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Abstract

The recent interest for specification on resources yields so-caibéhl logics that is specification
languages offering new forms of reasoning: the local reasoning through the separation of the resource
space into two disjoint subspaces, and the contextual reasoning through hypothetical extension of the
resource space.

We consider two resource models and their related logics:

e The static ambient model, proposed as an abstraction of semistructured data (Proc. ESOP'01,
Lecture Notes in Computer Science, vol. 2028, Springer, Berlin, 2001, pp. 1-22 (invited paper))
with the static ambient logic (SAL) that was proposed as a request language, both obtained by
restricting the mobile ambient calculus (Proc. FOSSACS'98, Lecture Notes in Computer Science,
vol. 1378, Springer, Berlin, 1998, pp. 140-155) and logic (Proc. POPL'00, ACM Press, New York,
2000, pp. 365—377) to their purely static aspects.

e The memory model and the assertion language of separation logic, both defined in Reynolds (Proc.
LICS'02, 2002) for the purpose of the axiomatic semantic of imperative programs manipulating
pointers.

We raise the questions of the expressiveness and the minimality of these logics. Our main contri-
bution is a minimalisation technique we may apply for these two logics. We moreover show some
restrictions of this technique for the extension SAkith universal quantification, and we establish
the minimality of the adjunct-free fragment (SAb.
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1. Introduction

The mobile ambients calculus (MAY] is a proposal for a new paradigm in the field of
concurrency models. Its originality is to set as data the notidieadtion, and as notion
of computation the reconfiguration of the hierarchy of locations. The calculus has a spatial
part expressing the topology of locations as a labelled unordered tree with binders, and a
dynamic part describing the evolution of this topology. The basic connectives for the spatial
part are 0, defining the empty tred,P], defining the tree rooted atwith subtreeP, P|Q
for the tree consisting of the two subtreRsand Q in parallel, andvn) P for the treeP in
which the label (or name) has been hidden. Leaving out from MA all capabilities, we get
rid of the dynamics of the calculus, working with what we caiitic ambient$SA).

Type systems are commonly used to express basic requirements on programs. In the case
of SA, the static ambient logic (SALR] provides a very flexible descriptive framework.
Seeing SAL as a request language, one may ask a strugtirenatch some specification
A, written

PEA.

The SAL approach is however much more intensional than it is the case for standard type
systems. Indeed, the whole spatial structure of the calculus is reflected in the logic. For
instance, the formula[.A] is satisfied by structures of the forniP] with P = A. Finally,

AL includesadjunct connectivefor every spatial construct. For instance, thgrantee
operator

Ar>B

specifies that a process is able to satiSfwhen it is extended by any process satisfying

A. SA, associated to SAL, has appeared to be an interesting modelfostructured data

[6] such as XML documents, due to the underlying tree structure. Data are modelled by
unordered labelled trees, where the binders may represent p¢&jtensd the logic is used

as the basis for a language for queries involving such data. For instance, the process of
Fig. 1 represents a database containing the two authors Cardelli and Gordon with one copy
of their paper about ambients stored at Cardelli's and linked to Gordon’s. Query

Wptr.ptr®(Cardelli[ T]|T)

asks whether the database contains some author named Cardelli.

Separation logic (SLUL8] is a proposal for a new assertion language in Hoare’s approach
of imperative programs verification. Indeed, imperative programming languages manipulat-
ing pointers allow one to change the value a variable refers to without explicitly mentioning
this variable. Such multiple accesses to data make the axiomatic senjasticé these
programs difficult to handle using classical logic as an assertion langLapeL nicely
handles the subtleties of pointer manipulation, providing two new connectives: a separa-
tive conjunctionP x Q asserting thaP and Q hold in separate parts of the memory, and
a separating implicatio® —«Q allowing one to introduce ‘spatial hypotheses’ about the
memory. For instance, the judgement

{x > =) * ((x > ) =) }x := e|¢}
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Cardell ‘ ‘ Gordon
Ambients ‘ ‘ Ambients

Fig. 1. (vptr)(CardellilAmbients|ptr(text[0]]]]1|Gordon[ Ambients| ptr[0]]]).

is the transposition of the classical backward reasofipig/x1}x := e{¢} in Hoare
logic.

Both specification languages rely on classical logic reasoning extended by two non-
standard operations: splitting of the resource space and separated assgst)oms éach
subspace, and extension of the resource space assuming some hyppthegisihese
two aspects are the main novelties of the so-cadledtial logics The interest of these
connectives has been illustrated in several ways. For mobile ambients, it is known that the
connective> coupled witho can express the action modalitj{d®], persistence, and other
strong propertiefl3]. For SL, the proof of an in-place reversal of a list turns out to require
complex invariants in the standard classical logic, whereas it has a simple formulation in
SL usingx, as one of the many examples presented 1.

Although spatial connectives evidently bring a real ease to the formulation of complex
properties of the structures, their actual contribution to the expressiveness of the logic is not
so clear. For instance, the formula— nil x y < nil expresses that bothandy points to
nil, but from distinct locations, which can also be expressedasnil Ay < nilAx # y
without requirings; the formular[0]t>n[0] tells that after extension of the structure adding
n[0], one exactly hag[0], which means that the structure was initially empty, hence this
formulais equivalent to 0. On the other hand, it has been established for the mobile ambient
case, i.e. in a dynamic setting, that guarantee brings some extra expressivélgwer

This paper studies the contribution of spatial connectives in the expressiveness of static
spatial logics. This question is important since spatial connectives introduce a lot of com-
plication from the model-checking point of view. Indeed, separated conjunctiamnsl |
forces to try all the splitting of the structure, which may be costly for wide structures. Even
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worse, the spatial implications and> considerably complicate the model-checking by
introducing the need to seek a representative testin@ gt when it is not an undecidable
problem[4,12]. The expressiveness of spatial connectives is also important from theoretical
issues. For instance, the proof of an in-place reversal of a list is derivable, through heavy
formulations, in classical Hoare logic as well, and the question is open whether SL can
prove programs on which classical reasoning would fail.

Several kinds of quantification can be taken under consideration for our spatial logics:

e Absence of quantification, as it is the case for SL (in this work).

e Classical quantificationv( 3), which defines the logic SAL

e Fresh quantificatiofi1] (Un..A), which is the way SAL handles name generation. This
guantification is related ta conversion of bound names. It is complementary to the
spatial connectiva ® A that forces the process to reveal a hidden name by calling it

We establish that the contribution of spatial connectives depends on the forms of quantifi-

cation supported by the logic.

Indeed, in quantifier-free logics, adjuncts do not increase the expressiveness of the logic
(Theorem4.4). Neither does the separated conjunctignfér SL, since it only expresses
separation, so that SL assertions can be translated into a classical logic (TiRefréma
different way, brings extra expressiveness to SAL, namely the power of counting, so it can-
not be eliminated, and actually the adjunct-free fragment of SAL is minimal (Thebrim
The proof of these elimination results goes through the intensive use of intensional partial
equivalences on models; such equivalences are common for the study of the expressiveness
of alogic (se¢13,19]for spatial logic cases), but were also exploited for decidability issues
in [3,4]. Two properties justify the encoding: a property we padicompactnessvhich ex-
presses finiteness of behaviours, and the existendeapécteristic formulagor the classes
of partial intensional equivalence.

When classical quantifiers are taken under consideration, more complex properties can
be expressed through adjuncts, and they cannot be taken out freely (Th&djefrhis
difference of nature of the logic was already observed from the decidability §8p&a0]
which implied the absence of an effective adjuncts elimination. Our result shows that the
adjuncts elimination is impossible even theoretically.

Finally, we establish the quite surprising result that adjuncts elimination is still possi-
ble in presence of fresh quantification (Theorgrg), essentially due to prenex forms for
U (Proposition5.2). This result underlines the fundamental difference between classical
guantification and fresh quantification.

Related workApart from[16], thisis, to our knowledge, the first results studying precisely
the expressiveness and minimality of spatial logics. Other works about expressiveness only
give some hints. A first result about the separation power of AL is presenfé@]irOther
examples of expressive formulas for AL are showfiiB], such as formulas for persistence
and finiteness.

A compilation result has been derived for a spatial logic for trees without quantification
and private namefd. 6]. In that work, the target logic includes some new features such as
Presburger arithmetic, and the source logic includes a form of Kleene star.

The setting in which we obtain our encoding is rather different in the dynamic case (see
[13]). There, the presence of adjuncts considerably increases the expressive power of the
logic. For instance; allows one to construct formulas to characterise processes of the form
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openn.P, and, using the @ connective, we may define a formula to capture processes of
the formoutn.P.

The use of a partial intensional equivalence and the notion of precompactness is original.
Intensional bisimilarity plays an important role in the characterisation of the separation
power of the logic[19]. Our proof suggests that it is also a powerful and meaningful
concept for the study of expressiveness.

The presence of the- connective in the logic is crucial with respect to decidability
issues. The undecidability of the model-checking of SAL with classical quantification has
been established [10]. Quite unexpected decidability results for spatial logics witand
without quantification were then established3hand[4]. These works are closely related
to the present study; roughly, the decidability result of Calcagno&]aklies on finiteness
of processeswhereas our encoding exploits finitenesslb$ervationsFor this reason, our
approach is more general and cuts out decidability issues. Actually, the undecidability of
the model-checking problem for SAL has been recently establigt#jd This last work
studies many variations around SAL, derives decidability resultsiwaihdl1, and presents
a prenex form result similar to ours.

Outline We introduce SA, SAL and its adjunct-free fragm€BAL;,) in Section2. We
prove adjunct elimination for quantifier-free formulas in Sectlpbased on the notion of
intensional bisimilarity, discussed in Sect@fThe general result for SAL is then established
in Sections, based on prenex forms. We discuss the adjunct elimination for A&ection
6, and show minimality of SAlg; in Section7; in Sectior8, we introduce SL and a classical
fragment of it (CL), which we prove to be as expressive as SL. SeBtgives concluding
remarks.

2. Background

In this section, we define the model of static ambients (SA) and its logic SAL. We also
define the intensional fragme¢(BALin;) of SA.

In all what follows, we assume an infinite s&t of names, ranged over by, m. Tree
terms are defined by the following grammar:

P == P|P|n[P]|(vn)P|O.

The set friiP) c N of free names ofP is defined by saying thatis the only binder on
trees. We calktatic ambientdree terms quotiented by the smallest congrueadealled
structural congruencesatisfying the axioms of Fi@. Formulas, ranged over with, 5, . . .,
are defined in Fig3 . These formulas forrthe static ambient logiand we calintensional
fragmentthe subset of the formulas not using the connective®, ando (adjuncts). We
note them, respectively, SAL and SAL

We will say thatA is quantifier-freeif .4 does not contain anl quantification. The set
of free names of a formulal, written fn(A4) is the set of names appearing.ihthat are
not bound by 3 quantification. A(n < n’) is the formulaA in which names: andn’ are
swapped.
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P|0O=P (vn)0=0
(PIQ)IR = PI(QIR)  (vmym[P]=ml(n)P] (n # m)
Plo=oiP  wPlo=0m(PIO) (1 ¢Mn(Q)

Fig. 2. Structural congruence on SA.

AlA
A A

n[A]
A@n

A = A/\A‘—'A‘I/]n.A‘O n®.A (intensional fragment)

Aon (adjuncts

Fig. 3. SAL and the intensional fragment Sl

Definition 2.1 (Satisfactiof. We define the relation ¢ (SA x SAL) by induction on the
formula as follows:

o PFA1L A Ao if PFAL andPEAy;

PE=Aif PHA,;

PEUn. Aif Vo' e N — (in(P) Ufn(A)), PEA(n < n');
PEA;| Ay if there isPyi, P> s.t.P = P1|P, andPiFA; fori =1, 2;
PEOif P =0;

PEn[A] if there isP’ such thatP = n[P'] and P'EA;

PEn®A if there isP’ such thatP = (vn) P’ and P’ A;
PEA> A5 if for all Q such thatQFA1, P|OFA;

PEA@n if n[P]EA;

PEAQnif (vn) PEA.

We noteAH+-B if for all P € SA, PEA iff PEB. A context is a formula containing a
hole if C is a contextC[.A] stands for the formula obtained by replacing the hole with
inC.

Lemma 2.2. For all A, B, and all contexC, if A4FB, thenC[A]HFC[B].

Remark 2.1.

e The formulal, that no process satisfies, can be defined as-0. As e.g. in[8], other
derived connectors include, andw: P satisfiesdw B iff there existsQ satisfying.4
such thatP | Q satisfiess.

o If PEFAandP = Q, thenQF.A. Moreover, is equivariant that isPFA iff P(n <
n)EA(n <> n’) foranyn, n'.

e ForanyP,thereisacharacteristic formula (fa) Ap, using the same tree representation,
such that for allQ, QFAp iff Q = P. In particular, two static ambients are logically
equivalent if and only if they are structurally congruent.

3. Intensional bisimilarity

In this section and the following, we will give a first illustration of our minimalisation
method on the case of SAL and SQL This minimalisation transforms a formula from a
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logic to the other; however, it does not proceed as a dictionary, that is we do not show that
the connectives from the original logic are some syntactic sugar for some fixed construction
in the target logic. The translation actually goes through the exploration of all behaviours
a process may have with respect to a formula. Roughly, we translate a fadrnta an
exhaustive disjunction

A~ \V/ Fc
CeBehaviours(A)

of all the behaviours that lead to the acceptancd of

The bottleneck of this embedding is to define what are these behaviours. By behaviours,
we refer to equivalence classes of some observational equivalence. In this section, we will
hence introduce a notion of partial observation over trees corresponding to logical testing.
This model equivalence can be seen as the adagaetkfor this logic (in the sense of
Ehrenfreucht—Fraissé), or as the stattensional bisimilarity{19]. Observations are taken
from the logic to which we want to reduce to, in this setting S@LEach connective defines
a simulation rule in a very natural way. Then we show that this observational equivalence
is enough to ensure model equivalence with respect to the logic we want to minimalize,
that is SAL (Propositior8.4) in this setting. We then give a compact representation of the
observational equivalence classes as some symbolic sets vgigoallures

We will assume in the remainder some fixed Set \.

3.1. Definition

We now introduce the intensional bisimilarity. Intuitively; y equates processes that
may not be distinguished by logical tests involving at mosteps where the names used
for the tests are picked iN.

Definition 3.1 (Intensional bisimilarity. We define the family~; y);cn Of Symmetric

relations over SA by induction oh :~q y d='3fSA x SA, and for anyi >1, ~; y is the

greatest relation such that#f ~; y Q, then the following conditions hold:

e if P =0thenQ =0;

e forall P1, Po,if P = P1|P2thenthereigd, Q2 suchthat) = Q1| Qo with P, ~;_1 n
Q. e=1,2;

e foralln € N and for allP’, if P = n[P’], then there ig)’ such thatQ = n[Q’] and
P ~i_1n O

e foralln € N and forallP’, if P = (vn) P/, then there i)’ such thatQ = (vn)Q’ and
P~y Q.

Lemma 3.2. For all i, ~; y is an equivalence relation

We shall write SA~, , for the quotient of SA induced hy; y: it will be ranged over by
equivalence classes calléd Cq, C».

We may observe that the bisimilarities define a stratification of observations on terms,
namely~; y» C>; n for i<i” and N € N’. This may be understood in a topological
setting. Given a fixedV, we consider the ultrametric distance over models defined by
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d(P, Q) = 27" if i is the smallest natural for whickR #; y Q, andd(P, Q) = 0 if
P~y n QWherex~, y=();cn ~in. We call it theN-topology. It somehow captures the
granularity of the logical observations with respect to their cost.

3.2. Correction

The key step in proving correction of the intensional bisimilarities with respect to the
logic is their congruence properties for the connectives admitting an adjunct.

Lemma 3.3.If P ~; v Q, then

e forall R, PR ~; y OI|R;

e foralln e N, n[P] ~; v n[Q];

e foralln e N, (vn)P ~; v (vn)Q.

Proof. By inductiononi. [

Note that the last point cannot be improved: considet {n}, P = m1[0], Q = m2[0].
ThenP >~ y Q,but(vm1) P %2y (vn1) Q. Forthisreasory; y is notapure congruence.
We notes (A) the size ofA, defined as the number of its connectives.

Proposition 3.4(Correctior). For all P, Q,i such thatP ~; y Q, for all quantifier free
formula.A such thats(A) <i andfn(A) € N,

PEA  iff QA

Proof. By induction on.A. For the adjuncts, apply the congruence properties of Lemma
3.3 and for the other connectives use the definition-pfy. [

3.3. Signature functions

Definition 3.5 (Signaturg. Fori >1, we set

e zV(P)=0if P = 0, otherwise-0;

o pY(P)={(C1,C2) € (SA/~,_, y)?: P = P1|P2andP; € Ci};

e alV(P) = [n,C]ifthereisP’ st.P = n[P'l,n € NandP € C, C € SA/~,_, .
otherwiseniN(P) = noobs, wherenoobs is a special constant;

o rN(P)={(n,C) e N xSA/~,_,, :IP'.P = (vn)P'andP’ € C}.

We callsignature ofP at (i, N) the fourtupley? (P) = [z (P), pY (P), a¥ (P),rN (P)].

The following lemma says that the signature actually collects all the information that
may be obtained from the bisimilarity tests.

Lemma 3.6. Assumé >1.ThenP ~; y Q iff xV(P) = ;N (0).
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4. Adjuncts elimination on quantifier-free formulas

In this section, we show that the quantifier free formulas of SAL have equivalent formulas
in SALjn¢. This result is then extended to all formulas of SAL in the next section.
In all what follows, we will assume is afinite subset ofV; it is intended to bound the
free names of the considered formulas. The encoding result is based on two key properties:
e Precompactness of thé-topology. In other words, whei N are fixed, only a finite
number of behaviours may be observed.
e Existence of intensional characteristic formulas for the classes gt
The first property basically says the following: if we fix some formilathen we may
finitely list all the behaviours a proceg®smay have with respect td. Then we may tag the
ones corresponding to an acceptance and the ones corresponding to a rejection, and from
the second property, we may express this by some formula in,8AL
Here is the proof with more details.

Lemma 4.1. The codomain ole is finite

Proof. We reason by induction an First notice that the codomain fo is:

codomy = {0, =0} x (SA/~, 1 y)° x ({noobs} + N x SA/~, ;)
xP(N x SA/~_1 )

hencecodomva is finite iff SA,~,_, , is finite too (here we use that s finite). Fori =1,
SA/~ y = {SA}, hencexé\’ is finite, and so i$0domxl’\'. Fori >2, we have by induction
codomxf‘ﬁl finite. By Lemma3.6, there is an injection of SA,_, , into codomxf‘ﬂl, SO
SA/~, , , is finite, and so igodomyY. O

Here is an immediate consequence of Lendiria
Proposition 4.2 (Precompactne3s For all i, the number of classes of; y is finite

These results roughly say that only a finite amount of information is needed to capture
a given bisimilarity class. The next result makes it more precise: this information may be
collected in a single formula of SAk.

Proposition 4.3(Characteristic formulas For anyi € N and for any proces®, there is
a formuIaA’};N € SALjnt such that

VO o AN & ~in P.

Proof. By induction oni. Fori = 0, we may taked;" = T. Then assume> 1, and we
have formulas4’P_1'N for all P. This obviously gives a characteristic formu&%‘l’N for
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any classC of SA,~, , . Let us consider some fixell. We set

A, = 0ifzV (P) = 0, otherwise-0;
—1,N i—1,N i—1,N i—1LN,
'AP = /\ 'AZC1 |‘AlCz AT \/ Alcl |AICZ ’
(C1,C2)ep (P) (C1.C)¢pN (P)
A —n[T1if a)¥ (P) = noobs,
A{/l = I‘IEN'
n[ AN if alY (P) = [, CI;
A= A a®ATMY A p@AThY,
[n.Cler} (P) [n.ClgrN (P)
AN = A A Ay A A A A,

where the finiteness of the conjunctions and disjunctions is ensured by Lérima
ThenQrFALY iff zV(Q) = xV (P), hence the result. (]

The precompactness property says that if we bound the granularity of the observations,
only finitely many distinct situations may occur. The characteristic formula property says
that each of these situations is expressible in the intensional fragment. The idea of the
encoding is then just to logically enumerate all these possible situations.

Theorem 4.4. For all quantifier-free formulad € SAL, there is a formuld A] € SALjnt
such that

A4 AT

Proof. We defing[ A] as follows:

[AVE\/ AN for C e SA~, . CEA
fori = s(A) andN = fn(A). The disjunction is finite by Propositigh2 PF[ A] iff there
is Q such thatDpFA andP ~; y Q, thatis, by PropositioB.4, PFA. [

Effectiveness of the encodirigue to its finiteness, the construction of our proof could
seem to be effective. However, this cannot be the case due to an undecidability result for
the model-checking problem on SAL2]. This is quite surprising, since only an effective
enumeration of the bisimilarity classes is missing to make the proof constructive. Moreover,
such an enumeration exists for SA without name restriction, via testing sets as defined in
[3]. This reveals an unexpected richness of SA compared to pure trees.

5. Adjuncts elimination and fresh quantifier

In this section, we establish the adjunct elimination for the full SAL. The result we
already obtained for quantifier-free formulas easily extends to formulas in prenex forms.
So our efforts will focus on establishing the existence of an equivalent formula in prenex
form for any formula of SAL. Intuitively, prenex forms can be generated by pulling out the
fresh quantifiers. We actually show how to swap the order between a quantifier and another
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(N) Un.A) A Ay ~ Wn.(AgL A Ad) (n & fn(A2))
(=) -Un.A; ~ Un—-Aq
0] Mn. A Az~ Wn.(A1lA2) (n ¢ fn(A2))

L) MUn.Ap> Ay

§

]/[n.<(n®T A A1)>A2> (n ¢ fn(A2))

m.((n@T A A1)>A2) (n & n(AD)

>R) A Un. A ~

(Amb) mUn. Al ~ WUn.m[A] (m #n)
@ MUn.H@m ~ Un.(A@m) (m #n)
(®) m®Un. A ~ Un.m®A (m #n)
(@) Un.AH)om ~ Un.(Aom) (m #n)

Fig. 4. Term rewriting system for prenexation.

connective without changing the semantic. Except forttmnnective, this turns out to be
quite natural.
We present our algorithm as a rewriting system in Biglhe essential result is then

Proposition 5.1(Correction of+~+). The term rewriting system- defined by the rules of
Fig. 4 preserves the semantics: for aty B € SAL, if A~~B, then A4+5.

Proof (sketched). We only detail the proof for rule L).

PEUn. Apr> Az

Y QO,Vn' €fn(A1) Ufn(Q) - QFA1(n < n') = P|QFA>

Y Q,Vn' € n(A1>A2) UTn(P|Q) - QFA1(n < n') = P|QEA>

Y Q,Vn' € fn(A1>A2) Un(P|Q) - OFA1(n < n') = P|QFAx(n < n')
vn' & fn(Ai>Az) Un(P),

VO -n'¢finQ) = 0FA1(n < n') = P|QFAx(n < n')

P|=l/ln.(A1 /\n®T)DA2. O

A R

¢

Remark 5.1. Some of the rules above (such @mnb), (—), and a variant of|L)) have
already been presented8], under the form of equalities. The same result is independently
developed if12].

We say that a formulad is well-formedif every variable bound byl is distinct from
all other (bound and free) variables.h For such formulas, the side conditions~inare
always satisfied.

Itis easyto see that defines aterminating rewriting system, and that the normal forms of
well-formed formulas are formulas in prenex form. Confluence holds modulo permutation
of consecutivél quantifiers.
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Proposition 5.2(Prenex forms For any formulaA, there areii, A’ such that44-Hn. A’
and A’ is quantifier free

This result directly implies the following extension of Theordm:

Theorem 5.3(Adjunct eliminatiof). For any formulaA € SAL, there is a formuld.4] €
SALint such that

AAF[ AT
Proof. There isA’ quantifier free and such that4--1i.A’ by Propositiorb.2 Then by
Lemmaz2.2and Theorend.4, we may write

AAHUR. AR [A' . O

Example 5.2. We show an example to illustrate how Sf.formulas can capture non-
trivial properties expressed using the adjuncts. Let

A= (Hm' ' UT o (Hny.ma[0)| Hnz.ngl HnznglO]]) ) @ m@m,

where Hn.A (H being the hidden name quantifig) stands folln.n®.A. The prenex
formof A is

Um’', nq, no, ng.((m’@'l' A .m’®m/['|'])>(n1®n1[0]|n2®n2[n3®.n3[0]])) Qm@m
ThenP E A iff there is Q such that

(vm) m[P]|(vm") m'[Q] = (vn1)(vn2) (vn3) (n1[0]|n2[n3[0]]).

The only solutions of this equation afe = 0 or P = (vn3)n3[0]. In other words,A is
equivalent toB3 = 0 v Hng.n3[0].

6. Adjuncts elimination and classical quantifiers

In this section, we consider a variant of SAL. Instead of fresh quantified formulas, we
consider name quantification of the fokm..4 and3x..A with the natural semantics:

PEVx.A if Vne N.PEA{("/,}.

Let us note SAl," the intensional fragment with classical quantification. We ask the
guestion of adjuncts elimination for extensions of this logic. The undecidability result
of Charatonik and Talbofl0] implies that there is no effective adjunct elimination for
SALint" + {r>}. We establish now a more precise result:

Theorem 6.1(Expressiveness of adjuncts$#Lint"). SALint” +{t>}, SALint” +{@} and
SALint” + {@} are strictly more expressive th@ALjn;".
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The proof of this theorem is based on the following observation. In any of the extensions
we consider, it is possible to define a formulasuch that

PEA iff  #f(P)<L (1)

Forthe> and @ connectives, we may firstencode the formuam aS(n[T]/\—'m[T])DJ_
and(n[T])@m. Then () is satisfied by the formula

dx.Vy. (—-y®T) — X =y.
For the@ connective, there is a direct formula satisfyirig; (
dx. (Vy.y®T) Qx.

We are now interested in proving that such a property cannot be expressed;i’S@Lr
approach consists in studying the stabilityrofvith respect to substitutions. We actually
find some particular processé@sfor which PEA is equivalent toP=A{"/,,}. From this,
we deduce processéssuch thatP=.A4 implies P{"/,,}F.A. This last result shows that, on
certain conditions, a formula may not observe the action of equating two names in a process,
which is contradictory with counting the number of free names.

We callthread contexa contextC of the form

ClPl=(n)nil...n[P]...]

with 7 C {n1, ..., nx}. We noten(C) dzef{nl, ...,ng} andd(C) dzefk. For a formulaA, we
noted(A) the number of:[.] connectives in4.

Lemma 6.2. Let.Abe aformula 0BALin", andC a thread context such thatC) > d(A).
Letn, m be two names such thét, m} N n(C) = ¥, and

P E'cn[0]m[0]].

ThenP E Aiff PEA{"/,}.

Proof. By induction on the size ofl:
e the casesd = Ay A Ap, A =—A1, andA = O are trivial.
o A = Aj]|Ay. Assume firstPEA. Sinced(C) >1, we may assume by symmetry that

OFA2 and PEA1. ThenPEA1{"/,,} by induction, andPEA{"/,,}. The other direction
is proved similarly.

o A = a[A;1]. Assume firstPEA. ThenC = a[C’] and P’ d:‘Efc’[n[O]|m[0]]i=,41. By
induction P’EA1{"/,n}. Since{n,m} N n(C), a # m, s0 A{"/n} = alA1{"/m}],
and PEA{"/,,}. Assume nowPEA{"/,}. Letb = a{*/,}. ThenC = b[C'] and
P& [[01mIO1FAL(" /). Thenb € n(C), sob & {m, n}, andb = a. By induction
P'FA1, SOPEb[A1] = A.

o A =a®A;. Assume firstPEA. ThenC = (va)C’ and P’ d=EfC’[n[0]|m[0]]l:Al. Since
n,m are free inP, a # m anda # n. So{n,m} N n(C’) = @, and by induction,

PEALm}). Al m)} = a®A{" )}, and PEA{"/,,}. The other direction is proved
similarly.



488 E. Lozes / Theoretical Computer Science 330 (2005) 475-499

A = Vx.A;. Assume firstPEA. Let takea € N. Then PEA1{?/,}, and by in-
duction PEA1{¢/}{"/m}. FOra # m, this is alsoPEA1{"/,;}ax. Fora = m, this
requires a bit more. Consider th&t=A1{"/,}. Then PEA1{"/ }{"/n} by induction.
But A1{"/ " /m} = (Al{”/m}{m/x}){”/m}, so by inductionPEA1{" /., }{" /x}. Hence
PEAL("/ ¢/} for all a, that isPEYx. A1 {" /) = A{" /).

Assume now thaPF.A{"/,,}. Lettakea € . ThenPEA1{" /¢ /). If a # m, thisis
PEA1{¢/}{" /m}, SO by inductionPEA1{¢/}x. Fora = m, consider thatF.A1{" /,,}

{"/+}, thatisPEA1{" /. }{" /m}, SO by inductionP=A1{" /,}. HencePE.A1{¢/,} for all

a,thatisPFA. 0O

Lemma 6.3. LetA be aformula o8ALjy", andC a thread context such thatC) > d(A).
Letn, m be two names such that, m} N n(C) = ¥, and moreoverm ¢ fn(A). Let

P clnonmo)]  and P, Cnl0)n[0]]

If PLE A, thenPyFA.

Proof. By induction on the size afl:

the casesd = A1 A Ay, A = A1 v Ay, A =0andA = —0 are trivial.

A = A1|Az. Sinced (C) > 1, we may assume by symmetry tloatA, and P1E.A;. Then
P>=Aj by induction, andPoFA

A = Aj||Az. Sinced(C) >1, PiFA1 A Az, 05 A1 A Az. By induction, PoEAp A As,
that isPoF.A

A = a[A;1]. ThenC = a[C’] andC'[n[0]|m[0]]E.A1. By inductionC’[n[0]|n[0]]F.A4,
that is PoFA.

A = —a[A1]. Then eitheC is not of the formn[C’], and P,E—a[A1], or C = n[C’] but
C’[n[0]|m[0]]F—.A1. Then by inductiorC’[1n[0]|n[0]]F—.Aj1, that is Pola[A1].

A = a®A;. ThenC = (va)C’ andC'[n[0]|m[0]]FA1. Sincen, m are free inP, a ¢
{m, n}, son(C’) N {m, n} = @. Then by induction¢’[n[0]|n[0]]F.A1, and PoFA.

A = —a®A;. Assume first that: is free in P1. Thena # m sincem ¢ fn(A) by
hypothesis. Sa is also free inP, and PoF.A. Assume now is fresh for Py (and P).
LetC’ be such thaf = (va)C’. ThenC’[n[0]|n[0]]#.A1, otherwiseC’[n[0]|m[0]]F.A1
and PFEA. So Polta®Aj.

A = Vx.Az. Let takea € N. Then PiFA1{?/,}, and by inductionP2F.A1{¢/,} for
a # m. Let take some fresm’. By equivariance P1(m < m')EVx. A1, SO P1(m <
m"EA1{™/}. Applying induction onP; and A1{"/,} for m’ instead ofm, we have
PEA1{™/.}. HencePEA1{?/,} for all a, that isPoFVx. Aj.

A = Ix.A;. Leta € N be such thatP=FA1{¢/.}. If a % m, then we may apply
induction onA1{?/,}, and PoFA2{?/,}, that is P.F.A. Otherwise PiF.A1{™/,}. By
Lemma6.2, PrFA" /" /m} = Au{"/xH"/m}, and againP1FA1{"/.}. Then by
induction, PoFA1{" /.1, thatisPoFA.

This last result implies the desired property about $&L [

Proposition 6.4. There is no formula iBALn;” that satisfieg1).
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Proof. Let us assume by absurd we have sodnguch that
PEA iff gfn(P)<1.

Then letC be the thread context of the forma)al...al[.]...], andd(C) = d(A) + 1.

Let m, n be two fresh names. Thef{n[0]|m[0]]F—.A by definition of 4, so by Lemma
6.3 C[n[0]|n[0]]F—.A. Moreover, by definition of A, C[n[0]|r[0]]FA, so the
contradiction. [

7. Minimality of SALint
In this section, we show minimality w.r.t. expressive power of $AL

Theorem 7.1(Minimality). SALiy is a minimal logic that is all fragments 0SAL;y; are
less expressive

This result is the consequence of several technical lemmas for each connective. We may
distinguish two forms of contribution to the expressiveness of the logic. We will say that
a connectives is expressivavhen there is a property expressed by a formula containing
that cannot be expressed otherwise. As a consequence, this connective must belong to any
minimal fragment. We will also say that a connectivis separativevhen there exists two
modelsP;, P, and a formula containing satisfied byP; but not P,, such that alk-free
formulas equally satisfy’; and P,. Separative connectives are expressive as well, butin a
deeper way: removing them, one reduces the separation power of the logic. Far, 84&L
will now establish the following classification:
e connectives|., n®., andn[.] are separative,
e connectives OA, —, U are expressive but not separative.
In particular, SAly: is minimal in terms of expressiveness, but as far as separation power is
concerned, the minimal fragment is SpL— {1, —, A, 0}, since for this fragment logical
equivalence coincides with intensional bisimilarity.

Notice that we do not show that SAkis theuniqgueminimal fragment of SAL. This is
far from being obvious.

Example 7.1. The fragment SAL— {A} is surprisingly quite expressive, as the formula
=Un.n®-n®Umy.m1®Umo.mo®m1[m2[0]]) @ n1 @ n2

shows. This formula is equivalent #a[n2[0]] v n2[n1[0]], and hence the proof of expres-
siveness of\ (see below) must be carried out in a different way. We do not know the exact
expressiveness of this fragment, one could think that it captures any finite set of processes.
The interested reader may want to look for a formulasfd0] v n2[n2[0]] in this fragment.

7.1. Separative connectives

We establish now that the connectivesn ®., andn|.] are separative. Intuitivelycarries
the ability of SALjy to count, so without this connective it will not be possible to distinguish
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n[0]|n[0] from n[0]|n[0]|n[0O]; in the same way;[.] is necessary to separaign2[0]] from
n2[n1[0]], andn®. is the only way of specifying properties of hidden names, so it must be
required to distinguislivi)n[0] and (va)n[n[0]].

Lemma 7.2. If A € SALint — {|}, then Py = n[0]|n[0]FA iff P> = n[0]|n[0]|n[0]=FA.

Proof. By absurd, suppose there exists a formdlglling apartP; from P, take a minimal

suchA, and reason by case analysis.dn

e The casesd = A1 A Az, A = = A1 and A = UmA; are straightforward.

e If A =0, then none of1, P> does satisfy4.

e A=m®A;:if m = n,then none of those processes do sati$fptherwise the process
satisfying.4 does satisfyd1, and.A; is a smaller separating formula.

e A = m[A1]: none of the two processes do satisty [J

Lemma 7.3. If A € SALj,t — {n[.]}, then for any namesi, no, we setP; = ni[n2[0]]
and P> = ny[n1[0]]. ThenP1EA iff PoEA.

Proof. As above, by absurd and case analysis on a mininal

e The casesd = A; A Ay, A = —A; and A = Um.A; are straightforward.

e If A =0, then none of1, P> do satisfy.A.

o A = Aj|A2. We may assume by symmetry thBiF.A. Also by symmetry, we may
assumeP1FA; andOFAy. If P A, then Ay separates?; from P, and is a smaller
formula: contradiction.

e A=m®A;z: if m € {n1, nz}, then none of the two processes do satidfyotherwise
the process satisfying also satisfiesA1, and.A; is a smaller separating formulal]

Lemma 7.4. Assumed € SALin — {n[.]1}, We setP1 = (vn)n[n[0]] and P> = (vn)n[0].
ThenPEA iff PoEA.

Proof. Again, by absurd and case analysis on a minigal

e The casesd = A; A Ay, A = —A; and A = Um.A; are straightforward.

e If A =0, then none o1, P> do satisfy.A.

e A = Aj|A2. We may assume by symmetry thai=.4. Also by symmetry, we may
assumeP1F A1 andOFAy. If P A, then A; separates?; from P, and is a smaller
formula: contradiction.

e A =m[A1]: none ofP1, P, do satisfyA. [J

7.2. Expressive connectives

We show that the connectives —, 1, 0 are expressive. Expressiveness proofs are more
subtle than in the separability cases, since the loss of expressiveness is less sensitive. The
scheme of the proof that the connectivés expressive is to find a property (cardinality,
stability by substitution, truncation, etc.) common to all set of models corresponding to
any formula withoutx, and a formula withk whose set of models does not have this

property.
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7.2.1. A is expressive
By duality, A expresses disjunction; we will show that the intensional logic may not ex-
press the disjunction present in the formuldn[0]] v n2[n1[0]] without theA connective.

Remark 7.2. The A connective is probably the connective whose expressiveness is the
most difficult to characterise. It would be even more difficult if one had to take into account
adjuncts. As shown in Examplel, we may express the formutg [n2[0]] V n2[n1[0]] in

SAL — {A} using adjuncts.

We notePa(N) = {{n1, n2} : n1 # n2). We notek,, = {{n, m} : m # n}. We say that
K C Po(N) is cofinite if there isN € N, N finite, such that for athy, ny & N, if ny # no
then{ni, no} € K. We may remark thak';, K> are cofinite iff K1 N K> is cofinite, andk
is cofinite iff K — K, is cofinite.

Lemma 7.5. AssumeA is a formula ofSALj,; — {A} such thatO#.A. We set

K 4% {{n1, n2) : n1 # n2, nalnal0IFA andna[n1 [0]]A}.

Then eitherk 4 = ¥ or K 4 is cofinite

Proof. By induction onA:

o A =MUn.A;. ThenO# Ay, and for anyiy, ny S.t.n1 # nno # nandny # no, {n1, no) €
K, iff {n1,n2} € K4,. ThatisK 4 — K,, = K4, — K.

A = 0: 0FA.

o A= -0:thenK, = P».

A = Aj|Az: sinceOitA, we may assume by symmetry tii.A1. If also 0. A,, then
K 4 = 0. OtherwiseK 4 = K 4,.

A = Aq||Az: sinceO# A, 0F A and0#Az. thenK 4 = K4, N K 4,.

A =n[A1]: thenK 4 = 0.

A = —n[A1]: thenP2(N) — K,, € K 4, SOK 4 is cofinite.

A =n®A;z: thenO# Ay, andK 4 — K, = K4, — K.

A=-n®A;z: thenO# Ay, andK 4 — K, = K4, — K,. [

Lemma 7.6. Letn1, ny be two distinct names. Then there is no formdla SALijnt — {A}
equivalent toi1[n2[0]] Vv na[n1[0]].

Proof. By absurd: if there is such a formuld, thenOiz.A. Then by Lemm& 58K 4 # 1,
and the contradiction. [J

7.2.2. — is expressive

— enriches the expressive power in several ways; here we consider the property that the
namen occurs free, expressed byi® T, and show that negation is necessary to express
it. To prove this, we remark that for a formulawithout negation, there is a heighisuch
that for all P, if P A then so does the truncation &f at heighti, so we may find a
contradiction by considering a process having an occurreneaeép enough.
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Definition 7.7. We define the truncation at heighte N asz(P) = 0, and
tp ((Vﬁ)(nl[Pl]l e Inr[Pr])) = (va)(naltp—1(PDI| . . . [n[th—2(Pr)]).

Note that fr(s;, (P)) C fn(P).

Lemma 7.8. If A is a formula without—, s(A) <& and PEA, thens, (P)EA.

Proof. By induction onA:

e A= A1 A Az then by inductiony, (P)EA1, 1, (P)EA>, sot, (P)EAL A As.

o A = Wn.A;y: then there isi’ ¢ fn(P) s.t. PEA1(n < n’). By inductionz, (P)EA;

(n < n'),n &, (P)),sot,(P)EUn.A;.

A=0:then;,(P)=P =0

A = A1|Az: thenP = P1| P, with P,=A,, and by induction;, (P,)F.A;, sot, (P)EA.

e A = n[A;1]: then P = n[P1] and P1FA;. By induction, t,_1(P1)FAz, and so
th(P)EA.

e A = n®A;: then P = (vn)P1 with P1FA;. Then by inductions, (P1)F A1,
son(P)EA. O

Lemma 7.9. There is no formulad € SALjy; — {—} equivalent to-n®_L.

Proof. SupposeA exists, and takés = s(A). We noteP = m[m[...m[0]...]] and
Q = m[m][...m[n[0]]...]] a nesting ol ambientsn, for somen # n. ThenQFA, PFA,
andP = 1,(Q), which contradicts Lemma.8. [J

7.2.3. U is expressive

U is very useful to deal with an hidden name without making any hypothesis on the
free names of processes (which revelation taken alone would do). Here we consider the
property of having at least one hidden name, that is the model is congrugn) f& with
n € fn(P’). This is expressed by the formulu. n®—-n®T. For N = {n1,...n,} we
considerPy, = n[ny[0]|... [n,[0]] for somen ¢ N.

Lemma 7.10. Assume some finite set of nameand a quantifier free formulal such that
fn(A) c N,andn ¢ N.Then

PLEA iff  (wm)PLEA

Proof. By induction onA:

e the casesd = A; A Ao, and A = — A4, are straightforward.

e if A = 0: then none of the two processes satisfles

o if A = Aj]Az. Assume first thaPy FA. By symmetry, we may assunme~.A; and
OFAz. So(vn) Py FAp by induction, andvn) Py FA. If we assumévn) Py FA, we may
do the same reasoning.

A = m[A1]: none of Py, (vn) Py, does satisfyA.

A=m®A;: thenm € fn(A4) € N, hence none oPy,, (vn) Py, does satisfyA.
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Lemma 7.11. There is no formulad € SALjnt — {H1} equivalent tdln.n®n®_L.

Proof. By absurd, letd be such a quantifier free formula, apd, ..., n,} = fn(A). Then
Py A, so(vn) PIFA, by Lemma7.10 and the contradiction. [

7.2.4.0is expressive
Here we assume we takeinstead of O as a primitive formula. Then 0 is not expressible.
For this, we remark that for anyt without 0 and fom ¢ fn(A), OFA iff n[0]FA.

Lemma 7.12. Let A be a formula withou®, andn ¢ fn(A). Then

O=A iff n[O]FA

Proof. We reason by induction oA

e A=T,A= A1 A Ay, A= —Aj : straightforward.

o A =Wm.A; : We assume without loss of generality # n. If 0EWUm. A1, thenO=Aj3.
n[0]F.A; by induction, so:[0]FUn. A;1. Conversely, if2[0]FUm..A1, thenn[0]F.A1, SO
0=.A; by induction, and thef=Wn. A;.

o if A = Aj]A2. Assume first thaD=.A1|A2. ThenOFA1 A A2, hence by induction
n[0]F.A1, andn[0]F.A1| Az. If OF.A1|A2, then we may assume by symmetry tBiAtA ;.
Assume by absurd thaf0]F.41|.A2. Thenn[0]F.A1 andOFA». By induction0=.A; and
the contradiction.

e if A =m[A1]. Thenm # n by hypothesis, and bo®.4 andn[0]#.A.

o if A = m®A;, m # n by hypothesis. IfOFA, then OFA1, and by induction
n[0]F. A1 andn[0]FA. Conversely, ifn[0]F.A, thenn[0]F.A1, and0F.A1 so OFA by
induction. [

Lemma 7.13. There is no formulad € SALj,; — {0} equivalent td.

Proof. By absurd, ifA is such a formula an ¢ fn(A), then by Lemm&.12 n[0]F.A and
the contradiction. [

8. SL and classical logic

In this section, we give a second illustration of our minimalisation method. We consider
the assertion language presentefi referred as SL. SL holds spatial connectiveand
-« similar to | andt> in SAL, with a light but significant difference fot: the composi-
tion requires a compatibility conditioh_LA’ that is not always satisfied; in particular, it
is not possible to compose two copies of the same structuseh. As a consequence,
the expressiveness ef is quite restricted and essentially express the separation of re-
sources, which equality already expresses. For this reason, we can establish the elimination
of bothx and-«. We define a classical fragment CL and prove it to be as expressive as SL

(Fig. 5).
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x|nil|—
(x > e1,e2)|lx = ylemp|L|P=P
|P % P|P =P

Fig. 5. Separation logic (SL).

8.1. Definitions

We assume a countable set Var of variables, ranged overxwithand a set Loc of
locations such that Loc N. Expressions and assertions of SL are defined as in Fig. 5. We
write v(P) for the set of variables occurring iP. Assertions express properties of memory
states, modelled as a pair consisting of a store and a heap, as follows:

val &' Loc {nil},

Store def Var — Val,

Heap def Loc —ip Val,

state™ Stackx Heap
where—, stands for a partial function with finite domain. We range over storesswitver
heaps withi, and over states with. We notes; L gy for s1 = so anddom (h1) Ndom (h2) =
¢, and, when this holds; * o2 is the state defined by keeping the same store and by setting
h1*xho(x) = h1(x) or ho(x).

For a valuev, we notevk; e if eithere = —, orv = e = nil, ore = x andv = s(x). We

then note(v1, vo)F4(e1, e2) if viFse1 andvokEgen. The condition for a state to match an
assertionP, writteng = P, is inductively defined as:

oFL never
oF(x > e, ep) ff dom(h) = {s(x)}and
hs(x)Fg(e1, €2)

oFx = e, iff s(x) =s(y)

oFemp iff  dom(h) =0

oFP1=>Po iff oF Piimpliessk P2

oF P x P iff  there existiandrysuch that

0 = 01 % 02, o1F Prantbo=Po
oEPy =Py iff ~ for allgysuch that Lo,
o1F Primpliess * o1F Po.

We may define as usual the connectivesv, T, —, < in the obvious way. We also
introduce twamonotonid assertions (cf. Fig). Any assertion of this form, or of the form
x = y will be said to beatomic In the remainder, we actually take these as primitive, which
ensure the encoding ¢f — e1, e2) andemp assertions through boolean combinatiéns.

1 Or intuitionistic, using the terminology of Reynold48], that is assertion® such thats=P implies ¢’ P
forall¢’ >o.

20n the contrary, it is not possible to encode< e1, e2) andsize >n from (x > e, ep) andemp using
only boolean combinations; this point is also discussed in conclusion.
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monotonic assertion encoding in SL semantic
(x = e1,e2) (x> e1,e2) x T |s(x) € dom(h)andhs(x)FE, (e1, e2)
size>n —emp x...x —emp tt dom(h) >n
—
n times

Fig. 6. Monotonic assertions from SL.

’P = P=P|L|(x = e1, e)|x = y|size>n.

Fig. 7. Classical fragment (CL) of SL.

We callclassical logic(CL) the fragment of SL defined by the grammar of FigWe will
notew (P) for the maximak such thasize >n is a subassertion af, andv(P) for the set
of variables ofP.

Our main result is the following:

Theorem 8.1. CL is as expressive as 3le. for all assertionP of SL, there exists a classical
assertionP’ of CL such thakP < P’.

At the same time, we also prove the following result: the monotonic (indeed atomic)
fragment is as separative as the whole language, that is if two states satisfy the same
monotonic assertions, then they satisfy the same assertions.

8.2. Proof of the translation

Our proof proceeds in the same way as for SAL: we define an intensional equivalence
and prove that it has the precompactness and characteristic formula properties.

Let X be a finite set of variables, and an integer. We say that two statesinds’ are
intensionally equivalent fok, w, written o ~x ,, ¢, if for all classical assertio® with
V(P) C X andw(P)<w, g=P iff d/EP.

Remarks. 1. This definition amounts to say thaande’ satisfy the same atomic classical
assertions? with v(P) € X andw(P) <w.

2. Let us writew (o) = tdom(h). Given three natural numbetsbh, w, we writea =, b
if eithera = b ora, b>w. Then for anys, ¢’ such thav ~x ,, o', w(a) =, w(d).

3. Equality assertions = y only depend on the store. We note=yx s’ if these stores
satisfy the same equality assertions with variableg.ihen for any, ¢’ such that ~x ,,
o,s=xs.

4. Let V be some set of values. We nate=y v’ if eitherv = v/ or {v, v’} NV = @,
and (vy, v2) =y (v}, vp) if v1 =y v} andvz =y vj. Then for anys, h, k" such that
(s, h) ~x.w (s, h"), dom(h) Ns(X) = dom(h’) N s(X) due to assertions < —, —, and

foralll € s(X) Ndom(h), h(l) =couinil) h'(l) due to assertions < e, e>.
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Let me say more about store equivalence. Consider astamed a state = (s, &) such
thatso =x s. Then we may define a new stahift,, xo of storeso and heap:’ defined
such that
o dom(h) = so(s~(dom(h)) N X) U B with B some arbitrary set of locations such that

tdom(h) = tdom(h’) andB N so(X) = 0.

e Foralll € dom(h'),if | = so(x) andhs(x) = (s(y), s(z)) for somex, y, z € X, h'so(x)

is set to be(so(y), so(z)), otherwiseh (1) is arbitrarily defined out of (X).

This is easy to check thatandshift,, x o satisfy the same atomic assertions with variables
in X. Moreover, this transformation is compositional, in the sensesthiétt, x (o * ') =
shifty, xo * shifty, xo’. This transformation is not completely deterministic, but assuming
that every choice of a “fresh” value is made different at each time and at eachgfaifttg,

oLt willimply shifty, yo Lshifty, xt. We actually have the following stronger result:

Lemma 8.2. For all assertionsP € SLwithv(P) C X, o P iff shifty, xoFP.

The proof is straightforward by induction on the asserti®nconsidering previous
remarks.

We now recall the equivalence relation defined by Y] for the decidability proof,
and use it to derive the correction ®fx ;.

Definition 8.3 (~; ,.x Hongseok Yang [15] Given a stack, a natural number and a set
X of variables,~; , x is the relation between heaps such that; , x /' iff

1. s(X) Ndom(h) = s(X) Ndom(h');

2. foralll € s(X) Ndom(h), h(l) =xx) h'(1);

3. #(dom(h) — s(X)) =y t(dom(h') — s(X)).

The first step of the correction proof is to factoreg ,, in ~; . x.

Lemma 8.4. For any X, w, n such that: + X <w, for anya, ¢, s, h, h’ such thats =
(s, h), 0 ~x, d,andshifty xo' = (s, #’), it holds thath ~; , x h'.

Proof. By Lemma8.2, (s, h) ~x.,, (s, h’). Then conditions 1 and 2 in Definitidh3holds
by Remark 4, so the proof follows from the verification of the condition 3 on the heap size.

Let us assume first tha(dom(h) — s(X)) < n; thenttdom(h) =k <n+ X <w, SO
oFP = sizezk A —size 2k + 1, andw(P) = k + 1< w. By definition of~y ,,, ¢'FP,
sofidom(h') = k = idom(h). Moreover,s(X) N dom(h) = s(X) N dom(h'), so finally
jj(dom(h) — s(X)) = ];T(dom(h') — S(X)).

Let us assume now thafdom(h) — s(X)) >n; and setc = min(tdom(h), w), so that
oksize >k, and by definition ofcx ,,, o'Esize > k. Moreoverdom (h) >n + tt(dom(h) N
s(X)), andw =n+ X >n+t(dom(h) Ns(X)), sofinallyk >n +t(dom(h) Ns(X)). This
givesdom(h')>k>n + ﬁ(dom(h’) N s(X)) sinces(X) Ndom(h) = s(X) Ndom(K'), i.e.
jj(dom(h’) — S(X)) >n.

tdom(h) >k>n + n(dom(h) N s(X)), wherek = min(tdom(h), w). So gFsize >k,
and by definition of ~x,, o'Fsizexk, so that finally gdom(h')>n +
#(dom(h) Ns(X)). O



E. Lozes / Theoretical Computer Science 330 (2005) 475-499 497

We now recall the correction result obtained by Yang and derive our correction from it.
We first recall the notion of formula’s size used by Yang:

(e > e1,e2)| = 1, legr=e2| =0, |emp| =1,
|P=Q| = max(|P|, [Q]), |Ll =0,
|Px* Q] = |P|+10l, |P —Q| =[0I

Lemma 8.5. Takes, i, ', n, X with h ~ , x h’. Then for all assertior? € SL such that
V(P) C X and|P|<n, (s, h)EP iff (s, ¥)EP.

The proof of this result is detailed [45].

Corollary 8.6 (Correction). Takeo, ¢’, w, X with ¢ ~x ,, ¢’. Then for all assertiorP €
SLsuch thatv(P) € X and|P| + X <w, aEP iff d'FP.

Proof. By Lemma8.4, i ~; , x h' with ¢ = (s, h), shift; xo' = (s, '), andn = w — £X.
Thengk P impliesshift; xo'FP by Lemma8.5, which impliese’=P by Lemma8.2 [

We may now end the proof establishing the properties of precompactness and character-
istic formula forxy ,,.

We write @y ,, for the set of atomic assertiors such thatv(P) € X andw(P) < w.
For X finite, @x ,, is finite as well. This has two important consequences:

Proposition 8.7 (Precompactnegs For all w and all finiteX, ~x ,, has only finitely many
classes

Proof. A class is represented by a subget ®x ,, of atomic assertions that are the ones
satisfied by any state of the class. So there are less #fam 2listinct classes. O

Proposition 8.8(Characteristic formul For all statess, for all X, w, there is a classical
assertionFX"™) such that

Vo' .g'EFXW) iff g xx o

Proof. Take

P A A —P. 0
gFP,Pedy ol P,Pedy

We may now establish Theorenil noticing that any assertioR of SL is equivalent to
the classical assertion:

FéX,n) ’
ce State~, ,.CkP

where finiteness of this disjunction is ensured by Propos&i@n
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9. Conclusion

We have established the adjuncts elimination property for SAL, a logic for trees with
binders including the fresh quantifidr This involves putting a formula in prenex form and
then doing the transformation on the quantifier-free formula. The adjunct-free fragment
SALint then turns out to be minimallogic.

We established the absence of adjunct elimination for the same logic Whreplaced
by the usual quantifier, whichever adjunct is considered. This result, together with the
difference w.r.t. decidability of model-checking on pure trees, illustrates the significant gap
existing between the two forms of quantification.

Finally, we defined a classical fragment of the separation logic (SL), excluding both
x and -«, and proved it to be as expressive as the full SL. Our approach shows also that
all the separative power of the logic lies in the monotonic fragment. When defining our
classical fragment, we had to move from the assertions e, e; andemp tox < eq, e2
andsize >n in order to capture the connective; without that, it is probably possible to
eliminate only the adjunct. Note that the assertior~ nil, nil) =«false would be translated
in CL asx — —, —, which underlines the importance of the special expression

In relation to our study, some observations can be made regarding the difference between
the I and thev/3 quantification. The existence of prenex forms, the decidability of the
model-checking on pure trees, the adjuncts elimination, are properties verified by the logic
with the fresh quantifier, whereas they fail for the universal quantifier.

Yang proposed a clever counterexample to the eliminaticR iofa SL with quantifiers;
this example seems of deeper meaning than the one presented in Sedtidra better
understanding of its implications is still lacking. In the same way, we do not know whether
x elimination remains true for the assertion language withoand with quantifiers.

The results we obtain for SAL and SL can be adapted to several other sub-structural
logics. However, for the logics including the time modakity8,1], adjuncts improve the
expressiveness of the logic supporting an encoding of action modé§lifigl3]. One could
think to take them as primitives in the same spirit as for SL, and look for the adjunct
elimination. However, even in the case of very elementary concurrent languages, this project
is not realisablg?].
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