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ABSTRACT 

The iterative method of Cimmino for solving linear equations is generalized to 
linear inequalities. We also present a Richardson-type iterative method for solving the 
inequality problem, which includes the generalized Cimmino scheme. Convergence 
proofs are provided. 

1. INTRODUCTION 

Cimmino [3] devised a beautiful iterative scheme for the solution of a 
finite system of linear equations in the Euclidean n-dimensional space k!“. 
Cimmino’s method starts with an arbitrary point in Iw” as an initial approxi- 
mation, and then calculates at each step the centroid of a system of masses 
placed at the reflections of the previous iterate with respect to the hyper- 
planes defined by the system of equations. This centroid is taken as the new 
iterate. 

Our purpose in this paper is twofold. First we derive from Cimmino’s 
method a new iterative algorithm for solving a system of linear inequalities. 
The idea is to calculate at each step the centroid of a subsystem of masses 
placed at the reflections of the previous iterate with respect to the bounding 
hyperplanes of only the violated half spaces defined by the system of 
inequalities. 

Secondly, we show how to modify a Richardson-type iterative least-squares 
algorithm in order to obtain a new algorithmic scheme for computing a 
solution of a system of linear inequalities. We prove that the sequence of 
iterates generated by this scheme converges to a solution of the system of 
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inequalities, provided that there exists one, from any initial approximation. 
Finally, we show that the Cimmindike algorithm is actually a special case of 
the algorithmic scheme, and therefore also converges. 

The problem of solving systems of linear inequalities arise in numerous 
fields, e.g., in linear programming [4,12], or in image reconstruction from 
projections [2,7]. In addition to Cimmino 133 the reader may consult House- 
holder [8, p. 1191 or Gastinel [5, p. 1601. Kammerer and Nashed [lo, 111 
generalized Cimmino’s method to integral equations of the first kind. Votruba 
[16] examined Cimmino’s method in the setting of generalized inverses. 

2. A CIMMINO-LIKE ALGORITHM FOR LINEAR INEQUALITIES 

We consider the system of linear inequalities 

(aj> x)Gbi> iE9, 0) 

where (a i, r ) is the Euclidean inner product of YE i and x in Iw “, bj E [w, and 

“?A {1,2,..., p}. To avoid triviality we assume that p 2 2. 

Foreachi~~definetheclosedhalfspaceLj~{x~[W”~(a,,x)~bj}and 

its bounding hyperplane H, e {x~U%“](a,, r)= bi}. Define L e fl itYPLi, 

and assume throughout that L # 0, i.e., we assume that there exists a solution 
to (1). The task of solving (1) will be referred to as the linear feasibility 
probkm. 

We would like to emphasize that the assumption Lf 0, i.e., that the 
linear feasibility problem is indeed feasible, is made throughout the whole 
paper. The question of how the algorithms presented here behave when there 
is no solution to the system (1) is a critical one, since with many problems it 
cannot be said u priori whether a solution exists. However, we will not 
consider the issue in this paper, but leave it open for further investigation. 

Let {&i}itc.l’ be a given set of positive real numbers called masses. We 
work hereafter with the normulized masses {mi}jE,,P obtained by 

i=l 

for which ~~=,rni= 1 and O<m,cl for all iE??. 
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For xkER” and iE$i’define 

cf ” min 
1 

0, 
b,-(a,, X”) 

I llaJ2 ’ 
(3) 

where /I . /I stands for the Euclidean norm in R “. Accordingly, if xk 4Lj, then 

$= bj-(ui> xk) <o 

llail12 ’ 

and $=O otherwise. 

Define I, e {ilck<O} , i.e., the set of indices of 9 for which xk violates the 

half space Li in the sense that xk @Li. Next define 

(4) 

where \I,[ denotes the number of elements in I,. Observe that pk is defined 
only when I,# 0 ; if I,= 0, then zk is a solution of (1). 

With these definitions and notations at hand we state the Cimmin4ike 
algorithm for solving linear inequalities. 

ALGORITHM 1. x"E R'" is arbitrary; calculate I,; if I, = 0 then stop. 
Otherwise, 

xk+l=yk+: ,i mic,kai. 
I 1 

Convergence of this algorithm to a solution of the linear feasibility 
problem will follow from the results presented in the sequel. As a matter of 
fact, the factor 2 in (S), which ensures the positioning of the masses at the 
reflection points, may be replaced by a sequence of relaxation parameters. 

By replacing each linear equation with a pair of linear inequalities, 
Cimmino’s original method for systems of equations is readily recovered from 



202 YAIR CENSOR AND TOMMY ELFVING 

Algorithm 1. Cimmino’s original algorithm reads: 

P 

xkfl=xk+f ,z rni 
bi-(ai,Xk) 

1-l llUil12 ai, 
where p= Zy= imi. It solves the problem 

(ai,x)=bi, ~ iE”P 

(6) 

(7) 

3. A MODIFIED LEAST-SQUARES ALGORITHM 

In matrix notation, the system (1) takes the form 

ArGb, (8) 

where A is a pXn matrix whose ith row is ~7. Denote by p(Q) the spectral 
radius of a matrix Q, and by Gil(p) ‘t 1 s range. The following theorem presents 
a well-known iterative method for solving the least-squares problem. The 
proof may be found, e.g., in [15]. 

THEOREM 1. Let M be a given positive definite matrix, and define 

II x II M 4 xTMx. The following method: 

69 

with 0<a<2/p(ATMA) and x”~%(AT), generates the solution of the 
problem 

Min Ilxll 
subjectto x~{x]Ilb-Axl],isminimum}’ 

(10) 

In order to state our modification of (9) some definitions are needed. Let 
{+k}~XO be a sequence of iterates; denote by rk= b-Axk the residual vector, 
and by rik the ith component of rk. We also introduce a diagonal matrix Dk 
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defined by 

D.$4 1 if jEIk (i.e., ifrfk<O), 

0 otherwise. 
01) 

ALGORITHM 2. Let M = ( mii) be a positive definite matrix with nonnega- 
tive elements. #EIW” is arbitrary. Calculate rk = b - Axk. If rk 30 then stop. 
Otherwise, 

xk+l=xk+akATMk(b-Ark), (12) 

where Mk g DkMD k and the parameters {(Ye} are restricted to O<ak< 

2/p( ATMkA). 

THEOREM 2. Any sequence of iterates {xk}?& generated by Algorithm 2 
converges to a solution of the system (1). 

4. CONVERGENCE 

In proving Theorem 2 we will use a convergence theory developed by 
Gubin, Polyak, and Raik [6]. 

DEFINITION 1. A sequence (xk}~=e is called Fejer-monotone with respect 

to the set L if for every x E L 

I/x k+l-XII~llXk-XII for all k>O. (13) 

It is easy to check that every Fejer-monotone sequence is bounded. 
Denote by d(x, L,) the Euclidean distance between a point XE[W” and a 

set Li [i.e., d(x, L,) k inf,,+ II x- y I]], and define 

+(x) 5 supd(x, Li). 
i E 9 

(14) 
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The fundamental convergence theorem of Gubin et al. [6] is: 

THEOREM 3. Let Li ~03” be convex closed sets for all i E 9, and 

L A fl iE Yp L, # 0. lf for a sequence {xk}& the following conditions hold: 

(i) {x~~~ is Fejer-monotone with respect to L, and 
(ii) limk_,cp(rk)=O, 

then xk + x* E L. 
k-cc 

Proof. Follows from Lemma 5 and Lemma 6 of Gubin et al. [6]. n 

Theorem 2 will be proved by establishing the conditions of Theorem 3. 

PROPOSITION 1. Any sequence {xk}rzo generated by Algorithm 2 is 
Fejer-monotone with respect to L, provided that xk@L for all k>O. 

Proof. Let xEL (i.e., b-AxaO), and define ek 1 xk-X. Then from 

(12) 

ek+l=ek+a ATdk k ) (15) 

with cl” ” Mkrk. It follows that 

II e k+1112=(/ek112+a~jlATdkI12+2ak(ATdk,ek). (16) 

From XE L, we obtain 

rik> -(ai,ek); (17) 

hence, 

=-(d”,r”), (18) 
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provided that 

&SO 

205 

(19) 

for all i and all k. 
To see that (19) holds, observe that 

where rnii are the entries of M, which are nonnegative by assumption, and 
that ri’<O whenever jE1,. 

Turning now to the second term on the right-hand side of (16), we 
decompose the semidefinite matrix Mk as Mk= WT W and use the inequality 

(QY, YFP(Q)(Y~ Y>t (21) 

which holds for any symmetric and positive semidefinite matrix Q (e.g. [ 14, p. 
35]), to obtain 

((ATdkl12=(ATM krk, ATMkrk) = (MkAATMkrk, rk) 

=((WAATWT)Wrk,Wrk).. 

Go(WAATWT)(Wrk,Wrk) 

=P(ATMkA)(dk, rk). (22) 

Combining (18) and (22) into (IS), we get 

Ile k+1112~11ekl12+ak[akp(ATMkA)-2](dk,rk), (23) 

where (dk, rk)=(Wrk,Wrk)aO. 
Since O<(Y,<~/P(A~M~A) for all k>O in Algorithm 1, the desired 

conclusion 

Ile k+lllGllekll 

follows. 
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Let the orthogonal projection of xk E [w n onto the half space Li c R ” be 
denoted by PiPi( 

LEMMA 1. ckai=P,(xk)-xk for all iE?? and all k>O. 

Proof Simple. 

The next proposition establishes condition (ii) of Theorem 3. 

n 

PROPOSITION 2. Any sequence {xk}rTO generated by Algorithm 2 has 
the property 

k’iJ% +( lx”) =o. (24) 

Proof Fejer-monotonicity implies that the sequence { I I x k - x II }& is 
monotonically decreasing, thus converging. It follows then from (23) that 

lim (dk, r”) =O. 
k-CC 

But (dk, rk) = (MDkrk, Dkrk); thus, 

(25) 

lim Dkrk=O 
k-a 

(26) 

and 

imply that 

for every i ~9, and the finiteness of 9’ ensures that 

lim +(r”) =O. 
k-m 

(27) 



METHODS FOR LINEAR INEQUALITIES 207 

5. THE CIMMINO-LIKE ALGORITHM AS A SPECIAL CASE 

Here we show that the Cimmindike algorithm (Algorithm 1) is a special 
case of the modified least-squares algorithm (Algorithm 2) thereby providing 
the desired convergence of the Cimmino-like algorithm. 

The connection between the two algorithms is obtained by defining, for 

Algorithm 2, the p X p matrix 

M=(mti)= sijL 
i I llail12 

where aij is the Kronecker delta, mi are the masses of Algorithm 1, and a; are 

the rows of A. 
The following lemma will be used. 

LEMMA 2. p(ArMkA)< 2 m,<l. 
itl, 

Proof. From the equality 

ATMkA= x mi,a, a: 
i E 1, 

(29) 

and from the fact that p(Q)= IIQII 2, the I,-norm of Q, for any symmetric 
matrix Q (see, e.g., [14, p. 41]), we obtain 

p(ATMkA)=IIATMkAI12=II 2 miiaiariI2 
iEZ, 

d 2 miiIlaia~l12= 2 miipi. (30) 
iEIk iElk 

Here each pi e p(aiaT) is a simple eigenvalue (since aiaT has rank one and 

we have assumed a i # 0) which corresponds to the eigenvector x = a i, and 

pi=ll”il12* (31) 

Now (28), (30), and (31) imply the desired result, since Zitr,mi~ 1. n 
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To establish our claim that Algorithm 1 may be regarded as a special case 
of Algorithm 2, we prove that 

O<L 2 
pk p( ATMkA) 

(32) 

for all k>O. 

Proof Case 1. If /I,[ = 1, then by Lemma 2 

pk 2 p( ATMkA) = 2 mi=ml<l, 
i t I, 

where I, = {I}; hence 

2 A,2=A -_= 
pk ml pk ’ 

Case 2. For jZ,)>l let us consider for a moment instead of (5) the 

iteration 

.k+l=xk+pk $ m,c,kai, 
i=l 

(33) 

From Lemma 2 

pkG Jf mi=pk; 
i El, 

hence 2/pk>2/pk>Pk>0 as long as OCw (2. Therefore, Algorithm 1 with 
(5) replaced by (33) converges for 0<0<2. We now investigate separately 
the case 0=2. 

Lemma 2 guarantees that 2/pka2 /pk. If for some k>O this inequality is 

not strict, then 

(34) 
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which is, by (30), equivalent to 

II z miiaia~llz= z miJla~u~ll~~ (35) 
iE I, it I, 

Corollary Al, which we defer to the Appendix of the paper, shows that if (35) 
holds, then the vectors a, are almost identical for all i E I,, i.e., 

ui = kiu iEZk. (36) 

Therefore, for an iteration index k for which (34) holds, the system (1) splits 
into 

bi 
(u,x)y tki’O) 

bi 

,iEZk (374 
(u,+,, Cki <O> I 

Put b;= min 3 ki>O, and bi= max bi k,<O. Then (37a) is equivalent to 
iE1, ki’ iEzk ki’ 

(a,x)Gb; 

(a, x)>b;. (38) 

Note that b;<b; since L# 0. Suppose /Z,l>l. Then (u,xk)>b; and 
(a, xk) -C b; and hence bh> b; which is a contradiction. We conclude that 
only one type of inequality in (38) is present which implies that the new fk of 
the system is a singleton and case 1 of this proof applies. n 

APPENDIX 

Here we prove a corollary which we used in the proof of (32) above. 

COROLLARY Al. Zf 

II z mii”iu~II,= z miiIl”iu~II~> 
iElk i E I, 
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then 

ai=k,a iEI,, 

where ki are nonzero numbers. 
We need the following two lemmas. 

LEMMA Al. Let A, B be two positive semidefinite and symmetric 
matrices. Assume the (A+B)u=p A+g~, Az=p,z and Bv=pBv, where the 
spectral radii pA and pg are simple eigenvalues of A and B. Then, 

lIA+BII,=IIAII,+IIBIl, * u=klz=kZv. (39) 

Proof. A,=p,z implies zTAz=p,zTz, so that p,=zTAz/zTz. Similarly, 

p,=vTBv/vTv and P*+~= uT(A+B)u/uTu. From llA+BII,=p(A+B)= 

~(A)+~(B)weget 

,&k>=_____=T -TA,, vTBv uTBu n 

UTU T 
.zz vTv UTU 

uTAu 
But SGO since pA>- 

UTU 
and, by the same token, Tao, so that S= T=O, 

hence 

uTAu ZTAS 
-=-‘PA’ 
UTU zTz 

This shows that Au= pAu which proves that u = k,z because pA is simple. 
In a similar manner we get u=k2v. W 

LEMMA A2. Assume that {Ai}itr is a given family of symmetric and 
positive semidefinite matrices where I is some finite index set. Also let 
C= 2 A,, Cx= pcx, and Aixi=pixi where pi are simple eigenvalues. Then 

it1 

llCII,= 2 IIAi(l, =) x,=kix ViEI. 
itl 

(40) 

Proof. Use induction and Lemma Al. n 
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Corollary Al now follows directly from Lemma A2 since aiu$zi=piui, as 
in the proof of Lemma 2, and pi are simple eigenvalues, provided ai # 0. n 
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