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Abstract—A design method is developed which involves the use of several adaptive controllers working
in parallel at different sampling rates while maintaining the asymptotic stability of the overall adaptive
scheme. as well as the boundedness of all the signals within the system. The use of adaptive sampling
is considered as an additional loop in a hierarchical organization of the scheme. This strategy allows the
designer to take advantage of the suitable properties of such schemes which are well known in classical
multirate control designs. These advantages arise from the need for alleviating control computer through-
put requirements of accommodating sensor information available at mulitiple rates and for compensating
excitations of the fast modes of the plant in the presence of high-frequency disturbances. As a direct
consequence of the involved methodology, the transient behaviour of the adaptive system becomes in
some cases greatly improved.

1. INTRODUCTION

Nonperiodic sampling has been found to be a powerful tool for certain design types in control
problems; some instances follow.

* Adaptation of the sampling interval to the variations of some signals within the system
to improve sampling efficiencies and transient behaviours. Some extensions have been
made to the adaptative control context by using the tracking or regulation error as the
signal to be adapted.

* Compensation of discrete systems to known variations in the parameters of the continuous
plant while maintaining the nominal controliers in the control loop.

¢ Improvement of the transmission of measuring and/or rounding errors towards the results
when analyzing from an algebraic point of view some properties of dynamic systems
such as controllability, observability and identifiability.

For the above and related topics, a list of references is given in [3b], where an input—
output modeling for nonperiodic systems is developed. Such a modeling leads to results which
are structurally similar to those associated with the use of the z-transform for periodic sampling
systems. However, it is based upon the use of the Cayley—Hamilton theorem from linear algebra.

The study of the transients in deterministic adaptive control has merited some attention
recently[1-4.,6,18,20]. In [3a,d] suboptimization techniques which involve the use of quadratic
criteria for optimal regulation are given as an approach to solve this problem. By developing
and optimizing an approximate linear model for the overall adaptive scheme, the standard
parameter-adaptive algorithms can be reapplied on a finite-time horizon. This process is made
prior to the generation of the current input and involves the use of updated values of the free-
algorithm parameters obtained from the optimization procedure. Another approach for this
problem which consists of the use of adaptive sampling, as mentioned above, has been taken
in {3c].

The problem has also received attention from an optimal stochastic adaptive control con-
text[8.9,15] by stating dual and nondual adaptive controllers and introducing the concepts of
caution and probing in the design philosophy. In this context, some practical rules have been
given for the choice of the forgetting factors in both the constant and time-varying parameter
cases.

The objective of this paper is to study the use of multirate (constant and adaptive) sampling
in adaptive control involving the use of several adaptive controllers. Multirate sampling is useful
in classical control since the slower controllers alleviate the drawbacks derived from the presence
of unmodeled dvnamics. which leads to undesirable modes within the system while the faster
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sampling controllers improve the stability and damping characteristics of the plant response[3].
In addition, multirate digital control alleviates control computer throughput requirements and
is valid to accommodate sensor information at multiple rates. Two cases are considered, namely
the deterministic case and the case of additive disturbances with known upper bounds for their
magnitudes. The paper is organized as follows. In section 2, an adaptive scheme consisting of
several controllers working in parallel at different rates is given. A dead-beat adaptation scheme[14]
is proposed for the case when disturbances are present. In section 3, a method which involves
the use of adaptive variations of the sampling period of each adaptive controller with respect
to their nominal values is given. The resulting schemes are useful for improving the transient
system behaviour. In section 4, the boundary of the dead-beat zone used for adaptation under
the presence of disturbances is related to the upper bound of the disturbances, which is determined
by using a priori knowledge on bounds for the magnitudes of the plant parameters. Section 5
presents simulation results for the different theoretical aspects discussed in the paper and, finally,
conclusions end the paper. The notation used throughout the paper is very simple. Some minimal
notation variations are used in each section depending on the use of continuous or discrete
system models.

2. DISCRETE ADAPTIVE ALGORITHMS AND MULTIRATE CONTROL

2.1 Model reference direct adaptive control
Consider a SISO discrete linear time-invariant plant described by

A Yytk) = q7“B(qg Neth), d>0 (1)
was considered with A(¢™') and B(g™") being polynomials defined by

Algh=1+aqg "'+ +a,qg"

B(fl_l) = bO + blq-l + e+ bn,,q_””.
where ¢~' is the backward shift operator, d represents the plant time delay, e(k) and v(k) are
the plant input and output sequences, respectively. It is assumed that the zeroes of B(z"") are
all inside the unit circle.

Both tracking and regulation objectives are achieved if the input is generated in such a
way that the following equation holds:

C.g etk + d) = C(g vk + d) — YWk + d) =0, allk=0, (3)
where y¥(-) is a bounded reference sequence (being identically zero in the regulation case), €(+)
is the tracking/regulation error, and C,(¢~") is a monic asymptotically stable polynomial of

arbitrary degree n,_, defined by

Clg™) =1+ g+ +0c 9" )

It is a well known[10] fact that a unique polynomial identity
Cq™") = Alg™")S(¢g™") + g “R(g™" (5)
holds if
Sgh=1+sq" + - + 5,9, n =d — 1, (6)

RigY=ry+rg "'+ +r.q"™ Hg = max (my — I, n, — d). (7)
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Using (5)—~(7), (3) results in th
e.g. [6,11,12]), equivalent to

[¢]
Y

Clg™ etk + d) = 07db(k) — 67()dk) = 67(k)dk) (8)
with
6 = [by, 6017, &k = [ek), LRI,
0, = [bys, + by, bys, + bys) + by, . . .,
bn,,sd e Fis o v o s rnR]T? (9)
bolky = feth — D, ek = 2), ...,
etk —d — ng + 1), vk), vtk — 1), ..., vk — np)]",

B(k) being updated according to any adaptive algorithm.

2.2 Multirate adaptive control

The advantages of multirate adaptive control in classical control (sect. 2.1) invite us to
develop multirate adaptive control schemes for cases of not-completely-known systems or
systems of slowly time-varying parameters.

The following assumptions are made for the theoretical analysis of this paper.

Assumption 1. All the elements of the chosen set of sampling intervals are integer muitiples

f thron whinh ara cmal

01 iose wnicn are Olllal}bl .
Assumption 2. The input to the plant is obtained as the sum of the partial inputs (generated
by each controller) available at the current sampling point.

Assumption 3. The discrete plant is parameterized according to the fastest sampling rate.

Assumption 4. All the zeroes of the discrete transfer function of the plant (for the taken
parameterization) are assumed to be inside the unit complex circle. Furthermore, upper bounds
for the degrees of the numerator and denominator polynomials of the plant transfer function as
well as the plant delay are known.

Assumption 5. The reference sequence must be bounded and defined for all sampling
points.

Assumption 6. Under bounded output additive noise, this one is assumed to be bounded
and of known upper bound for its magnitude. Also, the system is assumed asymptotically
stable. u

These assumptions are not more restrictive than the usual ones in adaptive control. For
instance, Assumptions 4 and 5 are necessary to prove asymptotic convergence with a bounded
input—output sequence. Assumptions 1 and 3 allow the construction of a difference equation of

constant parametgrc which pyanflv describes the |nnnt_nntpnt sequence from all the camnhng

points for the fastest sampler. Assumptlon 6 will be invoked in a scheme of sect. 2.3 which
involves the use of a dead-beat zone for the case of additive disturbances.
Thus, the plant is described by the equation

A(g hHv(k) = g B(g Delk); k=01,...,i=1,2,...,m (10)

The meaning of the different polynomials and magni'"des is the same as in sect. 2.1. The

ith index of the positive mteger k; indicates that one is dealing with the &,T; sampling point of
the ith controller, T, < T, < - < T, where T, = \; T (A; = | being fixed integers 1 < j <
i =< m) is the set of sampling periods. In this way, if s a samphng point of the jth then ¢, =
kT, j=1,2,...,i;somei =< m and some set of positive integers k;, ky, . . . , k; with k, =

AT If it is desired to specify a sampling order between controliers, the modified notation k;;,
instead of &, will denote that &,T, is the last sampling point of the jth controller prior or equal
to the sampling point &7, of the ith controller for all j = i. This notation is not cumbersome

and allows the interpretation of the equations without ambiguity.
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2.3 Adaptation algorithms and control law
The natural generalization of the adaptive algorithms of De la Sen[3c] leads in the multirate
context (see Fig. 1) to

Fk)blk — d)[C.(g~"vik) — 8Lk — Dbk, — )]

0.(k) = 6,k — 1) +
Sk = 8k = D cltk) + &'k, — F.(k)Sk — d)

1 Fik)dk; — )bk, — d)F k)
ke D M@[‘“ cMn+ww—dmmmm—dJ (h
16,0 <=,  F(0) = FI(0), [IF.(O) < =,
with0 < Nk) S 1,0 < k) <=,allk,=0,i=1,2,....m, where
dk) = [e(k), ik,
bolk) = [elk, — 1), etk — 2), ..., elk; —d — ng + 1), y(k),
yk, = D, ..., vk = )],

e(k) = wk) + 122 uky;),  all integer k, = 0, (12)

m

C(q )"k + d) — D bk, u(k,;)
ji=1
JE

— B3.(k)bolki)], all integer k; = 0,4,/ =1,2,....m

|
uk;) = m

for the nominal parameter vector being defined as in (9) according to Assumption 3. The
regulation and tracking objectives for this problem are stated similarly to (3).

Reference | Reterence | Reference
input model output
Ptant Controlled Plont
nput \ plant output

Muinrate adaptive
controller
-

Contro- X—| Measurement

| Her 1
T er T,
Multirate controller 1 1 sequence
- - -- - - - - = 1 I evaiuation
Adjustes mechamsm
| ment re- - =
[

SIGNAL 2 x:
' Te i T,

1
‘
i
|
!

i
:
SIGNAL n )(:__{7 }_(__{ Z.0H

Fig. 1. (a) Multirate digital controller, (b) multirate model reference digital adaptive control (T, = [T)).



Multirate digital adaptive control 1197

Remarks 2.1

1. In the input generation eqn (12), division by zero must be avoided by appropriate local
variations of the free algorithm parameters when necessary. In some of the existing adaptive
control schemes such a problem is overcome by using different parameterizations which enter
directly the reference sequence in the measurement vector.

2. Note that the computation of the input sequence from eqns (12) can lead to the simul-
taneous solution of a set of linear equations. This occurs at sampling points in which several
controllers must modify their parameters since then each partial input ., supplied for one
controller depends on some of the others at the same time. However, the linear systems of
equations remains compatible and so can be solved provided a determinant involving the leading
parameters of the inputs is nonzero. This is not a very restrictive condition in the transient since
these parameters can be varied with the use of the free parameters of the algorithms. As time
increases solvability can be lost (for instance if several of the leading parameters tend to the
same values). The problem can be then overcome by deleting from the scheme some of the
adaptive controllers. In practice computational problems inherent in the solution of systems of
equations can arise when more than three controllers are present. Approach 2 for multirate
adaptive sampling in the next section does not lead to the solution of sets of equations for
computation of the inputs since, in general, multirate controllers are not synchronous. This
represents an additional advantage to the use of adaptive sampling.

3. In order that the computation be admissible from an applicability point of view, we
must have a bounded adaptation matrix and adaptive controller parameters A;(k;) = 1 all
k, > k,i,j = 1.2,...,m,some finite k, or they must be chosen according to the maintenance
of a bounded or constant trace of the adaptation matrix[3c].

4. Note that all the adaptive controllers involve the use of the plant delay ¢ (which indicates
d times the smaller sampling period of delay in the continuous plant). Otherwise, the adaptation
errors in the controliers would not be available. Note also that sample index &, defines any
sampling point. This is crucial to understand some of the proofs of convergence in the
Appendix. ]

THEOREM 2.1

Under Assumptions 1-5, the system (10) subject to the adaptive controller (11) fulfills
the regulation and tracking objectives; i.e. lim,_. €(k) 2 0 with a bounded input—output se-
quence.

A proof is given in Appendix. =

The number of parameters to be updated by the jth adaptive controller, j = 2,3, .. .,
m, can be reduced arbitrarily while respecting the control law in (12). This does not affect the
stability proof of Theorem 2.1 since it is directly related to the use of a complete measurement
vector [i.e., that which involves the use of all the necessary vector components given in (12)]
and the parameter vector for the first adaptive controller. This strategy allows the designer to
diminish the overall number of parameters to be adapted. and is directly related to the classical
philosophy that is usual in multirate control about the reduction of computational effort. This
idea 1s also useful from a filtering point of view since not all the controllers need the same
filtering characteristics and thus the same complexity. Finally, note that the multirate strategy
implies that samples occur within the updating process of some adaptive controllers. This idea
has been studied for the case of using one adaptive controller (see. for instance, [12]).

2.4 Multirate adaptive control with a dead-beat adaptation zone

The use of a dead-beat zone for parameter adaptation has been proposed in Peterson and
Narendra[14] for the case of unknown additive disturbances in continuous adaptive systems.
The philosophy involved was the following. If the adaptation error (which is subject to an
unmeasurable noisy component) lies outside a certain domain around zero, the adaptation takes
place. else the adaptive controller maintains its parameters constant. Two conditions which were
imposed on the problem were that the noise is bounded and that an upper bound on its magnitude
is known. The dead-beat zone for adaptation was defined according to such a bound. The
determination of an appropriate bound will be given in section 5. Assume that output additive
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Fig. 2. Adaptation algorithm with dead zone.

noise v, is present. Thus, instead of (10), one has

A(g~Yy(k) = q“B(q~Nelk) + v(k), k=0 (13)
2.5 Adaptive algorithms and control law
The adaptive algorithms (11) are modified according to
é(kj) = é(kj -1 if |E(k,)| = €, (14)

Flk) = Flk — 1) if e(k)| < &,

6(k]~) is updated as in (11) if |e(k;)| > €, (€, is a known upper bound for the magnitude of the
tracking/regulation error), all integers k&, > 0, = 1,2, ..., m.

The control law is obtained as in (12).

The main stability result of this adaptive scheme is stated as follows.

THEOREM 2.2
The plant (13) subject to the adaptive algorithm (11)-(12), with the variants of (14),
generates an input—output sequence which is bounded under Assumptions 1~6.

Proof is given in Appendix. ]
Remarks 2.2
I. In this case the filtered adaptation error C,(q")e(k,- +d),j=12,...,mis a

disturbed tracking error due to the influences of the measurement output. It deviates from the
noise-free tracking error in a bounded signal.

2. All the considerations in section 2.2 about the reduction of parameters in the adaptive
controllers remain valid in this design.

The philosophy of this scheme is shown in Fig. 2. "

3. ADAPTIVE SAMPLING FOR MULTIRATE ADAPTIVE CONTROL

Discrete industrial systems usually result from the discretization of continuous processes
and the use of discrete controllers. The advantages which derive from the use of discrete
controllers, such as their compatibility with current computer technology or their possibilities
for achieving specifications which are prohibitive for continuous controllers, make their use of
great practical interest. In this context, the sampling period may be considered as an external
parameter for the continuous plant which can be used as an additional design tool. This con-
sideration was taken into account in adaptive control for improving the transient response by
adapting the sampling period to the tracking or regulation error derivatives{3c]. The plant was
first modelled by means of a time-varying difference equation{3b]. As a consequence of the use
of this model, the input sequence was measured at the sampling points while the output sequence
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was measured at the so-called induced Dalllp}lllé points associate
interval (i.e. the time interval which is the union of the last n, sampling intervals). These
{fictitious) sampling points are successively defined by means of multiple integers of the mean
sampling period on each current modeling interval. The choice of the admissible domains for
sampling adaptation must be made carefully since the discrete input—output delay (which derives
from the continuous plant delay) can vary when variations of the sampling intervals occur around
their nominal values.

The main variations of the schemes to be presented now with respect to those given in
section 2 consist of the following.

1. The sampling periods of each controller suffer intentional local variations around their
nominal values. Such variations are obtained by adaptation of the sampling intervals to the
variations of the tracking/regu]ation\ errors. The objective which is pursued with this design is
to improve the adaptation transients by means of the use of an adaptive sampling controller for
each plant-adaptive controller.

2. The dlscretlzed plant is described by a time-varying model. This arises from the use

3.1 Continuous and discrete models
The continuous reference model is assumed to be explicit,t stable and given by the input—
output description

L M(p)vM() = ./ M(pleM(t — o), oy =0, /¥, /¥ polynomials (15)
and the continuous plant is given by
L (p)v(r) =. 7/ (ple(t ~— 0), og=0; £ (*),. #/ :polynomials, (16)

where {y"(-)}, {v()}, {e™(*)} and {e(-)} are the output and input sequence, gy and o are the
constant delays and p is the nme derivative operator (i.e. p = d/dr). It is assumed that. / (s)
has all its zeroes in Re (s5) < 0 and that {¢*(r)} is a bounded sequence. Since (i5) is stabie,
these assumptions are directly connected with Assumptions 4 and 5 in section 2. In addition,

he fr\”nunr\n hvnnfhnc|(‘ 1¢c made
the ViU WIig 1y pUUILSIS 15 hauc.

Assumption 7. Models (15) and (16) correspond to strictly proper transfer functions. ®

Remark 3.1
Assumption 7 implies d = 1. Otherwise d would be zero. Thus, the same hypotheses as
in (10) are held for the adaptive sampling case. [ |
Discretizing (16) by a set of sampler and zero-order holds, each one being related to a

controller within a multirate paralle! distribution, one obtains the finite time-varying difference
equation[3b] related to the lowest sampling period:

Alg' T hk)IV(, k) = g~ YBlg T (kD]e(,, 44, allk, = 0, a7

where the 7, are the corresponding sampling points. Equation (17) is subjected to the initial
conditions

y([0)9 .v(tl)» R} .v(tn\-l)a

e(to), e(r)), . . ., e(t, 1),

(18)

where q ~'(-) and q ~I(+) are backward time shifts which act rPcnpr'tive!y’ on the real and

il Ual iRy avi, iLspett

1nduced sampling instants. The sampling points are obtained from the sampling law ) (see
Table 1 for particular sampling criteria), while the induced ones are supplied by the ‘‘induced”’

“This assumption is unnecessary and the reference model couid be also defined by an arbitrary bounded function

detined for all time (implicit model) or by a discrete mode! of constant or time- varying parameters.
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Table 1. Adaptive sampling control laws obtained in [7]

Approximate
sampling control
laws e,

Sampling 1 \ Sampling
control law <_. fe. — e i T, 2) law
No. T, T, parameters
me Tm:u — Tr—l C = 2
1 Cét + 1 Cle, — e} + 1 YYV:E
B = VT
c CT.., :
2 T e C = (AB)"
lel' |ev - é'y-ll
C CT?: 3AB)"*
3 == T c = 348
[e.]* le, — e,_J** 2
Cle, = e C = 1124B*
4 - cle T = =
T — Cléi . B = T,
5 T ax Tl - C = 1/AB}
Cle| + 1 Cle, = e} + T._, B = UT,,
C CT..,
6 o T C = AB
lell ‘e, - 5’,71‘
C C(T, )" 2
7 A — C = (2/3AB)"
le" e, = el

sampling criterion {2'((2), which is dependent on the current modeling interval [k, k; + n4],
and defined by Q'(Q) = # () + (T, 44 for all integers k, = 0,1 € [0, ny — 1] with

l ky+ny—1

7-‘11‘44-I(| = - 2 (T/)

i=k

being the mean sampling interval of [t , 7, .. ]. The discrete time delay is

1 if @ = O (if the plant is assumed to be strictly proper),

dk) =

i=2

3.2 Adaptive sampling laws

For design purposes, one establishes an admissibility domain D = (T,

min integer {z =2, Z T, i = cr} if ¢ > 0.

(19)

— AT, T* +

AT,] around the lowest nominal sampling period T}. D must satisfy the following requirements.

1. It must be placed within the stability domain.

2. AT] must be sufficiently small to maintain d(k) constant. Otherwise, the number of parameters

to be adapted suffer real-time variations.

3. In addition, AT, must be as small as necessary in order that the controlied plant does not
suffer great variations in their parameters due to the sampling process. Also, it is interesting
that it must be sufficiently significant to achieve the pursued purposes for improving the
transient behaviour. A ‘‘trade off’’ between these two situations must be found by using a

priori knowledge about the system.

In order to maintain the delay constant and each induced sampling instant between the
preceding and the following related sampling points, the following result is useful.

THEOREM 3.1

Assume that T,(k,) € D and that d is the delay corresponding to the lowest nominal

sampling period T7. Then the following holds.
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= T o
0< AT, < (20)
(i1) If there exist known lower and higher positive real bounds o, > (d — DT¥, o, <

dT* for the continuous-time delay o. then a sufficient condition for the discrete delay to be
constant is that

= [ o G
0<ATlsminkd—:——T7“,T7"——T). (1)
(iii) The induced sampling points are placed between the preceding and the following sampling
points related to its associated sampling instants (i.e. 1, ., < & (k) < f, , al i = 1,
2, ...,y — Dif

— T¥
0 < AT, = ——. 22
] 2n, + 1 (22)
General criteria for adaptive sampling are shown in Table 1. ]

When multirate sampling has to be used, some modifications of the adaptive sampling
laws must be introduced since one deals with several sampling controllers as a natural con-
sequence of the prOUlClll at hand. Two appi'OaCuca arc élv’cu in the fuu(‘}"w'iﬁg

Approach 1. The sampling periods of the multirate scheme are adapted individually but
subsequently a (weighted or not) least-squares approximation is implemented to find a value of
the nominal lowest sampling interval. Subsequently, this modified value is used together with
the nominal factors \;,, i, j = 1, 2, .. ., m (which relate each sampling interval to the others)
in order to determine the final sampling intervals of the overall multirate sampling scheme.
Under the above considerations, the adaptation scheme results in

ATk, + d) = \\AT(k,, + d) = \,AT (k, + d)

/2 Q/A/IAT;(’I"I; + d)\)
A

=1

(23)

I

ki, k,>0,0,j=1,2

il kg H i I s bs J d R
\ Zew )

i=1

where AT(k, + d) is the above modification module which is related to the values AT/,(+)
which are obtained from any of the adaptation sampling laws of Table 1 through the least-

squares approximation scheme

m

J(1y = 3 oA (ky; + d)) = NyAT(k,, + d))?, (24)
i=1
all ¢ being equal to
1]
> Tk, allj=1.2,....m,
ky=0

and some integer p, > O (i.e. a time interval which includes a sampling point of each adaptive
sampling controller). The positive scalars o, j = 1, 2, . . . , m are the weighting factors used
in the .eas‘-squares appr0x1mauon Uy each aalupuug L.Ului'\’)}}cx

Approach 2. The sampling rate of each adaptive controller is adapted independently of
the nominal factors N;. i, j = 1, 2, .. ., m which relate each nominal sampling interval to
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the remaining ones. In this way, the sampling laws of Table | are used to generate the set
Ti(k), . . ., Th(k,) at each sampling point of any (or various) controllers. Subsequently. the
lowest sampling period is projected into the boundary of D, if it lies outside, while computing
a proportionality factor applicable to obtain all the remaining periods. The sampling adaptation
process is summarized in the following algorithm.

Step 0. (Initialization). Make /, &, k>, . . . , k,, < 0.

Step 1. At the current sampling point ¢, obtain the sampling periods f',(k, + d) of the set
of controllers J;, which act at this instant.
i Step 2. Construct the list SP of all the future sampling points as SP = {f,.,, f,., . . . .
tl+m}‘

Step 3. If the first controller acts at 1,, then compute the correction factor

Tk, +d) . _
-T_'I}"—I—*Aif if T\(k, + d) < T¢¥ — AT,,
atk) = { Tyk + d) if Tk, + d) > T + AT 23)
TF + AT, m ! "
1 if (k) € D;
else go to Step 4.
Step 4. Modify the list SP as
. Hk, + 1)
k. + 1 —t I, 2, , 2
tl( /] )(_ a(k') m ( 6)

Step 5. Order the list SP according to

SP = {;[+|, ;14.2, P ;I+m|;1+i = ;/+1+|, a]ll = l, 2, Y (et l}
with
; [k | atk + D
Po= LR T s w=o0]b.
I+ {lr:jlsnm I:a(kl) Ol(k|) I+i+1 !

Step 6. Obtain the next sampliing point at ¢,,, <« ?,H. Make [ « [ + 1, k; < k; + | for
allj € J,.
Step 7. End.

Remarks 3.2

1. Because of its structure, Approach | maintains the synchronism of the overall multirate
scheme since there exist sampling points which correspond to all the adaptive sampling con-
trollers. However, the sampling adaptation takes place only at the synchronism points. From a
sampling adaptation point of view, this circumstance makes Approach 1 less efficient than the
step-by-step adaptive Approach 2.

2. In Approach 2, the periodic synchronism of all the sampling controllers becomes lost
because the factors A, i, j = |, 2, . . ., m which relate each nominal sampling interval to
the remaining ones are not used for the on-line obtention of the sampling intervals.

3. In the above algorithm for implementation of Approach 2, the initial sampling periods
obtained in Step | are not necessarily subjected to constraints. At this design level, the most
important question is to achieve adaptive sampling laws that have easy implementation. For
this reason, Step 3 implements a projection of the current computed values of the sampling
periods within the admissibility domain D. With the given organization, the algorithm is not
either excessively computing-time consuming or demanding of great memory requirements.

3.3 Multirate adaptive controllers with local adaptive saumpling control laws
The last step of the design pursued in this section is to combine the adaptive sampling
design with the use of multirate adaptive controllers.
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The polynomial factorization (5) now becomes

Clg' ~'tk)) = 1 + 2, clk)g' (k) = Alg'~'k)ISlg' ™' (k)] -
i=1
+ g 7“Rlq' ~'(k)], kk=0,1,...,

where the coefficients of the C,[¢’ ~'(k,)] polynomial may be chosen as those of C,.(¢™") with
Slq’ ~'(k))] and Rlq’' ~'(k,)] being time-varying polynomials defined in the same way as those
in section 2. Thus, in this case™

Clg' "'tk + d = n)ly(en) = Slg' 'tk + d = n))Blg™ 'k + d = n)]
X e(t,+d) + RIG' ki + d — n)ly(t2a) = 07(k))db(ky). (28)
The (asymptotic) control and regulation objectives are expressed as
Clg' ="k, + k — n)lWMk, + d) = 7k)dk), k=0,i=1,2,...,m (29

The time-varying parameter vector is expiicited by

ny d—1

B(k)) = [bylky), 83k = [bo(kl), E 2 bi(k)s;(k,)

i=0 j=0

x 81 — ztky +d = ny)), ..., 8d + ng — 1 = z(ky + d ~ n)}, (30)

X rolky), . .., r,,k(kl)},

with
L1 if j = 0,
() = {O otherwise,
z(ky + d — n,) = min integer {z, Z Tk, +d -1 (31)
O=:=n, i=1

j —
2> Tk +d—1)—iTyk + d k +d— n,,)},
1=1

where this slightly modified notation, with respect to that of section 3.2, is used for T(-) and
7(.,(-) to specify the controller which is referred to [the first one in (31)]. The adaptive controller
parameter vectors 6.(k,), the associate adaptation gain matrices F(k;) and the input to the plant
are computed as in (11) and (12), and the measurement vector involves the use of induced
sampling points for the output sequence. Thus, one has

&k) = [ek), dFNT = [ek), eth, — 1), ..., ety —d — ng + 1),
X y(k)y, yki = 1), ..., yki — n)l", (32)

with the superscript primes denoting the induced sampling points within each current modeling
interval (i.e. k{ — [ stands for f; (n, — 1)), [ € [0, ng] with #;,(n,) = 1, all integer k; = 0,
i = 1,2, ..., m In spite of the use of the induced sampling, the application of the results
in Theorem 3.1(iii) help to maintain a weak computation effort. Since the last sampling point
of each modeling interval and its related induced value are coincident, the control law (12) is
physically implementable if the measurement vector (32) is used.

The multirate adaptive sampling adaptive control scheme is shown in Fig. 3.

The following stability result is useful.

*In previous papers. a more involved notation was used for polynomials. measurements and plant and adaptive
controller parameters by forming an index to design each current modeling interval. Since no ambiguity results from
deleting such an index. it is not used in this paper.
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Fig. 3. Multirate adaptive control with adaptive sampling.

THEOREM 3.2

Under Assumptions -5 and Assumption 7, the time-varying discrete plant (17)-(18),
subject to the adaptation scheme (11)~(12) and Theorem 3.1(ii), fulfills asymptotically the
regulation and tracking objectives if lim, .. Ti(k) = T,, i = 1,2, ..., m.

Proof is given in Appendix. ]

Remarks 3.3

1. It is evident that the asymptotic condition of constant sampling in Theorem 3.2 implies
that the discrete plant is asymptotically parameterized by a constant parameter vector.

2. A natural extension of the use of a dead-beat zone by the adaptive controller when
disturbances are present may be easily made by using the tools of section 2.3 and the extensions
of (16) to the adaptive scheme (11)-(12). Stability is preserved under similar conditions to
those given in section 2. (See [14] for the continuous standard case). ]

4. DEAD-BEAT ERROR BOUNDS FOR ADAPTATION

In sections 2 and 3, adaptive schemes which involve the use of dead-beat zones for
adaptation have been proposed when additive output disturbances are present. In such a case,
instead of the difference equation

A(g ytk, + d) = B(g Nelk)), allk, = 0 (33)
for the discrete plant, one has
Alg~ ik, + d) = B(g Hek) + vk, + d), all k, = 0, (34)

where $(-) and é(-) are measured variables which are influenced through the difference eqn (34)
and the control law (12) by previous output disturbances v(-). From (34), the input fulfills

Alg™")

R =B

vty +d — 1) — vk, + d), all &, = 0. (3%

|
B(g™H
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On the other hand. from (12), assuming that the true parameter vector 8 is known, one
has

m l m
étkyy = > TS {C,(q")y”(k, + d)bolk) — 2 by,
i=1 YOoithy j=1

J#Ei

X [Cr(q,]))‘M(ki/ + d) - B(T)&O(ku)}}’ al] k] = 0’ (36)
where &., denotes the disturbed measurement vector.
Let ¥(-) denote the accumulated output (and regulation/tracking error) disturbance due to
the transmission of v(-) through é(-) and ¥(-). From (33) and (34) one has

Alg™ "Wk, + d) = Blg~éky — elkp] + vk, + d), all k, = 0. (37)

Also, from (34) and (36), it 1s clear that

éth) — eth) = 2, {2 85 [do(k) — dotk)] — —— 0]
i=t Uj=1 b()(’\,‘)
X (dolk) — ¢0<k,->]} (38)
m m d+n},—! d+ng+ny,
= ( > 0Tetk; — 1) — ety — DI+ D 80"
i=1j=1 =1 I=d+ny

X [¥k; = 1+ d + ng) — ylky; — 1 +d + ny)l, all k, = 0,

where the superscript 1s denote the components of the parameter vector. Thus, (38) may be
expressed as

/g éky)y — etk)] = AB(gHHKk) — vk, all k, = 0, (39)
where "/ (¢~') and /3 (g~") are polynomials defined directly from (38). The ¢~' delay operator

is related to each output sample irrespective of the controller which is acting. From (39) into
(37), one has as transfer function for the noise transmission

/(g
(g YA — g A(g B(g™)

v(k) = v(k,), all k, = 0. (40)

For the parallel case of adaptive sampling treated in section 3, the ¢’ (modeling interval
dependent) operator must be introduced in the ARMA model associated with (40).

Now it is possible to determine the bound ¢, for the adaptation algorithms with dead zone
from the knowledge of a bound v, such that |v(k))| < v, all k, = 0, as follows. From (40), it
follows immediately that

[p(k))| € —=———, all &, = 0, 1)

where ./ and A are positive constants being the sum of known upper bounds for the absolute
corresponding values of the.'/(¢g™') and A(g~") polynomials and 4 and B are defined in the
same way by considering lower bounds for the 43 (¢~') and B(¢~") polynomials.

The point of view adopted for determining such bounds can be more or less pessimistic
according to a priori knowledge on the plant parameters. That the tracking error can be ensured
to be closer to the accumulated noise component and taking a less pessimistic point of view
are adopted in determining (41). A very pessimistic computation of the bounds in (41) would
translate into greater tracking errors but not in instability. The above development has been
made for bounds of the true parameter vector. Since the adaptive algorithms in sections 2 and

CAMWA 11:12-E
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3 are such that the adaptive controller parameter remains bounded. the above development is
valid for sufficiently accurate absolute bounds of the time evolution of this vector.

5. PRACTICAL EXPERIMENTATION

5.1 General considerations

There are both advantages and drawbacks for both choices of the sampling intervals
(namely, great or small intervals). Generally speaking. the following are well known in sampling
theory.

1. Upper bounds for the allowable sampling period must be taken according to the desired
stability. Lower bounds are related to the closed-loop system bandwidth (typically. from 2 to
20 times smaller than the bandwidth).

2. As the sampling period decreases. the system behaviour becomes very close to its
equivalent continuous system. In general, the discretization effects greatly increase with the
instability degree (and thus with the length of transient behaviour) if certain compensator types.
such as a dead-beat controller, are not used. This phenomenon is not general but it is usual.

3. In the presence of unmodeled dynamics[17], the sampling rate must be slower as other
considerations pertain in adaptive control problems. This makes the tracking error closer to that
registered with a correct modeling. However, in the presence of higher-frequency disturbances
no advantage is found by the use of this strategy. However, if the sampling rate grows. the
disturbances can be filtered and the stability of the adaptive scheme improved.

Thus, in a discrete adaptive problem in which the sampling period can be manipulated.
both advantages and disadvantages can arise from a choice of great or small values. Therefore,
multirate sampling may be useful. Furthermore, in certain applications (see aircraft applica-
tions[5,16,19]) it is useful to design autopilots having an internal stabilator loop with fast
sampling and an external control loop with slow sampling for the design of the closed-loop
system bandwidth and gain scheduling for different flight conditions.

Now different simulations are presented for a second-order plant using the methodologies
of sections 2 and 3. Two adaptive controllers at different sampling rates are involved. The
results obtained are better, under the assumptions of the presence of unmodeled dynamics and
output disturbances, than those obtained from the use of an adaptive controller only.

5.2 Examples
The plant which is assumed has the transfer function

5 1
W) = T e 8 (s n 20)

Tracking errors

102 ]

+ +
1 2 3 4 ]

- - Time
P ™ - Slow sampiing —

.2 \ Muitirate sampling
07T ’

Fast samphng

-2x102 1

Fig. 4. Tracking errors for the example of Case A.



Multirate digital adaptive control 1207

w02
o] t +
1 2
Mulnrate sompling
-~
a2 g ,
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-2x10 T
Fig. 5. Tracking errors for the example of Case B.
{the term in parentheses is unmodeled dynamics for the controller design). The reference model

Wy(s) =

Y

s+ 45 + 3

The reference input to the reference model is r(r) = 10 sin 0.17¢. The output disturbance
v,(t) = 4 sin 7. and C (constant of the adaptive sampling laws) is 0.11 x 107°. The observation
interval for the experiments is {0.9]. The two multirate controllers have as nominal sampling

periods T = (.13 and T¥ = 0.26. The allowed variations for the Pxpenmpnt& related to the

developments in section 3 are Thy, = 0.11, Thi, = 0.15, Ty, = 0.22 and Ty, = 0.30; all
the parameters of the adaptive controllers are initialized to unity; F(0) = Diag (10%); A1) =
c(t)y = 1 in the adaptive algorithms. Using the technique developed in section 5 for determining
an upper bound for the accumulated tracking/regulation error noise, it is found that ¢, = 5.
This bound is computed by assuming that the upper bound 4 is known for the additive noise
and that the values of the parameters of the plant vary around 30% of its nommal values The

£311¢ tal + Lar tha
filter C ,u.[ ] is taken as unhy. Or e auaptwe sampl n'lg .aws,

Table 1 are used. The disturbance is assumed to be zero for all + = 3.

Case A. (two multirate controllers for the plant without output disturbances but with
unmodeled dynamics.) In Fig. 4 the tracking errors are shown for the two adaptive controllers
working both separately and together. The combined multirate design is shown to be more
efficient during the transient in terms of tracking error signal levels.

Tracking errors

Multirate Camnlinog Cannancec

Multirate Sampling Sequences

> Law 7 [Fast: 0.12(2). 0.16(2).
164+ 0.1772. 0.12(4). 0.1621.

0.12(18), 0.1531, 0.1263
Sempiing law 3 {Approach 21 Slow: 0.6(2). 0.8(3). 0.7]
Sampling tow 7 (Approach 21 Law 3 (Approach 1) [Fast: 0.12(2).
0.16(2). 0.1558. 0.12(4).
5 0.1621. 0.12(18), 0.1531.
0.1263 /
Slow: 0.7158, 0.6421. 0.6(3),

8 £32041
0.6394]

Law 3 (Approach 2) [Fast: 0.12(2).
0.16(2). 0.1762. 0.12(4).
Sampling law 3 (Approach o, 5 = 1) 0.1538.0.1220

Slow: 0.6(2). 0.8(3). 0.7]

—2x162

Fig. 6. Tracking errors for the example of Case A. adaptive sampling law 3. by using Approaches | and 2 in
3.2. Same as for the sampling law 7 by using Approach 2.



1208 M. DE LA SEN

Tracking errors

10° 1
Sampling low 7
/4\ Multirate Sampling Sequence
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1 Ny 2 = " 0.12(4H. 01338, (L1241, 0.16¢18).
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Fig. 7. Tracking errors for the example of Case B, adaptive sampling laws 3-7 with Approach 2.

Case B. (as above, with bounded output disturbances and unmodeled dynamic e
conclusions as in Case A are obtained. The tracking errors are shown in Fig. 5. This could be
expected from the known advantages of the dead-beat control in the presence of additive
disturbances[14].

Case C. (adaptive sampling for Case A). The tracking errors are shown in Fig. 6 for,
respectively, the adaptive sampling laws 3 and 7 of Tabie 1. Note that Approach 2 is more
efficient than Approach 1 for a multirate adaptive design.

~ . . .
Case D. (adaptive sampling for Case B). The tracking errors are shown i

€ t
adaptive sampling laws 3 and 7 of Table 1. T,,, and T, are selected a priori according to the
allowed variation for the sampling period around its nominal value.

h

1

Fio. 7 for
I Ior

im.

n
i

o

6. CONCLUSIONS

In this papcr multirate sampling design has been applied to a discrete adaptive control

~ocac Jombntionm 2nmn Foe tha ~ Af tha mracancra ~AF additiva

aigorithm The cases of a dead-beat adgaptation Zofic 10f N Casc Or in preésence o1 aaaiiive
disturbances has been considered. Also, an adaptive sampling approach has been used to improve
the transient characteristics of the system behaviour.

Examples have shown that the proposed designs can improve those associated with a single-
rate design at fast or slow sampling rates under the presence of bounded disturbances and
unmodeled dynamics.
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APPENDIX

Proof of Theorem 2.1. The two following intermediate results are needed for the proof.

LEMMA Al

For the adaptive scheme (10)—(12), the following propositions hold fori = 1.2, ..., m.
(1) Vik) = 67k)F 'tk + DBk < VI0) < = if Vi{0) < =.
(i) lim .. V(k) =V, < =,

(iii) If A(k,) = 1 (or. alternatively. is chosen according to the achievement of a constant or bounded trace of the
adaptation matrix) and all &, = k (some finite £), then [|0,(k)]| < =. N )
(v) limy .. 8;(k) = lim_, 6,(k, — p) = @, some finite integer p. where 8,(k,) = 0 — 6,k), i = 1,2, ..., m.

Proof. From standard results it follows that V,(,) is a nonincreasing positive function. This implies propositions (i),
(ii). Also. from (10)~(12). one has

O7(h) bk, — d))?

lim (Vi(k, + 1) = V(k) = lim
i vxoolk) + Ok = dYFk)Ok, — d)

(A.1)
=0
Thus. either lim,_.. 07¢k)bk, — d) = Oor
i 67k, — d)| 0 A.2)
im = 0. .
G k) + STk, — dIFAk)Dk, — d)

If the first possibility holds. the regulation and tracking objectives (Theorem 2.1) are accomplished. The first
possibility implies directly (A.2). Equation (A.2) together with (10) and (11) implies (iv). Proposition (iii) follows
from the relations

Nl F7HE, + DB < Vik) < V.
and

Mol UK+ d)) 2 NoalF7NED)) > 0
if k, < % (Ap,(-) and [I()i] denote, respectively. the minimum eigenvalue of a matrix and the euclidean norm). Q.E.D.
The second intermediate result is a direct extension of a key result stated in Goodwin, Ramadge and Caines{6)

for minimum-phase systems.

LEMMA A2
Under Assumptions A.1-A.5. the measurement vectors d(k), 0 S k, s = i = 1,2, ... . m in the adaptive

;

scheme (10)-(12) do not grow more than linearly with the associate tracking and regulation errors.
Proof. Note trom (12) thatt

Colg "Wk + dy = 874G K).,  k=0.j=1.2.....m (A.3)
From the control objectives (7) and the model (10). one has
Clg vk, + d) = 87" (k). all integer &, = 0. (A.4)
From (A.3) and (A.4) one deduces that
Clg ek, + d) = 67 (hpd (k). all integer &, = 0. (A.5)
Using well-known results in Goodwin, Ramadge and Caines[6]. one has
otk = C, + C: max 18T (0i)). some constants 0

= (, < x,. 0 = C, < = (linear boundedness condition)  (A.6)

_ "The following equations always stand for vectors 8' 2 [87. (n — 1) zeros)” and 6! (k) = [6,’(/(,). bok,), ..
b,k )7 together with their associate measurement vectors [see egns (12)]
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Since. from Lemma A.1. || (k)] is bounded. there exist constants 0 < C = C, + C: MaXu.s U8 b Ny =

C, + C: maxp=, (Cg )" + ) < =.j = 1.2.. ... m such that
otk < €] + C: max [max (87 (nd, (1] (A7)
Tsjsm sk
where C| = max,.,., C;, forallt = kT, =1,2..... m (k, = k) (i.e. 1 takes the values of all the possible

sampling points). Q.E.D.

Proof of Theorem 2.1 follows directly by applying Lemma A.2 to Lemma A.1. (In the case of using some
controllers of lower dimensionality, (A.7) remains valid with the remaining components of 6(-) being equal to those
of 9.) ]

Proof of Theorem 2.2. Let =* the set of positive integers including zero. One defines the sets

Us 2= e > e U 2 €z |el)] < e (A.3)
The adaptation scheme (14) implies that the scalar function V(-). defined as in Lemma A.1. verifies that

Vitk, + 1) = V(k) ifk, € U,

Vitke + 1) — Vith) <0 ifk € U” (A9
for all integers 0 < &k, <=,/ = 1,2, ..., m Let /() be the Lebesgue measure of the set (). If 1 (U™) = =
or £ (U*) = = (or both are infinite, namely the disturbed adaptation error enters alternately from the adaptationno

adaptation zone to the other), then Lemma A. | applies mutatis mutandis.
From Assumption 6, the disturbed measurement vector is bounded. Thus. instead of (A.7). one has

b’ (kll =< """kl + llb" k)|

< C| + C, max [max (16;"(1yd;"(1)D] (A.10)
[EYE e

< CY + C! max [max (87N ()],
Ixgsm Uiy

where ¢'(-) denotes the noise component of ¢'(-) and superscripts fn denote its noise-free component. with the positive
bounded constant CY being defined by

Cr = C) + Ci max [max (16,7 (0] + lld; k). (A1)

baysm o 0misk)

Thus Lemma A.2 is also fuifilled and lim,.. 8'7(Nd'(1) = 0if /1 (U") < x and 4 (/") = =. In all the cases.
all the signals within the system are bounded. Q.E.D.

Proof of Theorem 3.2. Since T,(k,) tends to a finite limit 7, as &, tends to infinity, there exists a non-zero limit
parameter vector § = lim,,_. 8,(k,). By continuity of 8(k,) around Tuk) = [Tik). Tk, = D, ... Tk, = ny + DY,
a Lipschitz condition type

18T) — 8l < ClIT, = Tl some0<C, <% k=0.i=1.2.... .m (A.12)

is tulfilled since T, € D and T\(k,) € D, ail k, = 0. From (A.12). one has

6ol < 8l + CiliT,, = T <ol + C: = CJibll.  all integral &, = 0 (A.13)

for some bounded constants Cs and C,. The linear boundedness condition{6] is also tulfilled by time-varying systems
whose inverses are stable.™ Thus (A.6), together with (A.12) and {B.1) and (B.2). result in

okl = €, + C, max [max (0" (nNd" (D]

gm0y

=m0k

< C, + C, max [ max 6 (Hd (D)
' (A1)
+ C.C, max |max (|87 (0Ih]

(R AR AN ¥

< C + Cimax (max (O77(d' O = L2 L

[ ENNIEN Y

which is of the same type as (A.7), with bounded constants

Ci = C + C{l + C,) max [max (18,7 ()" (1l})].
e (A.15)

C, = C,C.. Q.E.D.

1

+This arises since such a property is associated with state-space models rather than with transter function models.



