the singular level p = I*,,, we stop 

at level p = p,,- Y, send out a lasso to change over the order of the crossing arcs 

and then use the rest of H6 to proceed as before. 

In this way, we produce a proper isotopy H’ : R x Z + M such that Hi = Hi and 

Hi = Hf. The required equivalence between f and g comes from the chain of 

equivalences 

f-f=H;=H;-H;=H;=g-g. 0 

The next theorem, Theorem 4.3, actually follows from Theorem 4.2, but it is worth 

stating as a separate result. 

Theorem 4.3. Let T, , r, be two distinct collar ends of a smooth, open 3-manifold M 

and let r, be an S’ end. Let f; g : IT&’ + M be any two proper knots that run between r, 
and r, such rhar f and g can be connecred by a smoorh, proper homoropy. Then f and 
g can be connected by a smooth proper isoropy. 

The proof is similar to that of Theorem 4.2 but more direct as there are no 

l-handles in Zz to consider. In fact, Proposition 3.7 is not needed for the proof and 

when H4 is formed from fi3, we just join collar lines on at both ends. 
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