
Theoretical Computer Science 330 (2005) 475–499
www.elsevier.com/locate/tcs

Elimination of spatial connectives in static
spatial logics

Étienne Lozes∗
LIP, ENS Lyon, 46, allée d’Italie, Lyon 69364, France

Abstract

The recent interest for specification on resources yields so-calledspatial logics, that is specification
languages offering new forms of reasoning: the local reasoning through the separation of the resource
space into two disjoint subspaces, and the contextual reasoning through hypothetical extension of the
resource space.
We consider two resource models and their related logics:

• The static ambient model, proposed as an abstraction of semistructured data (Proc. ESOP’01,
Lecture Notes in Computer Science, vol. 2028, Springer, Berlin, 2001, pp. 1–22 (invited paper))
with the static ambient logic (SAL) that was proposed as a request language, both obtained by
restricting the mobile ambient calculus (Proc. FOSSACS’98, Lecture Notes in Computer Science,
vol. 1378, Springer, Berlin, 1998, pp. 140–155) and logic (Proc. POPL’00, ACM Press, NewYork,
2000, pp. 365–377) to their purely static aspects.

• Thememorymodel and the assertion language of separation logic, both defined in Reynolds (Proc.
LICS’02, 2002) for the purpose of the axiomatic semantic of imperative programs manipulating
pointers.

We raise the questions of the expressiveness and the minimality of these logics. Our main contri-
bution is a minimalisation technique we may apply for these two logics. We moreover show some
restrictions of this technique for the extension SAL∀ with universal quantification, and we establish
the minimality of the adjunct-free fragment (SALint).
© 2004 Elsevier B.V. All rights reserved.

Keywords:Spatial logics; Separation logic; Mobile ambients; Minimality

∗ Tel.: +4 72728796.
E-mail address:elozes@ens-lyon.fr(E. Lozes).

0304-3975/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2004.10.006

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81172985?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
mailto:elozes@ens-lyon.fr

476 E. Lozes / Theoretical Computer Science 330 (2005) 475–499

1. Introduction

The mobile ambients calculus (MA)[7] is a proposal for a new paradigm in the field of
concurrency models. Its originality is to set as data the notion oflocation, and as notion
of computation the reconfiguration of the hierarchy of locations. The calculus has a spatial
part expressing the topology of locations as a labelled unordered tree with binders, and a
dynamic part describing the evolution of this topology. The basic connectives for the spatial
part are 0, defining the empty tree,a[P], defining the tree rooted ata with subtreeP , P |Q
for the tree consisting of the two subtreesP andQ in parallel, and(�n)P for the treeP in
which the label (or name)n has been hidden. Leaving out from MA all capabilities, we get
rid of the dynamics of the calculus, working with what we callstatic ambients(SA).
Type systems are commonly used to express basic requirements on programs. In the case

of SA, the static ambient logic (SAL)[8] provides a very flexible descriptive framework.
Seeing SAL as a request language, one may ask a structureP to match some specification
A, written

P �A .

The SAL approach is however much more intensional than it is the case for standard type
systems. Indeed, the whole spatial structure of the calculus is reflected in the logic. For
instance, the formulan[A] is satisfied by structures of the formn[P] with P �A. Finally,
AL includesadjunct connectivesfor every spatial construct. For instance, theguarantee
operator

A�B
specifies that a process is able to satisfyB when it is extended by any process satisfying
A. SA, associated to SAL, has appeared to be an interesting model forsemistructured data
[6] such as XML documents, due to the underlying tree structure. Data are modelled by
unordered labelled trees, where the binders may represent pointers[5], and the logic is used
as the basis for a language for queries involving such data. For instance, the process of
Fig. 1 represents a database containing the two authors Cardelli and Gordon with one copy
of their paper about ambients stored at Cardelli’s and linked to Gordon’s. Query

Bptr.ptr�
(
Cardelli[�]|�)

asks whether the database contains some author named Cardelli.
Separation logic (SL)[18] is a proposal for a new assertion language in Hoare’s approach

of imperative programs verification. Indeed, imperative programming languagesmanipulat-
ing pointers allow one to change the value a variable refers to without explicitly mentioning
this variable. Such multiple accesses to data make the axiomatic semantics[14] of these
programs difficult to handle using classical logic as an assertion language[17]. SL nicely
handles the subtleties of pointer manipulation, providing two new connectives: a separa-
tive conjunctionP ∗Q asserting thatP andQ hold in separate parts of the memory, and
a separating implicationP −∗Q allowing one to introduce ‘spatial hypotheses’ about the
memory. For instance, the judgement{

(x 	→ −) ∗ (
(x 	→ e)−∗�)}

x := e
{
�

}

E. Lozes / Theoretical Computer Science 330 (2005) 475–499 477

ptr

Cardelli

Ambients

text

Gordon

Ambients

Fig. 1.(�ptr)(Cardelli[Ambients[ptr[text[0]]]]|Gordon[Ambients[ptr[0]]]).

is the transposition of the classical backward reasoning{�[e/x]}x := e{�} in Hoare
logic.
Both specification languages rely on classical logic reasoning extended by two non-

standard operations: splitting of the resource space and separated assertions (|, ∗) on each
subspace, and extension of the resource space assuming some hypothesis (�,−∗). These
two aspects are the main novelties of the so-calledspatial logics. The interest of these
connectives has been illustrated in several ways. For mobile ambients, it is known that the
connective� coupled with� can express the action modalities[19], persistence, and other
strong properties[13]. For SL, the proof of an in-place reversal of a list turns out to require
complex invariants in the standard classical logic, whereas it has a simple formulation in
SL using∗, as one of the many examples presented in[17].
Although spatial connectives evidently bring a real ease to the formulation of complex

properties of the structures, their actual contribution to the expressiveness of the logic is not
so clear. For instance, the formulax ↪→ nil ∗ y ↪→ nil expresses that bothx andy points to
nil, but from distinct locations, which can also be expressed asx ↪→ nil∧ y ↪→ nil∧ x �= y

without requiring∗; the formulan[0]�n[0] tells that after extension of the structure adding
n[0], one exactly hasn[0], which means that the structure was initially empty, hence this
formula is equivalent to 0. On the other hand, it has been established for the mobile ambient
case, i.e. in a dynamic setting, that guarantee brings some extra expressive power[13].
This paper studies the contribution of spatial connectives in the expressiveness of static

spatial logics. This question is important since spatial connectives introduce a lot of com-
plication from the model-checking point of view. Indeed, separated conjunctions∗ and |
forces to try all the splitting of the structure, which may be costly for wide structures. Even

478 E. Lozes / Theoretical Computer Science 330 (2005) 475–499

worse, the spatial implications−∗ and� considerably complicate the model-checking by
introducing the need to seek a representative testing set[3,4], when it is not an undecidable
problem[4,12]. The expressiveness of spatial connectives is also important from theoretical
issues. For instance, the proof of an in-place reversal of a list is derivable, through heavy
formulations, in classical Hoare logic as well, and the question is open whether SL can
prove programs on which classical reasoning would fail.
Several kinds of quantification can be taken under consideration for our spatial logics:
• Absence of quantification, as it is the case for SL (in this work).
• Classical quantification (∀, ∃), which defines the logic SAL∀.
• Fresh quantification[11] (Bn.A), which is the way SAL handles name generation. This
quantification is related to� conversion of bound names. It is complementary to the
spatial connectiven�A that forces the process to reveal a hidden name by calling itn.

We establish that the contribution of spatial connectives depends on the forms of quantifi-
cation supported by the logic.
Indeed, in quantifier-free logics, adjuncts do not increase the expressiveness of the logic

(Theorem4.4). Neither does the separated conjunction (∗) for SL, since it only expresses
separation, so that SL assertions can be translated into a classical logic (Theorem8.1). In a
different way,| brings extra expressiveness to SAL, namely the power of counting, so it can-
not be eliminated, and actually the adjunct-free fragment of SAL is minimal (Theorem7.1).
The proof of these elimination results goes through the intensive use of intensional partial
equivalences on models; such equivalences are common for the study of the expressiveness
of a logic (see[13,19]for spatial logic cases), but were also exploited for decidability issues
in [3,4]. Two properties justify the encoding: a property we callprecompactness, which ex-
presses finiteness of behaviours, and the existence ofcharacteristic formulasfor the classes
of partial intensional equivalence.
When classical quantifiers are taken under consideration, more complex properties can

be expressed through adjuncts, and they cannot be taken out freely (Theorem6.1). This
difference of nature of the logic was already observed from the decidability aspect[3,4,10],
which implied the absence of an effective adjuncts elimination. Our result shows that the
adjuncts elimination is impossible even theoretically.
Finally, we establish the quite surprising result that adjuncts elimination is still possi-

ble in presence of fresh quantification (Theorem5.3), essentially due to prenex forms for
B (Proposition5.2). This result underlines the fundamental difference between classical
quantification and fresh quantification.

Relatedwork:Apart from[16], this is, toour knowledge, thefirst results studyingprecisely
the expressiveness and minimality of spatial logics. Other works about expressiveness only
give some hints. A first result about the separation power of AL is presented in[19]. Other
examples of expressive formulas forAL are shown in[13], such as formulas for persistence
and finiteness.
A compilation result has been derived for a spatial logic for trees without quantification

and private names[16]. In that work, the target logic includes some new features such as
Presburger arithmetic, and the source logic includes a form of Kleene star.
The setting in which we obtain our encoding is rather different in the dynamic case (see

[13]). There, the presence of adjuncts considerably increases the expressive power of the
logic. For instance,� allows one to construct formulas to characterise processes of the form

E. Lozes / Theoretical Computer Science 330 (2005) 475–499 479

open n.P , and, using the @ connective, we may define a formula to capture processes of
the formout n.P .
The use of a partial intensional equivalence and the notion of precompactness is original.

Intensional bisimilarity plays an important role in the characterisation of the separation
power of the logic[19]. Our proof suggests that it is also a powerful and meaningful
concept for the study of expressiveness.
The presence of the� connective in the logic is crucial with respect to decidability

issues. The undecidability of the model-checking of SAL with classical quantification has
been established in[10]. Quite unexpected decidability results for spatial logics with� and
without quantification were then established in[3] and[4]. These works are closely related
to the present study; roughly, the decidability result of Calcagno et al.[3] relies on finiteness
of processes, whereas our encoding exploits finiteness ofobservations. For this reason, our
approach is more general and cuts out decidability issues. Actually, the undecidability of
the model-checking problem for SAL has been recently established[12]. This last work
studiesmany variations aroundSAL, derives decidability results with� andB, and presents
a prenex form result similar to ours.

Outline: We introduce SA, SAL and its adjunct-free fragment(SALint) in Section2. We
prove adjunct elimination for quantifier-free formulas in Section4, based on the notion of
intensional bisimilarity, discussed inSection3.Thegeneral result forSAL is thenestablished
in Section5, based on prenex forms.We discuss the adjunct elimination for SAL∀ in Section
6, and showminimality of SALint in Section7; in Section8, we introduce SL and a classical
fragment of it (CL), which we prove to be as expressive as SL. Section9 gives concluding
remarks.

2. Background

In this section, we define the model of static ambients (SA) and its logic SAL. We also
define the intensional fragment(SALint) of SA.
In all what follows, we assume an infinite setN of names, ranged over byn,m. Tree

terms are defined by the following grammar:

P ::= P |P ∣∣n[P]∣∣(�n)P ∣∣0 .
The set fn(P) ⊂ N of free names ofP is defined by saying that� is the only binder on
trees. We callstatic ambientstree terms quotiented by the smallest congruence≡ (called
structural congruence) satisfying theaxiomsofFig.2.Formulas, rangedoverwithA,B, . . .,
are defined in Fig.3 . These formulas formthe static ambient logic, and we callintensional
fragmentthe subset of the formulas not using the connectives�, @, and� (adjuncts). We
note them, respectively, SAL and SALint.
We will say thatA is quantifier-freeif A does not contain anyB quantification. The set

of free names of a formulaA, written fn(A) is the set of names appearing inA that are
not bound by aB quantification.A(n↔ n′) is the formulaA in which namesn andn′ are
swapped.

480 E. Lozes / Theoretical Computer Science 330 (2005) 475–499

P |0≡ P (�n)0≡ 0(
P |Q

)
|R ≡ P |

(
Q|R) (�n)m[P] ≡ m[(�n)P] (n �= m)

P |Q ≡ Q |P (�n)P |Q ≡ (�n)
(
P |Q) (n �∈ fn(Q))

Fig. 2. Structural congruence on SA.

A ::= A ∧A
∣∣∣¬A

∣∣∣Bn.A∣∣∣0 ∣∣∣A|A ∣∣∣n[A] ∣∣∣n�A (intensional fragment)∣∣∣A�A
∣∣∣A@n ∣∣∣A� n (adjuncts)

Fig. 3. SAL and the intensional fragment SALint.

Definition 2.1 (Satisfaction). We define the relation� ⊂ (SA×SAL) by induction on the
formula as follows:
• P�A1 ∧A2 if P�A1 andP�A2;
• P�¬A if P /�A;
• P�Bn.A if ∀n′ ∈ N − (fn(P) ∪ fn(A)), P�A(n↔ n′);
• P�A1|A2 if there isP1, P2 s.t.P ≡ P1|P2 andPi�Ai for i = 1,2;
• P�0 if P ≡ 0;
• P�n[A] if there isP ′ such thatP ≡ n[P ′] andP ′�A;
• P�n�A if there isP ′ such thatP ≡ (�n)P ′ andP ′�A;
• P�A1�A2 if for all Q such thatQ�A1, P |Q�A2;
• P�A@n if n[P]�A;
• P�A� n if (�n)P�A.

We noteA��B if for all P ∈ SA, P�A iff P�B. A context is a formula containing a
hole; if C is a context,C[A] stands for the formula obtained by replacing the hole withA
in C.

Lemma 2.2. For all A,B, and all contextC, if A��B, thenC[A]��C[B].

Remark 2.1.
• The formula⊥, that no process satisfies, can be defined as 0∧ ¬0. As e.g. in[8], other
derived connectors include∨, and�: P satisfiesA�B iff there existsQ satisfyingA
such thatP |Q satisfiesB.

• If P�A andP ≡ Q, thenQ�A. Moreover,� is equivariant, that isP�A iff P(n ↔
n′)�A(n↔ n′) for anyn, n′.

• ForanyP , there isacharacteristic formula (for≡)AP , using thesame tree representation,
such that for allQ, Q�AP iff Q ≡ P . In particular, two static ambients are logically
equivalent if and only if they are structurally congruent.

3. Intensional bisimilarity

In this section and the following, we will give a first illustration of our minimalisation
method on the case of SAL and SALint. This minimalisation transforms a formula from a

E. Lozes / Theoretical Computer Science 330 (2005) 475–499 481

logic to the other; however, it does not proceed as a dictionary, that is we do not show that
the connectives from the original logic are some syntactic sugar for some fixed construction
in the target logic. The translation actually goes through the exploration of all behaviours
a process may have with respect to a formula. Roughly, we translate a formulaA into an
exhaustive disjunction

A� ∨
C∈Behaviours(A)

FC

of all the behaviours that lead to the acceptance ofA.
The bottleneck of this embedding is to define what are these behaviours. By behaviours,

we refer to equivalence classes of some observational equivalence. In this section, we will
hence introduce a notion of partial observation over trees corresponding to logical testing.
This model equivalence can be seen as the adaptedgamefor this logic (in the sense of
Ehrenfreucht–Fraïssé), or as the staticintensional bisimilarity[19]. Observations are taken
from the logic to which wewant to reduce to, in this setting SALint. Each connective defines
a simulation rule in a very natural way. Then we show that this observational equivalence
is enough to ensure model equivalence with respect to the logic we want to minimalize,
that is SAL (Proposition3.4) in this setting. We then give a compact representation of the
observational equivalence classes as some symbolic sets we callsignatures.
We will assume in the remainder some fixed setN ⊂ N .

3.1. Definition

We now introduce the intensional bisimilarity. Intuitively,�i,N equates processes that
may not be distinguished by logical tests involving at mosti steps where the names used
for the tests are picked inN .

Definition 3.1 (Intensional bisimilarity). We define the family(�i,N)i∈N of symmetric

relations over SA by induction oni :�0,N def= SA × SA, and for anyi�1, �i,N is the
greatest relation such that ifP �i,N Q, then the following conditions hold:
• if P ≡ 0 thenQ ≡ 0;
• for all P1, P2, if P ≡ P1|P2 then there isQ1,Q2 such thatQ ≡ Q1|Q2 with P� �i−1,N
Q�, � = 1,2;

• for all n ∈ N and for allP ′, if P ≡ n[P ′], then there isQ′ such thatQ ≡ n[Q′] and
P ′ �i−1,N Q′;

• for all n ∈ N and for allP ′, if P ≡ (�n)P ′, then there isQ′ such thatQ ≡ (�n)Q′ and
P ′ �i−1,N Q′.

Lemma 3.2. For all i,�i,N is an equivalence relation.

We shall write SA/�i,N for the quotient of SA induced by�i,N : it will be ranged over by
equivalence classes calledC,C1, C2.
We may observe that the bisimilarities define a stratification of observations on terms,

namely�i′,N ′ ⊆�i,N for i� i′ andN ⊆ N ′. This may be understood in a topological
setting. Given a fixedN , we consider the ultrametric distance over models defined by

482 E. Lozes / Theoretical Computer Science 330 (2005) 475–499

d(P,Q) = 2−i if i is the smallest natural for whichP ��i,N Q, andd(P,Q) = 0 if
P ��,N Q where��,N=⋂

i∈N �i,N . We call it theN -topology. It somehow captures the
granularity of the logical observations with respect to their cost.

3.2. Correction

The key step in proving correction of the intensional bisimilarities with respect to the
logic is their congruence properties for the connectives admitting an adjunct.

Lemma 3.3. If P �i,N Q, then:
• for all R, P |R �i,N Q|R;
• for all n ∈ N , n[P] �i,N n[Q];
• for all n ∈ N , (�n)P �i,N (�n)Q.

Proof. By induction oni. �

Note that the last point cannot be improved: considerN = {n}, P ≡ m1[0],Q ≡ m2[0].
ThenP �2,N Q, but(�m1)P ��2,N (�m1)Q. For this reason,�i,N is not a pure congruence.
We notes(A) the size ofA, defined as the number of its connectives.

Proposition 3.4(Correction). For all P,Q, i such thatP �i,N Q, for all quantifier free
formulaA such thats(A)� i andfn(A) ⊆ N ,

P�A iff Q�A.

Proof. By induction onA. For the adjuncts, apply the congruence properties of Lemma
3.3, and for the other connectives use the definition of�i,N . �

3.3. Signature functions

Definition 3.5 (Signature). For i�1, we set
• zNi (P) = 0 if P ≡ 0, otherwise¬0;
• pNi (P) = {(C1, C2) ∈ (SA/�i−1,N)2 : P ≡ P1|P2 andPi ∈ Ci};
• aNi (P) = [n,C] if there isP ′ s.t.P ≡ n[P ′], n ∈ N andP ∈ C, C ∈ SA/�i−1,N ,
otherwiseaNi (P) = noobs, wherenoobs is a special constant;

• rNi (P) = {(n, C) ∈ N × SA/�i−1,N : ∃P ′.P ≡ (�n)P ′andP ′ ∈ C}.
We callsignature ofP at (i, N) the fourtuple�Ni (P) = [zNi (P), pNi (P), aNi (P), rNi (P)].

The following lemma says that the signature actually collects all the information that
may be obtained from the bisimilarity tests.

Lemma 3.6. Assumei�1.ThenP �i,N Q iff �Ni (P) = �Ni (Q).

E. Lozes / Theoretical Computer Science 330 (2005) 475–499 483

4. Adjuncts elimination on quantifier-free formulas

In this section, we show that the quantifier free formulas of SAL have equivalent formulas
in SALint. This result is then extended to all formulas of SAL in the next section.
In all what follows, we will assumeN is afinitesubset ofN ; it is intended to bound the

free names of the considered formulas. The encoding result is based on two key properties:
• Precompactness of theN -topology. In other words, wheni, N are fixed, only a finite
number of behaviours may be observed.

• Existence of intensional characteristic formulas for the classes of�i,N .
The first property basically says the following: if we fix some formulaA, then we may
finitely list all the behaviours a processP may have with respect toA. Then wemay tag the
ones corresponding to an acceptance and the ones corresponding to a rejection, and from
the second property, we may express this by some formula in SALint.
Here is the proof with more details.

Lemma 4.1. The codomain of�Ni is finite.

Proof. We reason by induction oni. First notice that the codomain of�Ni is:

codom�Ni = {0,¬0} ×
(
SA/�i−1,N

)2× ({noobs} +N × SA/�i−1,N
)

×P(
N × SA/�i−1,N

)

hencecodom�Ni is finite iff SA/�i−1,N is finite too (here we use thatN is finite). Fori = 1,
SA/�0,N = {SA}, hence�N0 is finite, and so iscodom�N1 . For i�2, we have by induction
codom�Ni−1 finite. By Lemma3.6, there is an injection of SA/�i−1,N into codom�Ni−1, so
SA/�i−1,N is finite, and so iscodom�Ni . �

Here is an immediate consequence of Lemma4.1:

Proposition 4.2(Precompactness). For all i, the number of classes of�i,N is finite.

These results roughly say that only a finite amount of information is needed to capture
a given bisimilarity class. The next result makes it more precise: this information may be
collected in a single formula of SALint.

Proposition 4.3(Characteristic formulas). For anyi ∈ N and for any processP , there is
a formulaAi,N

P ∈ SALint such that

∀Q Q�Ai,N
P ⇔ Q �i,N P .

Proof. By induction oni. For i = 0, we may takeAi,N
P = �. Then assumei�1, and we

have formulasAi−1,N
P for all P . This obviously gives a characteristic formulaAi−1,N

C for

484 E. Lozes / Theoretical Computer Science 330 (2005) 475–499

any classC of SA/�i−1,N . Let us consider some fixedP . We set

Az = 0 ifzNi (P) = 0,otherwise¬0;
Ap = ∧

(C1,C2)∈pNi (P)
Ai−1,N
C1

|Ai−1,N
C2

∧ ¬ ∨
(C1,C2)�∈pNi (P)

Ai−1,N
C1

|Ai−1,N
C2

;

Aa =
{ ∧
n∈N

¬n[�] if aNi (P) = noobs,

n[Ai−1,N
C] if aNi (P) = [n,C];

Ar = ∧
[n,C]∈rNi (P)

n�Ai−1,N
C ∧ ¬ ∨

[n,C]�∈rNi (P)
n�Ai−1,N

C ;

Ai,N
P = Az ∧Ap ∧Aa ∧Ar ,

where the finiteness of the conjunctions and disjunctions is ensured by Lemma4.1.
ThenQ�Ai,N

P iff �Ni (Q) = �Ni (P), hence the result.�

The precompactness property says that if we bound the granularity of the observations,
only finitely many distinct situations may occur. The characteristic formula property says
that each of these situations is expressible in the intensional fragment. The idea of the
encoding is then just to logically enumerate all these possible situations.

Theorem 4.4. For all quantifier-free formulaA ∈ SAL, there is a formula[A] ∈ SALint
such that

A��[A].

Proof. We define[A] as follows:
[A] def= ∨Ai,N

C for C ∈ SA/�i,N , C�A
for i = s(A) andN = fn(A). The disjunction is finite by Proposition4.2. P�[A] iff there
isQ such thatQ�A andP �i,N Q, that is, by Proposition3.4, P�A. �

Effectiveness of the encoding: Due to its finiteness, the construction of our proof could
seem to be effective. However, this cannot be the case due to an undecidability result for
the model-checking problem on SAL[12]. This is quite surprising, since only an effective
enumeration of the bisimilarity classes ismissing tomake the proof constructive. Moreover,
such an enumeration exists for SA without name restriction, via testing sets as defined in
[3]. This reveals an unexpected richness of SA compared to pure trees.

5. Adjuncts elimination and fresh quantifier

In this section, we establish the adjunct elimination for the full SAL. The result we
already obtained for quantifier-free formulas easily extends to formulas in prenex forms.
So our efforts will focus on establishing the existence of an equivalent formula in prenex
form for any formula of SAL. Intuitively, prenex forms can be generated by pulling out the
fresh quantifiers.We actually show how to swap the order between a quantifier and another

E. Lozes / Theoretical Computer Science 330 (2005) 475–499 485

(∧) (Bn.A1) ∧A2 � Bn.(A1 ∧A2) (n �∈ fn(A2))

(¬) ¬Bn.A1 � Bn.¬A1
(|) (Bn.A1)|A2 � Bn.(A1|A2) (n �∈ fn(A2))

(�L) (Bn.A1)�A2 � Bn.
((
n�� ∧ A1

)
�A2

)
(n �∈ fn(A2))

(�R) A1� (Bn.A2) � Bn.
((
n�� ∧ A1

)
�A2) (n �∈ fn(A1))

(Amb) m[Bn.A] � Bn.m[A] (m �= n)

(@) (Bn.A)@m � Bn.(A@m) (m �= n)

(�) m�Bn.A � Bn.m�A (m �= n)

(�) (Bn.A)�m � Bn.(A�m) (m �= n)

Fig. 4. Term rewriting system for prenexation.

connective without changing the semantic. Except for the� connective, this turns out to be
quite natural.
We present our algorithm as a rewriting system in Fig.4. The essential result is then

Proposition 5.1(Correction of�). The term rewriting system� defined by the rules of
Fig. 4 preserves the semantics: for anyA,B ∈ SAL, if A�B, thenA��B.
Proof (sketched). We only detail the proof for rule(�L).

P�(Bn.A1)�A2

⇔ ∀Q,∀n′ �∈ fn(A1) ∪ fn(Q) ·Q�A1(n↔ n′)⇒ P |Q�A2

⇔ ∀Q,∀n′ �∈ fn(A1�A2) ∪ fn(P |Q) ·Q�A1(n↔ n′)⇒ P |Q�A2

⇔ ∀Q,∀n′ �∈ fn(A1�A2) ∪ fn(P |Q) ·Q�A1(n↔ n′)⇒ P |Q�A2(n↔ n′)

⇔ ∀ n′ �∈ fn(A1�A2) ∪ fn(P),
∀Q · n′ �∈ fn(Q)⇒ Q�A1(n↔ n′)⇒ P |Q�A2(n↔ n′)

⇔ P�Bn.
(A1 ∧ n��)

�A2. �

Remark 5.1. Some of the rules above (such as(Amb), (¬), and a variant of(|L)) have
already been presented in[9], under the form of equalities. The same result is independently
developed in[12].

We say that a formulaA is well-formedif every variable bound byB is distinct from
all other (bound and free) variables inA. For such formulas, the side conditions in� are
always satisfied.
It is easy to see that�definesa terminating rewriting system, and that thenormal formsof

well-formed formulas are formulas in prenex form. Confluence holds modulo permutation
of consecutiveB quantifiers.

486 E. Lozes / Theoretical Computer Science 330 (2005) 475–499

Proposition 5.2(Prenex forms). For any formulaA, there areñ,A′ such thatA��Bñ.A′
andA′ is quantifier free.

This result directly implies the following extension of Theorem4.4:

Theorem 5.3(Adjunct elimination). For any formulaA ∈ SAL, there is a formula[A] ∈
SALint such that

A��[A].

Proof. There isA′ quantifier free and̃n such thatA��Bñ.A′ by Proposition5.2. Then by
Lemma2.2and Theorem4.4, we may write

A��Bñ.A′��Bñ.[A′] . �

Example 5.2.We show an example to illustrate how SALint formulas can capture non-
trivial properties expressed using the adjuncts. Let

A ::=
(
Hm′.m′[�]�(

Hn1.n1[0]|Hn2.n2[Hn3.n3[0]]
))�m@m,

whereHn.A (H being the hidden name quantifier[1]) stands forBn.n�A. The prenex
form ofA is

Bm′, n1, n2, n3.
(
(m′�� ∧ .m′�m′[�])�(

n1�n1[0]|n2�n2[n3�.n3[0]]
))�m@m

ThenP �A iff there isQ such that

(�m)m[P]|(�m′)m′[Q] ≡ (�n1)(�n2)(�n3)
(
n1[0]|n2[n3[0]]

)
.

The only solutions of this equation areP ≡ 0 or P ≡ (�n3)n3[0]. In other words,A is
equivalent toB = 0∨Hn3.n3[0].

6. Adjuncts elimination and classical quantifiers

In this section, we consider a variant of SAL. Instead of fresh quantified formulas, we
consider name quantification of the form∀x.A and∃x.A with the natural semantics:

P �∀x.A if ∀n ∈ N .P �A{n/x}.
Let us note SALint∀ the intensional fragment with classical quantification. We ask the

question of adjuncts elimination for extensions of this logic. The undecidability result
of Charatonik and Talbot[10] implies that there is no effective adjunct elimination for
SALint∀ + {�}. We establish now a more precise result:

Theorem 6.1(Expressiveness of adjuncts inSALint∀). SALint∀+{�}, SALint∀+{@} and
SALint∀ + {�} are strictly more expressive thanSALint∀.

E. Lozes / Theoretical Computer Science 330 (2005) 475–499 487

The proof of this theorem is based on the following observation. In any of the extensions
we consider, it is possible to define a formulaA such that

P�A iff " fn(P)�1. (1)

For the�and@connectives,wemayfirst encode the formulan = mas
(
n[�]∧¬m[�])�⊥

and(n[�])@m. Then (1) is satisfied by the formula
∃x.∀y. (¬y��) → x = y.

For the� connective, there is a direct formula satisfying (1):

∃x. (∀y.y��)� x.
We are now interested in proving that such a property cannot be expressed in SALint

∀. Our
approach consists in studying the stability of� with respect to substitutions. We actually
find some particular processesP for whichP�A is equivalent toP�A{n/m}. From this,
we deduce processesP such thatP�A impliesP {n/m}�A. This last result shows that, on
certain conditions, a formulamay not observe the action of equating two names in a process,
which is contradictory with counting the number of free names.
We callthread contexta contextC of the form

C[P] ≡ (�ñ) n1[. . . nk[P] . . .]
with ñ ⊆ {n1, . . . , nk}. We noten(C) def={n1, . . . , nk} andd(C) def= k. For a formulaA, we
noted(A) the number ofn[.] connectives inA.

Lemma 6.2. LetA be a formula ofSALint∀,andC a thread context such thatd(C) > d(A).
Letn,m be two names such that{n,m} ∩ n(C) = ∅, and

P
def= C[

n[0]|m[0]].
ThenP �A iff P �A{n/m}.
Proof. By induction on the size ofA:
• the casesA = A1 ∧A2,A = ¬A1, andA = 0 are trivial.
• A = A1|A2. Assume firstP�A. Sinced(C)�1, we may assume by symmetry that
0�A2 andP�A1. ThenP�A1{n/m} by induction, andP�A{n/m}. The other direction
is proved similarly.

• A = a[A1]. Assume firstP�A. ThenC ≡ a[C′] andP ′ def= C′[n[0]|m[0]]�A1. By
induction P ′�A1{n/m}. Since {n,m} ∩ n(C), a �= m, so A{n/m} = a[A1{n/m}],
and P�A{n/m}. Assume nowP�A{n/m}. Let b = a{n/m}. Then C ≡ b[C′] and
P ′ def= C′[n[0]|m[0]]�A1{n/m}. Thenb ∈ n(C), sob �∈ {m, n}, andb = a. By induction
P ′�A1, soP�b[A1] = A.

• A = a�A1. Assume firstP�A. ThenC ≡ (�a)C′ andP ′ def= C′[n[0]|m[0]]�A1. Since
n,m are free inP , a �= m and a �= n. So {n,m} ∩ n(C′) = ∅, and by induction,
P ′�A1{n/m}. A{n/m} = a�A1{n/m}, andP�A{n/m}. The other direction is proved
similarly.

488 E. Lozes / Theoretical Computer Science 330 (2005) 475–499

• A = ∀x.A1. Assume firstP�A. Let takea ∈ N . ThenP�A1{a/x}, and by in-
ductionP�A1{a/x}{n/m}. For a �= m, this is alsoP�A1{n/m}ax. For a = m, this
requires a bit more. Consider thatP�A1{n/x}. ThenP�A1{n/x}{n/m} by induction.
ButA1{n/x}{n/m} =

(A1{n/m}{m/x}
){n/m}, so by inductionP�A1{n/m}{m/x}. Hence

P�A1{n/m}{a/x} for all a, that isP�∀x.A1{n/m} = A{n/m}.
Assume now thatP�A{n/m}. Let takea ∈ N . ThenP�A1{n/m}{a/x}. If a �= m, this is
P�A1{a/x}{n/m}, so by inductionP�A1{a/}x. Fora = m, consider thatP�A1{n/m}
{n/x}, that isP�A1{m/x}{n/m}, so by inductionP�A1{m/x}. HenceP�A1{a/x} for all
a, that isP�A. �

Lemma 6.3. LetA be a formula ofSALint∀,andC a thread context such thatd(C) > d(A).
Letn,m be two names such that{n,m} ∩ n(C) = ∅, and moreoverm �∈ fn(A). Let

P1
def= C[

n[0]|m[0]] and P2
def= C[n[0]|n[0]]

If P1�A, thenP2�A.
Proof. By induction on the size ofA:
• the casesA = A1 ∧A2,A = A1 ∨A2,A = 0 andA = ¬0 are trivial.
• A = A1|A2. Sinced(C)�1, wemay assume by symmetry that0�A2 andP1�A1. Then
P2�A1 by induction, andP2�A

• A = A1||A2. Sinced(C)�1, P1�A1 ∧ A2, 0�A1 ∧ A2. By induction,P2�A1 ∧ A2,
that isP2�A

• A = a[A1]. ThenC ≡ a[C′] andC′[n[0]|m[0]]�A1. By inductionC′[n[0]|n[0]]�A1,
that isP2�A.

• A = ¬a[A1]. Then eitherC is not of the formn[C′], andP2�¬a[A1], orC ≡ n[C′] but
C′[n[0]|m[0]]�¬A1. Then by inductionC′[n[0]|n[0]]�¬A1, that isP2/�a[A1].

• A = a�A1. ThenC ≡ (�a)C′ andC′[n[0]|m[0]]�A1. Sincen,m are free inP , a �∈
{m, n}, son(C′) ∩ {m, n} = ∅. Then by induction,C′[n[0]|n[0]]�A1, andP2�A.

• A = ¬a�A1. Assume first thata is free inP1. Thena �= m sincem �∈ fn(A) by
hypothesis. Soa is also free inP2 andP2�A. Assume nowa is fresh forP1 (andP2).
Let C′ be such thatC ≡ (�a)C′. ThenC′[n[0]|n[0]]/�A1, otherwiseC′[n[0]|m[0]]�A1
andP�A. SoP2/�a�A1.

• A = ∀x.A1. Let takea ∈ N . ThenP1�A1{a/x}, and by inductionP2�A1{a/x} for
a �= m. Let take some freshm′. By equivariance,P1(m ↔ m′)�∀x.A1, soP1(m ↔
m′)�A1{m/x}. Applying induction onP1 andA1{m/x} for m′ instead ofm, we have
P2�A1{m/x}. HenceP�A1{a/x} for all a, that isP2�∀x.A1.

• A = ∃x.A1. Let a ∈ N be such thatP1�A1{a/x}. If a �= m, then we may apply
induction onA1{a/x}, andP2�A2{a/x}, that isP2�A. OtherwiseP1�A1{m/x}. By
Lemma6.2, P1�A1{m/x}{n/m} = A1{n/x}{n/m}, and againP1�A1{n/x}. Then by
induction,P2�A1{n/x}, that isP2�A.
This last result implies the desired property about SALint

∀: �

Proposition 6.4. There is no formula inSALint∀ that satisfies(1).

E. Lozes / Theoretical Computer Science 330 (2005) 475–499 489

Proof. Let us assume by absurd we have someA such that

P�A iff " fn(P)�1.

Then letC be the thread context of the form(�a)a[. . . a[.] . . .], andd(C) = d(A) + 1.
Let m, n be two fresh names. ThenC[n[0]|m[0]]�¬A by definition ofA, so by Lemma
6.3, C[n[0]|n[0]]�¬A. Moreover, by definition of A, C[n[0]|n[0]]�A, so the
contradiction. �

7. Minimality of SALint

In this section, we show minimality w.r.t. expressive power of SALint.

Theorem 7.1(Minimality). SALint is a minimal logic, that is all fragments ofSALint are
less expressive.

This result is the consequence of several technical lemmas for each connective. We may
distinguish two forms of contribution to the expressiveness of the logic. We will say that
a connective� is expressivewhen there is a property expressed by a formula containing�
that cannot be expressed otherwise. As a consequence, this connective must belong to any
minimal fragment. We will also say that a connective� is separativewhen there exists two
modelsP1, P2 and a formula containing� satisfied byP1 but notP2, such that all�-free
formulas equally satisfyP1 andP2. Separative connectives are expressive as well, but in a
deeper way: removing them, one reduces the separation power of the logic. For SALint, we
will now establish the following classification:
• connectives.|., n�., andn[.] are separative,
• connectives 0,∧,¬,B are expressive but not separative.
In particular, SALint is minimal in terms of expressiveness, but as far as separation power is
concerned, the minimal fragment is SALint − {B,¬,∧,0}, since for this fragment logical
equivalence coincides with intensional bisimilarity.
Notice that we do not show that SALint is theuniqueminimal fragment of SAL. This is

far from being obvious.

Example 7.1. The fragment SAL− {∧} is surprisingly quite expressive, as the formula
¬Bn.n�¬n�

(
Bm1.m1�Bm2.m2�m1[m2[0]]

)� n1� n2
shows. This formula is equivalent ton1[n2[0]] ∨ n2[n1[0]], and hence the proof of expres-
siveness of∧ (see below) must be carried out in a different way. We do not know the exact
expressiveness of this fragment, one could think that it captures any finite set of processes.
The interested reader may want to look for a formula forn1[0]∨n2[n2[0]] in this fragment.

7.1. Separative connectives

Weestablish now that the connectives.|., n�.,andn[.]are separative. Intuitively,| carries
the ability of SALint to count, sowithout this connective it will not be possible to distinguish

490 E. Lozes / Theoretical Computer Science 330 (2005) 475–499

n[0]|n[0] fromn[0]|n[0]|n[0]; in the sameway,n[.] is necessary to separaten1[n2[0]] from
n2[n1[0]], andn�. is the only way of specifying properties of hidden names, so it must be
required to distinguish(�n)n[0] and(�n)n[n[0]].

Lemma 7.2. If A ∈ SALint − {|}, thenP1 = n[0]|n[0]�A iff P2 = n[0]|n[0]|n[0]�A.
Proof. By absurd, suppose there exists a formulaA telling apartP1 fromP2, take aminimal
suchA, and reason by case analysis onA.
• The casesA = A1 ∧A2,A = ¬A1 andA = BmA1 are straightforward.
• If A = 0, then none ofP1, P2 does satisfyA.
• A = m�A1: if m = n, then none of those processes do satisfyA, otherwise the process
satisfyingA does satisfyA1, andA1 is a smaller separating formula.

• A = m[A1]: none of the two processes do satisfyA. �

Lemma 7.3. If A ∈ SALint − {n[.]}, then for any namesn1, n2, we setP1 = n1[n2[0]]
andP2 = n2[n1[0]]. ThenP1�A iff P2�A.

Proof. As above, by absurd and case analysis on a minimalA:
• The casesA = A1 ∧A2,A = ¬A1 andA = BmA1 are straightforward.
• If A = 0, then none ofP1, P2 do satisfyA.
• A = A1|A2. We may assume by symmetry thatP1�A. Also by symmetry, we may
assumeP1�A1 and0�A2. If P2/�A, thenA1 separatesP1 from P2 and is a smaller
formula: contradiction.

• A = m�A1: if m ∈ {n1, n2}, then none of the two processes do satisfyA, otherwise
the process satisfyingA also satisfiesA1, andA1 is a smaller separating formula.�

Lemma 7.4. AssumeA ∈ SALint − {n[.]},We setP1 = (�n)n[n[0]] andP2 = (�n)n[0].
ThenP1�A iff P2�A.

Proof. Again, by absurd and case analysis on a minimalA:
• The casesA = A1 ∧A2,A = ¬A1 andA = BmA1 are straightforward.
• If A = 0, then none ofP1, P2 do satisfyA.
• A = A1|A2. We may assume by symmetry thatP1�A. Also by symmetry, we may
assumeP1�A1 and0�A2. If P2/�A, thenA1 separatesP1 from P2 and is a smaller
formula: contradiction.

• A = m[A1]: none ofP1, P2 do satisfyA. �

7.2. Expressive connectives

We show that the connectives∧,¬,B,0 are expressive. Expressiveness proofs are more
subtle than in the separability cases, since the loss of expressiveness is less sensitive. The
scheme of the proof that the connective� is expressive is to find a property (cardinality,
stability by substitution, truncation, etc.) common to all set of models corresponding to
any formula without�, and a formula with� whose set of models does not have this
property.

E. Lozes / Theoretical Computer Science 330 (2005) 475–499 491

7.2.1.∧ is expressive
By duality,∧ expresses disjunction; we will show that the intensional logic may not ex-

press the disjunction present in the formulan1[n2[0]]∨n2[n1[0]]without the∧ connective.

Remark 7.2. The∧ connective is probably the connective whose expressiveness is the
most difficult to characterise. It would be even more difficult if one had to take into account
adjuncts. As shown in Example7.1, we may express the formulan1[n2[0]] ∨ n2[n1[0]] in
SAL − {∧} using adjuncts.

We noteP2(N) = {{n1, n2} : n1 �= n2}. We noteKn = {{n,m} : m �= n}. We say that
K ⊆ P2(N) is cofinite if there isN ⊆ N ,N finite, such that for alln1, n2 �∈ N , if n1 �= n2
then{n1, n2} ∈ K. We may remark thatK1,K2 are cofinite iffK1 ∩K2 is cofinite, andK
is cofinite iffK −Kn is cofinite.

Lemma 7.5. AssumeA is a formula ofSALint − {∧} such that0/�A.We set

KA
def= {{n1, n2} : n1 �= n2, n1[n2[0]]�A andn2[n1[0]]�A

}
.

Then eitherKA = ∅ or KA is cofinite.

Proof. By induction onA:
• A = Bn.A1. Then0/�A1, and for anyn1, n2 s.t.n1 �= n,n2 �= n andn1 �= n2, {n1, n2} ∈
KA1 iff {n1, n2} ∈ KA1. That isKA −Kn = KA1 −Kn.• A = 0: 0�A.

• A = ¬0: thenKA = P2.
• A = A1|A2: since0/�A, we may assume by symmetry that0/�A1. If also0/�A2, then
KA = ∅. Otherwise,KA = KA1.• A = A1||A2: since0/�A, 0/�A1 and0/�A2. thenKA = KA1 ∩KA2.• A = n[A1]: thenKA = ∅.

• A = ¬n[A1]: thenP2(N)−Kn ⊆ KA, soKA is cofinite.
• A = n�A1: then0/�A1, andKA −Kn = KA1 −Kn.• A = ¬n�A1: then0/�A1, andKA −Kn = K¬A1 −Kn. �

Lemma 7.6. Letn1, n2 be two distinct names. Then there is no formulaA ∈ SALint−{∧}
equivalent ton1[n2[0]] ∨ n2[n1[0]].
Proof. By absurd: if there is such a formulaA, then0/�A. Then by Lemma7.5"KA �= 1,
and the contradiction.�

7.2.2.¬ is expressive
¬ enriches the expressive power in several ways; here we consider the property that the

namen occurs free, expressed by¬n��, and show that negation is necessary to express
it. To prove this, we remark that for a formulaA without negation, there is a heighth such
that for allP , if P �A then so does the truncation ofP at heighth, so we may find a
contradiction by considering a process having an occurrence ofn deep enough.

492 E. Lozes / Theoretical Computer Science 330 (2005) 475–499

Definition 7.7. We define the truncation at heighth ∈ N ast0(P) = 0, and

th
(
(�ñ)(n1[P1]| . . . |nr [Pr])

) = (�ñ)(n1[th−1(P1)]| . . . |nr [th−1(Pr)]).
Note that fn(th(P)) ⊆ fn(P).

Lemma 7.8. If A is a formula without¬, s(A)�h andP�A, thenth(P)�A.
Proof. By induction onA:
• A = A1 ∧A2: then by inductionth(P)�A1, th(P)�A2, soth(P)�A1 ∧A2.
• A = Bn.A1: then there isn′ �∈ fn(P) s.t.P�A1(n ↔ n′). By induction th(P)�A1
(n↔ n′), n′ �∈ fn(th(P)), soth(P)�Bn.A1.

• A = 0: thenth(P) ≡ P ≡ 0
• A = A1|A2: thenP ≡ P1|P2 with P��A�, and by inductionth(P�)�A�, soth(P)�A.
• A = n[A1]: then P ≡ n[P1] and P1�A1. By induction, th−1(P1)�A1, and so
th(P)�A.

• A = n�A1: then P ≡ (�n)P1 with P1�A1. Then by inductionth(P1)�A1,
soth(P)�A. �

Lemma 7.9. There is no formulaA ∈ SALint − {¬} equivalent to¬n�⊥.

Proof. SupposeA exists, and takeh = s(A). We noteP ≡ m[m[. . . m[0] . . .]] and
Q ≡ m[m[. . . m[n[0]] . . .]] a nesting ofh ambientsm, for somem �= n. ThenQ�A,P /�A,
andP ≡ th(Q), which contradicts Lemma7.8. �

7.2.3.B is expressive
B is very useful to deal with an hidden name without making any hypothesis on the

free names of processes (which revelation taken alone would do). Here we consider the
property of having at least one hidden name, that is the model is congruent to(�n)P ′ with
n ∈ fn(P ′). This is expressed by the formulaBn.n�¬n��. ForN = {n1, . . . nr} we
considerPnN = n[n1[0]| . . . |nr [0]] for somen �∈ N .
Lemma 7.10. Assume some finite set of namesN and a quantifier free formulaA such that
fn(A) ⊂ N , andn �∈ N . Then

PnN�A iff (�n)P nN�A

Proof. By induction onA:
• the casesA = A1 ∧A2, andA = ¬A1, are straightforward.
• if A = 0: then none of the two processes satisfiesA.
• if A = A1|A2. Assume first thatPnN�A. By symmetry, we may assumePnN�A1 and
0�A2. So(�n)P nN�A1 by induction, and(�n)P nN�A. If we assume(�n)P nN�A, we may
do the same reasoning.

• A = m[A1]: none ofPnN, (�n)P nN does satisfyA.• A = m�A1: thenm ∈ fn(A) ⊆ N , hence none ofPnN, (�n)P
n
N does satisfyA.

E. Lozes / Theoretical Computer Science 330 (2005) 475–499 493

Lemma 7.11. There is no formulaA ∈ SALint − {B} equivalent toBn.n�n�⊥.
Proof. By absurd, letA be such a quantifier free formula, and{n1, . . . , nr} = fn(A). Then
PnN /�A, so(�n)P /�A, by Lemma7.10, and the contradiction.�

7.2.4. 0 is expressive
Here we assume we take� instead of 0 as a primitive formula. Then 0 is not expressible.

For this, we remark that for anyA without 0 and forn �∈ fn(A), 0�A iff n[0]�A.

Lemma 7.12. LetA be a formula without0,andn �∈ fn(A). Then

0�A iff n[0]�A

Proof. We reason by induction onA
• A = �,A = A1 ∧A2,A = ¬A1 : straightforward.
• A = Bm.A1 : We assume without loss of generalitym �= n. If 0�Bm.A1, then0�A1.
n[0]�A1 by induction, son[0]�Bn.A1. Conversely, ifn[0]�Bm.A1, thenn[0]�A1, so
0�A1 by induction, and then0�Bn.A1.

• if A = A1|A2. Assume first that0�A1|A2. Then0�A1 ∧ A2, hence by induction
n[0]�A1, andn[0]�A1|A2. If 0/�A1|A2, then we may assume by symmetry that0/�A1.
Assume by absurd thatn[0]�A1|A2. Thenn[0]�A1 and0�A2. By induction0�A1 and
the contradiction.

• if A = m[A1]. Thenm �= n by hypothesis, and both0/�A andn[0]/�A.
• if A = m�A1, m �= n by hypothesis. If0�A, then 0�A1, and by induction
n[0]�A1 andn[0]�A. Conversely, ifn[0]�A, thenn[0]�A1, and0�A1 so 0�A by
induction. �

Lemma 7.13. There is no formulaA ∈ SALint − {0} equivalent to0.

Proof. By absurd, ifA is such a formula ann �∈ fn(A), then by Lemma7.12, n[0]�A and
the contradiction. �

8. SL and classical logic

In this section, we give a second illustration of our minimalisation method. We consider
the assertion language presented in[4], referred as SL. SL holds spatial connectives∗ and
−∗ similar to | and� in SAL, with a light but significant difference for∗: the composi-
tion requires a compatibility conditionh⊥h′ that is not always satisfied; in particular, it
is not possible to compose two copies of the same structure (h ∗ h). As a consequence,
the expressiveness of∗ is quite restricted and essentially express the separation of re-
sources, which equality already expresses. For this reason, we can establish the elimination
of both∗ and−∗. We define a classical fragment CL and prove it to be as expressive as SL
(Fig. 5).

494 E. Lozes / Theoretical Computer Science 330 (2005) 475–499

e ::= x|nil|−
P ::= (x 	→ e1, e2)|x = y|emp|⊥|P⇒P

|P ∗ P |P −∗P

Fig. 5. Separation logic (SL).

8.1. Definitions

We assume a countable set Var of variables, ranged over withx, y, and a set Loc of
locations such that Loc⊆ N. Expressions and assertions of SL are defined as in Fig. 5. We
write v(P) for the set of variables occurring inP . Assertions express properties of memory
states, modelled as a pair consisting of a store and a heap, as follows:

Val
def= Loc({nil},

Store
def= Var→ Val,

Heap
def= Loc⇀fin Val,

State
def= Stack× Heap,

where⇀fin stands for a partial functionwith finite domain.We range over storeswiths, over
heaps withh, and over states with�.We note�1⊥�2 for s1 = s2 anddom(h1)∩dom(h2) =
∅, and, when this holds,�1∗�2 is the state defined by keeping the same store and by setting
h1 ∗ h2(x) = h1(x) or h2(x).
For a valuev, we notev�� e if eithere = −, or v = e = nil, or e = x andv = s(x). We

then note(v1, v2)��(e1, e2) if v1��e1 andv2��e2. The condition for a state� to match an
assertionP , written��P , is inductively defined as:

��⊥ never
��(x 	→ e1, e2) iff dom(h) = {s(x)}and

hs(x)��(e1, e2)

��x = ey iff s(x) = s(y)

��emp iff dom(h) = ∅
��P1⇒P2 iff ��P1implies��P2
��P1 ∗ P2 iff there exist�1and�2such that

� = �1 ∗ �2;�1�P1and�2�P2
��P1−∗P2 iff for all�1such that�⊥�1,

�1�P1implies� ∗ �1�P2.

We may define as usual the connectives∧,∨,�,¬,⇔ in the obvious way. We also
introduce twomonotonic1 assertions (cf. Fig.6). Any assertion of this form, or of the form
x = y will be said to beatomic. In the remainder, we actually take these as primitive, which
ensure the encoding of(x 	→ e1, e2) andemp assertions through boolean combinations.2

1Or intuitionistic, using the terminology of Reynolds[18], that is assertionsP such that��P implies�′�P
for all �′��.
2 On the contrary, it is not possible to encode(x ↪→ e1, e2) andsize�n from (x 	→ e1, e2) andemp using

only boolean combinations; this point is also discussed in conclusion.

E. Lozes / Theoretical Computer Science 330 (2005) 475–499 495

monotonic assertion encoding in SL semantic
(x ↪→ e1, e2) (x 	→ e1, e2) ∗ � s(x) ∈ dom(h)andhs(x)�� (e1, e2)

size�n ¬emp ∗ . . . ∗ ¬emp︸ ︷︷ ︸
n times

" dom(h)�n

Fig. 6. Monotonic assertions from SL.

P ::= P⇒P |⊥|(x ↪→ e1, e2)|x = y|size�n .

Fig. 7. Classical fragment (CL) of SL.

We callclassical logic(CL) the fragment of SL defined by the grammar of Fig.7. We will
notew(P) for the maximaln such thatsize�n is a subassertion ofP , andv(P) for the set
of variables ofP .
Our main result is the following:

Theorem 8.1. CL is as expressive asSL, i.e. for all assertionP ofSL, there exists a classical
assertionP ′ of CL such that�P ⇔ P ′.

At the same time, we also prove the following result: the monotonic (indeed atomic)
fragment is as separative as the whole language, that is if two states satisfy the same
monotonic assertions, then they satisfy the same assertions.

8.2. Proof of the translation

Our proof proceeds in the same way as for SAL: we define an intensional equivalence
and prove that it has the precompactness and characteristic formula properties.
LetX be a finite set of variables, andw an integer. We say that two states� and�′ are

intensionally equivalent forX,w, written� ≈X,w �′, if for all classical assertionP with
v(P) ⊆ X andw(P)�w, ��P iff �′�P .

Remarks. 1. This definition amounts to say that� and�′ satisfy the same atomic classical
assertionsP with v(P) ⊆ X andw(P)�w.
2. Let us writew(�) = "dom(h). Given three natural numbersa, b,w, we writea =w b

if eithera = b or a, b�w. Then for any�,�′ such that� ≈X,w �′, w(�) =w w(�′).
3. Equality assertionsx = y only depend on the store. We notes =X s′ if these stores

satisfy the same equality assertions with variables inX. Then for any�,�′ such that� ≈X,w
�′, s =X s′.
4. LetV be some set of values. We notev =V v′ if either v = v′ or {v, v′} ∩ V = ∅,

and (v1, v2) =V (v′1, v′2) if v1 =V v′1 and v2 =V v′2. Then for anys, h, h′ such that
(s, h) ≈X,w (s, h′), dom(h) ∩ s(X) = dom(h′) ∩ s(X) due to assertionsx ↪→ −,−, and
for all l ∈ s(X) ∩ dom(h), h(l) =

s(X)∪{nil} h
′(l) due to assertionsx ↪→ e1, e2.

496 E. Lozes / Theoretical Computer Science 330 (2005) 475–499

Let me say more about store equivalence. Consider a stores0 and a state� = (s, h) such
that s0 =X s. Then we may define a new stateshifts0,X� of stores0 and heaph′ defined
such that
• dom(h) = s0

(
s−1(dom(h)) ∩ X) ∪ B with B some arbitrary set of locations such that

"dom(h) = "dom(h′) andB ∩ s0(X) = ∅.
• For all l ∈ dom(h′), if l = s0(x) andhs(x) = (s(y), s(z)) for somex, y, z ∈ X, h′s0(x)
is set to be(s0(y), s0(z)), otherwiseh(l) is arbitrarily defined out ofs(X).

This is easy to check that� andshifts0,X� satisfy the same atomic assertions with variables
in X. Moreover, this transformation is compositional, in the sense thatshifts0,X(� ∗ �′) =
shifts0,X� ∗ shifts0,X�′. This transformation is not completely deterministic, but assuming
that every choice of a “fresh” value is made different at each time and at each call toshift,X,
�⊥	 will imply shifts0,X�⊥shifts0,X	. We actually have the following stronger result:

Lemma 8.2. For all assertionsP ∈ SLwith v(P) ⊆ X, ��P iff shifts0,X��P .

The proof is straightforward by induction on the assertionP considering previous
remarks.
We now recall the equivalence relation defined by Yang[15] for the decidability proof,

and use it to derive the correction of≈X,w.

Definition 8.3 (∼s,n,X Hongseok Yang [15]). Given a stacks, a natural numbern and a set
X of variables,∼s,n,X is the relation between heaps such thath ∼s,n,X h′ iff
1. s(X) ∩ dom(h) = s(X) ∩ dom(h′);
2. for all l ∈ s(X) ∩ dom(h), h(l) =s(X) h′(l);
3. "

(
dom(h)− s(X)) =n "(dom(h′)− s(X)).

The first step of the correction proof is to factorize≈X,w in ∼s,n,X.

Lemma 8.4. For anyX,w, n such thatn + "X�w, for any�,�′, s, h, h′ such that� =
(s, h), � ≈X,w �′, andshifts,X�′ = (s, h′), it holds thath ∼s,n,X h′.
Proof. By Lemma8.2, (s, h) ≈X,w (s, h′). Then conditions 1 and 2 in Definition8.3holds
by Remark 4, so the proof follows from the verification of the condition 3 on the heap size.
Let us assume first that"

(
dom(h) − s(X)) < n; then"dom(h) = k < n + "X�w, so

��P = size�k ∧ ¬size�k + 1, andw(P) = k + 1�w. By definition of≈X,w, �′�P ,
so "dom(h′) = k = "dom(h). Moreover,s(X) ∩ dom(h) = s(X) ∩ dom(h′), so finally
"
(
dom(h)− s(X)) = "

(
dom(h′)− s(X)).

Let us assume now that"
(
dom(h) − s(X))�n; and setk = min("dom(h),w), so that

��size�k, and by definition of≈X,w, �′�size�k. Moreover,dom(h)�n+ "(dom(h)∩
s(X)

)
, andw�n+ "X�n+ "(dom(h)∩ s(X)), so finallyk�n+ "(dom(h)∩ s(X)). This

givesdom(h′)�k�n+ "(dom(h′) ∩ s(X)) sinces(X) ∩ dom(h) = s(X) ∩ dom(h′), i.e.
"
(
dom(h′)− s(X))�n.
"dom(h)�k�n + "

(
dom(h) ∩ s(X)), wherek = min("dom(h),w). So��size�k,

and by definition of ≈X,w, �′�size�k, so that finally "dom(h′)�n +
"
(
dom(h′) ∩ s(X)). �

E. Lozes / Theoretical Computer Science 330 (2005) 475–499 497

We now recall the correction result obtained by Yang and derive our correction from it.
We first recall the notion of formula’s size used byYang:

|(e 	→ e1, e2)| = 1, |e1 = e2| = 0, |emp| = 1,
|P⇒Q| = max(|P |, |Q|), |⊥| = 0,
|P ∗Q| = |P | + |Q|, |P −∗Q| = |Q|.

Lemma 8.5. Takes, h, h′, n,X with h ∼s,n,X h′. Then for all assertionP ∈ SL such that
v(P) ⊆ X and|P |�n, (s, h)�P iff (s, h′)�P .

The proof of this result is detailed in[15].

Corollary 8.6 (Correction). Take�,�′, w,X with � ≈X,w �′. Then for all assertionP ∈
SL such thatv(P) ⊆ X and|P | + "X�w, ��P iff �′�P .

Proof. By Lemma8.4, h ≈s,n,X h′ with � = (s, h), shifts,X�′ = (s, h′), andn = w− "X.
Then��P impliesshifts,X�′�P by Lemma8.5, which implies�′�P by Lemma8.2. �

Wemay now end the proof establishing the properties of precompactness and character-
istic formula for≈X,w.
We write
X,w for the set of atomic assertionsP such thatv(P) ⊆ X andw(P)�w.

ForX finite,
X,w is finite as well. This has two important consequences:

Proposition 8.7(Precompactness). For all w and all finiteX,≈X,w has only finitely many
classes.

Proof. A class is represented by a subset
 ⊆
X,w of atomic assertions that are the ones
satisfied by any state of the class. So there are less than 2"
X,w distinct classes. �

Proposition 8.8(Characteristic formula). For all states�, for all X,w, there is a classical
assertionF (X,w)� such that

∀�′.�′�F (X,w)� iff � ≈X,w �′ .

Proof. Take∧
��P,P∈
X,w

P ∧ ∧
�/�P,P∈
X,w

¬P . �

We may now establish Theorem8.1noticing that any assertionP of SL is equivalent to
the classical assertion:∨

C∈State/≈X,w ,C�P
F
(X,n)
C ,

where finiteness of this disjunction is ensured by Proposition8.7.

498 E. Lozes / Theoretical Computer Science 330 (2005) 475–499

9. Conclusion

We have established the adjuncts elimination property for SAL, a logic for trees with
binders including the fresh quantifierB. This involves putting a formula in prenex form and
then doing the transformation on the quantifier-free formula. The adjunct-free fragment
SALint then turns out to be aminimal logic.
We established the absence of adjunct elimination for the same logic whereB is replaced

by the usual∀ quantifier, whichever adjunct is considered. This result, together with the
difference w.r.t. decidability of model-checking on pure trees, illustrates the significant gap
existing between the two forms of quantification.
Finally, we defined a classical fragment of the separation logic (SL), excluding both

∗ and−∗, and proved it to be as expressive as the full SL. Our approach shows also that
all the separative power of the logic lies in the monotonic fragment. When defining our
classical fragment, we had to move from the assertionsx 	→ e1, e2 andemp to x ↪→ e1, e2
andsize�n in order to capture the∗ connective; without that, it is probably possible to
eliminate only the adjunct. Note that the assertion(x 	→ nil,nil)−∗falsewould be translated
in CL asx ↪→−,−, which underlines the importance of the special expression−.
In relation to our study, some observations can bemade regarding the difference between

theB and the∀/∃ quantification. The existence of prenex forms, the decidability of the
model-checking on pure trees, the adjuncts elimination, are properties verified by the logic
with the fresh quantifier, whereas they fail for the universal quantifier.
Yang proposed a clever counterexample to the elimination of−∗ in a SL with quantifiers;

this example seems of deeper meaning than the one presented in Section6, but a better
understanding of its implications is still lacking. In the same way, we do not know whether
∗ elimination remains true for the assertion language without−∗ and with quantifiers.
The results we obtain for SAL and SL can be adapted to several other sub-structural

logics. However, for the logics including the time modality� [8,1], adjuncts improve the
expressiveness of the logic supporting an encoding of action modalities[19,13]. One could
think to take them as primitives in the same spirit as for SL, and look for the adjunct
elimination. However, even in the case of very elementary concurrent languages, this project
is not realisable[2].

Acknowledgements

This work has been supported by the European FET—Global Computing project
PROFUNDIS, and by the Action IncitativeMéthodes Formelles pour la Mobilité-CNRS.
I would like to thank M.J. Gabbay for enlightening discussions about Nominal Sets

theory. The anonymous referees, G. Ghelli, and H.Yang helped me significantly to improve
the previous versions of this presentation. I also want to thank D. Sangiorgi, L. Monteiro,
L. Caires, and D. Hirschkoff for their advice all along this work.

References

[1] L. Caires, L. Cardelli, A spatial logic for concurrency (Part I), in: Proc. TACS’01, Lecture Notes in Computer
Science, Springer, Berlin, 2001.

E. Lozes / Theoretical Computer Science 330 (2005) 475–499 499

[2] L. Caires, E. Lozes, Elimination of quantifiers and undecidability in spatial logics for concurrency, Proc.
CONCUR’04, London, September 2004, pp. 240–257.

[3] C. Calcagno, L. Cardelli, A. Gordon, Deciding validity in a spatial logic for trees, in: Proc. TLDI’03, ACM
Press, NewYork, 2003, pp. 62–73.

[4] C. Calcagno, H.Yang, P. O’Hearn, Computability and complexity results for a spatial assertion language for
data structures, Proc. FSTTCS’01, Lecture Notes in Computer Science, vol. 2245, Springer, Berlin, 2001.

[5] L. Cardelli, P. Gardner, G. Ghelli, Manipulating trees with hidden labels, Foundations of Software Science
and Computational Structures, Proc. Sixth Int. Conf. FOSSACS, Lecture Notes in Computer Science, vol.
2620, Springer, Berlin, 2003, pp. 216–232.

[6] L. Cardelli, G. Ghelli, A query language based on the ambient logic, Proc. ESOP’01, Lecture Notes in
Computer Science, vol. 2028, Springer, Berlin, 2001, pp. 1–22.

[7] L. Cardelli, A. Gordon, Mobile Ambients, in: Proc. of FOSSACS’98, pp. 140–155.
[8] L. Cardelli,A. Gordon,Anytime anywheremodal logics for mobile ambients, in: Proc. POPL’00,ACMPress,

NewYork, 2000, pp. 365–377.
[9] L. Cardelli, A. Gordon, Logical properties of name restriction, Proc. TLCA’01, Lecture Notes in Computer

Science, vol. 2044, Springer, Berlin, 2001.
[10] W. Charatonik, J.-M. Talbot, The decidability of model checking mobile ambients, in: Proc. CSL’01 Lecture

Notes in Computer Science, Springer, Berlin, 2001.
[11] M.J. Gabbay, A.M. Pitts, A new approach to abstract syntax involving binders, in: Proc. 14th Annu. Symp.

on Logic in Computer Science, IEEE Computer Society Press, Washington, 1999, pp. 214–224.
[12] G. Ghelli, G. Conforti, Decidability of freshness, undecidability of revelation, in: Proc. FOSSACS’04, March

2004.
[13] D. Hirschkoff, E. Lozes, D. Sangiorgi, Separability expressiveness and decidability in the ambients logic, in:

Proc. 17th IEEE Symp. on Logic in Computer Science, IEEE Computer Society, Silver Spring, MD, 2002,
pp. 423–432.

[14] C.A.R. Hoare, An axiomatic basis for computer programming, Commun. ACM 12 (10) (1969) 576–580.
[15] Hongseok Yang, Local reasoning for stateful programs, Ph.D. Thesis, University of Illinois at Urbana

Champaign, 2001.
[16] D. Lugiez, S. Dal-Zilio, C. Meyssonnier, A logic you can count on, in: Proc. POPL’04, 2004.
[17] J. Reynolds, Intuitionistic reasoning about shared mutable data structure, 2000.
[18] J. Reynolds, Separation logic: a logic for shared mutable data structures—invited paper, in: Proc. LICS’02,

2002.
[19] D. Sangiorgi, Extensionality and intensionality of the ambient logic, in: Proc. 28th POPL, ACM Press,

NewYork, 2001, pp. 4–17.

	Elimination of spatial connectives in staticspatial logics
	Introduction
	Background
	Intensional bisimilarity
	Definition
	Correction
	Signature functions

	Adjuncts elimination on quantifier-free formulas
	Adjuncts elimination and fresh quantifier
	Adjuncts elimination and classical quantifiers
	Minimality of SALint
	Separative connectives
	Expressive connectives
	 is expressive
	 is expressive
	66666666 is expressive
	0 is expressive

	SL and classical logic
	Definitions
	Proof of the translation

	Conclusion
	Acknowledgements
	References

