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a b s t r a c t

Lattice chains and Delannoy paths represent two different ways to progress through
a lattice. We use elementary combinatorial arguments to derive new expressions for
the number of chains and the number of Delannoy paths in a lattice of arbitrary finite
dimension. Specifically, fix nonnegative integers n1, . . . , nd, and let L denote the lattice of
points (a1, . . . , ad) ∈ Zd that satisfy 0 ≤ ai ≤ ni for 1 ≤ i ≤ d. We prove that the number
of chains in L is given by
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where k′
max = n1 + · · · + nd−1 + 1. We also show that the number of Delannoy paths in L

equals
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Setting ni = n (for all i) in these expressions yields a new proof of a recent result of Duchi
and Sulanke [9] relating the total number of chains to the central Delannoy numbers. We
also give a novel derivation of the generating functions for these numbers in arbitrary
dimension.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Lattice chains and Delannoy paths are natural combinatorial objects with a rich history, and they have enjoyed a surge
of interest in recent decades. Popular expositions of combinatorics, such as those by Comtet [8] and Stanley [16], promote
their study and provide several tools for their analysis. Interesting connections have appeared between chains and other
topics, including probability theory, ballot numbers, Legendre polynomials, simplicial complexes, and formal languages, to
name only a few [3,4,6,11,15]. The interested reader can findmore on these topics in the survey by Banderier and Schwer [3],
which has over 75 bibliographic references.

The study of chains and paths often reveals an interplay between counting arguments and generating functions. In
Stanley [16], a problem involving lattice chains and Delannoy paths in two dimensions is used to illustrate a technique
for extracting the diagonal of a generating function. Specifically, the problem is to show that, in an n× n lattice, the number

∗ Corresponding author.
E-mail address: caughman@pdx.edu (J.S. Caughman).

0012-365X/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2011.04.024

http://dx.doi.org/10.1016/j.disc.2011.04.024
http://www.elsevier.com/locate/disc
http://www.elsevier.com/locate/disc
mailto:caughman@pdx.edu
http://dx.doi.org/10.1016/j.disc.2011.04.024


1804 J.S. Caughman et al. / Discrete Mathematics 311 (2011) 1803–1812

of chains exceeds the number of Delannoy paths by a factor of 2n+1. Stanley proves this using generating functions, and then
poses the question of finding a combinatorial proof of the same result.

This challenge was met by Sulanke [17], who found a bijective correspondence, and later by Caughman et al. [5], who
offered an inclusion–exclusion argument. More recently, Duchi and Sulanke [9] generalized Sulanke’s result from the
central case in two dimensions to the central case in arbitrary dimension, again by means of explicit bijections. Since then,
Tărnăuceanu has derived an expression for the central Delannoy numbers in arbitrary dimension [18]. In this article, we
generalize all the above results by considering the general (not necessarily central) case in arbitrary dimension. In this
general setting, we use counting techniques to derive new formulas, both for chains and for Delannoy paths. The resulting
expressions that count these two objects are strikingly similar in form, and upon an appropriate substitution they yield an
alternate proof of Duchi and Sulanke’s theorem.

We also consider the generating functions for lattice chains and Delannoy paths. It is perhaps not surprising that the
coefficients for these satisfy similar recurrence relations. We introduce a concept that describes the recursive structure
they have in common, and we exploit this to provide a novel method for deriving any such generating function easily and
uniformly for arbitrary dimension. In the special case of chains and Delannoy paths, the generating functions had previously
been computed by MacMahon using more specific ad hoc techniques [13, pp. 156–9].

Our results are organized as follows. In Section 2, we fix the notation and describe our results on lattice chains, including
k-chains, reducible chains, and the total number of chains. In Section 3, we consider Delannoy paths, first finding the number
of k-step paths, and then the total number of paths. Evaluating the expressions for chains and Delannoy paths in the central
case,we obtain as a corollary the result of Duchi and Sulanke [9]. In Section 4,we introduce the class of a-recurrent sequences
of functions – a class that includes both the chain numbers and the Delannoy numbers as special cases – and we offer an
explicit expression for their generating functions in any dimension.

2. Results on lattice chains

We begin by defining the lattice L(n). Let N denote the nonnegative integers and P the positive integers. Fix d ∈ P and
n ∈ Nd, where n = (n1, . . . , nd)

T . Let L(n) denote the lattice of integer points (a1, . . . , ad)T ∈ Nd satisfying ai ≤ ni for
1 ≤ i ≤ d.

Recall that L(n) is partially ordered by the dominance relation, defined as follows. Given a, b ∈ L(n) with a =

(a1, . . . , ad)T and b = (b1, . . . , bd)T , we say that a ≼ b whenever ai ≤ bi for each i(1 ≤ i ≤ d). We write a ≺ b whenever
a ≼ b and a ≠ b.

Define the weight of an element a = (a1, . . . , ad)T ∈ L(n) by wt(a) = a1 + · · · + ad. We define the truncation of a to be
the (d − 1)-tuple a′

= (a1, . . . , ad−1)
T .

2.1. Counting k-chains and some variations

By a chain in L(n), we mean a subset of L(n) that is totally ordered by ≼. A k-chain is a chain with k elements. Let C(n)
denote the set of chains in L(n), and, for each integer k, let Ck(n) denote the set of k-chains in L(n). In this section, we review
expressions for |Ck(n)| and |C(n)|, and introduce a useful variation of Ck(n).

Expressions for |Ck(n)| have been computed in several places for the special case of a hypercube, where ni = 1 for all
i [10,14], and the general case was solved by Chou [7]. Each of these derivations proceeds either by solving an appropriate
recurrence or by employing generating functions. More recently, a direct counting argument was given for |Ck(n)| in the
general case using the principle of inclusion/exclusion by Caughman et al. [5].

A few basic results on k-chains are summarized in the following lemma.

Lemma 1. Fix n ∈ Nd, where n = (n1, . . . , nd)
T , and, for each k ∈ N, let Ck(n) denote the set of k-chains in the corresponding

lattice L(n), andCk(n) the set of chains in Ck(n) that contain the maximum element n. Then the following hold.
(i) The maximum length of a chain in L(n) is given by

kmax = wt(n) + 1.
(ii) [5, Thm. 1] For any integer k (1 ≤ k ≤ kmax), the number of k-chains in L(n) is given by

|Ck(n)| =

k−1−
r=0

(−1)r

k − 1

r

 d∏
i=1


ni + k − r

ni


.

(iii) For any integer k (1 ≤ k ≤ kmax), the number of k-chains in L(n) that contain n is given by

|Ck(n)| =

k−
i=1

(−1)i+1
|Ck−i(n)|.

Proof. (iii) Note that |C0(n)| = 1 and |C0(n)| = 0. For k ≥ 1, each k-chain containing n corresponds to a unique (k − 1)-
chain that does not contain n (and conversely). So |Ck(n)| = |Ck−1(n) \Ck−1(n)| = |Ck−1(n)| − |Ck−1(n)|. The result now
follows by a simple induction. �
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2.2. Counting reducible chains

Wesay that a chain ξ is reducible if the truncations of its elements are distinct. Equivalently, a k-chain ξ in L(n) is reducible
iff the set ξ ′, formed by truncating the elements of ξ , remains a k-chain in L(n′). For example, let n = (2, 4, 4)T , and suppose
that ξ1 and ξ2 are the following 3-chains:

ξ1 :

0
3
1


≺

0
3
2


≺

1
3
3


and ξ2 :

0
2
1


≺

1
3
1


≺

2
3
2


.

Then ξ1 is not reducible, since the first two elements have identical truncations. On the other hand, ξ2 is reducible. Note that
ξ ′

1 has only two distinct elements, while ξ ′

2 remains a 3-chain:

ξ ′

1 :


0
3


≺


1
3


and ξ ′

2 :


0
2


≺


1
3


≺


2
3


.

The next result is the analogue of Lemma 1 for reducible chains.

Lemma 2. With the notation of Lemma 1, let C red(n) denote the set of reducible chains in L(n), and letC red(n) denote the set of
reducible chains that contain n. Then the following hold.

(i) The maximum length of a reducible chain in L(n) is given by

k′

max = wt(n′) + 1.

(ii) The number of reducible chains in L(n) is given by

|C red(n)| =

k′max−
k=0


nd + k
nd


|Ck(n′)|.

(iii) The number of reducible chains in L(n) that contain n is given by

|C red(n)| =

k′max−
k=1


nd + k − 1

nd


|Ck(n′)|.

Proof. (i) By truncation, every reducible k-chain ξ in L(n) corresponds to a unique k-chain ξ ′ in L(n′). Therefore, k ≤ k′
max

by Lemma 1(i). Conversely, since any chain in L(n′) extends to a reducible chain in L(n), there are reducible chains in L(n)
of length k′

max.
(ii) Fix an integer k(1 ≤ k ≤ k′

max) and let ξ be any reducible k-chain. Truncation gives a unique k-chain ξ ′ in L(n′), and the
dth coordinates of the elements in ξ form a non-decreasing sequence of integers between 0 and nd (inclusive). Conversely,
such a sequence and a k-chain in L(n′) correspond to a unique reducible chain in L(n). The number of such sequences is

nd+k
nd


. Multiplying by |Ck(n′)| and summing over k, we obtain the result.

(iii) As in (ii) above, each reducible chain ξ inCk(n) corresponds to a unique ξ ′ inCk(n′) and a non-decreasing sequence
of integers between 0 and nd (inclusive), which contains nd at least once. The number of such sequences is


nd+k−1

nd


.

Multiplying by |Ck(n′)| and summing over k, we obtain the result. �

Combining the preceding lemmas, we have the following.

Theorem 3. With the notation of Lemma 2, the number of reducible chains in L(n) that contain n is given by

|C red(n)| =

k′max−
k=1

k−
i=1

(−1)i+1

nd + k − 1

nd


|Ck−i(n′)|.

Proof. Immediate, by Lemmas 1(iii) and 2(iii). �

Using Lemma 1(ii), we can evaluate |Ck−i(n′)| in Theorem 3 to obtain a triple sum. As the next result shows, however,
this reduces to a double sum.

Theorem 4. With the notation of Lemma 2, the number of reducible chains in L(n) that contain n is given by

|C red(n)| =

k′max−
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.
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Proof. Consider the expression for |C red(n)| given in Theorem 3. Recall that |C0(n)| = 1, and for i < k we can evaluate
|Ck−i(n)| using Lemma 1(ii) to obtain

|C red(n)| =

k′max−
k=1


nd + k − 1

nd


(−1)k+1

+

k−1−
i=1

k−i−1−
r=0

(−1)r+i+1

k − i − 1

r

 d−1∏
j=1


nj + k − i − r

nj


.

With the change of variables r = k − i − t , this simplifies to

|C red(n)| =

k′max−
k=1


nd + k − 1

nd


(−1)k+1


1 +

k−1−
i=1

k−i−
t=1

(−1)t
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.

Interchanging the order of summation over i and t , this is equivalent to

|C red(n)| =

k′max−
k=1
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nd


(−1)k+1


1 +
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(−1)t
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nj
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.

A common binomial identity [1, Thm. 1.8] states that
∑k−t

i=1


k−i−1
t−1


=


k−1
t


. Applying this identity and then substituting

t = i − 1, the bracketed expression simplifies to give the desired result. �

Remark. The authors would like to thank the anonymous referees for several useful suggestions concerning the above
presentation. Indeed, Theorem 4 admits a number of interesting proofs using inclusion/exclusion, and we have chosen the
derivation that seems the clearest. The interested reader is invited to experiment on his/her own.

2.3. The total number of chains

Keeping the notation of Lemma 2, we letC(n) denote the set of chains in L(n) that contain n. It is convenient to count
|C(n)| rather than |C(n)| directly. The difference is minimal, however, since removing n from each chain inC(n) gives a
bijection betweenC(n) and C(n) \C(n), so that

|C(n)| = 2 · |C(n)|. (1)

Let P denote the power set of {0, 1, . . . , nd − 1}, and recall thatC red(n) denotes the set of reducible chains in L(n) that
contain n. We now establish a bijection φ betweenC(n) and P ×C red(n).

Roughly speaking, φ can be described as follows. A chain ξ that contains n fails to be reducible if the truncations of its
elements are not distinct. The function φ removes from ξ any elements whose truncations are repeated by a later element
in ξ . Doing so produces a reducible chain ξ red. The dth coordinates of the removed elements are recorded in a set Aξ . The
output of φ is the pair (Aξ , ξ

red).
More formally, we have the following.

Definition 5. Suppose that a chain ξ inC(n) has k elements a1 ≺ · · · ≺ ak, where ai = (ai1, . . . , aid)T for each i(1 ≤ i ≤ k).
We define

Aξ = {aid | a′

i = a′

i+1}, and ξ red
= ξ \ {ai | a′

i = a′

i+1},

and we let φ(ξ) denote the pair (Aξ , ξ
red). �

To illustrate this definition, let n = (3, 3, 3)T and suppose that ξ denotes the following 8-chain inC(n):

a1 ≺ a2 ≺ a3 ≺ a4 ≺ a5 ≺ a6 ≺ a7 ≺ a8

ξ :

1
1
0


≺

2
1
0


≺

2
1
1


≺

2
1
2


≺

2
2
2


≺

3
2
2


≺

3
2
3


≺

3
3
3


.

Notice that a′

2 = a′

3 = a′

4 and a′

6 = a′

7. The reducible chain ξ red is formed by removing a2 and a3 (keeping a4), and
removing a6 (keeping a7). For each of the elements removed, their last coordinates (third coordinates in this case) are
recorded in the set Aξ . Then ξ red is a reducible 5-chain inC red(n), the set Aξ is a subset of {0, 1, 2}, and φ(ξ) denotes the pair
(Aξ , ξ

red) below:

Aξ = {0, 1, 2} and ξ red
:

1
1
0


≺

2
1
2


≺

2
2
2


≺

3
2
3


≺

3
3
3


.

Observe that φ(ξ) ∈ P ×C red(n).
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Next, we describe how the original chain ξ can be recovered from the pair (Aξ , ξ
red). Given the information above, we

simply must reinsert into ξ red the missing elements, one belonging to each member of Aξ . Each x in Aξ is the dth coordinate
xd of an element x that is to be inserted immediately to the left of the first y in ξ red for which xd < yd. In our case, 0 and 1
belong left of (2, 1, 2)T , while 2 belongs left of (3, 2, 3)T :1

1
0


≺

0


≺

1


≺

2
1
2


≺

2
2
2


≺

2


≺

3
2
3


≺

3
3
3


.

Observe that, for each x in Aξ , such a y is guaranteed to exist in ξ red by the fact that every element of Aξ is strictly less than
nd, while n belongs to ξ red. Indeed, this motivates our choice to work withC(n) rather than C(n). To complete the recovery
of ξ , note that the remainder of each new element x is determined by the condition that x′

= y′. In our case, 0 and 1 are
topped by (2, 1)T , while 2 is topped by (3, 2)T . Doing so produces the original chain ξ .

The casual readermay skip to Theorem 9without loss of continuity, as the next three lemmasmerely verify that φ is well
defined, injective, and surjective.

Lemma 6. With the above notation, φ is a function fromC(n) to P ×C red(n).

Proof. For ξ ∈ C(n), recall that φ(ξ) = (Aξ , ξ
red). If x ∈ Aξ , then x = aid for some i, where a′

i = a′

i+1. But ai ≺ ai+1, so
aid < ai+1,d. Thus every element of Aξ is strictly less than nd, and Aξ ∈ P . To show that ξ red

∈C red(n), note that ξ red
⊆ ξ , so

ξ red is totally ordered by ≺. And n ∈ ξ since ξ ∈ C(n), while n ∉ {ai|a′

i = a′

i+1} so n ∈ ξ red. It remains to show that ξ red is
reducible. Suppose that there were x ≺ y in ξ red such that x′

= y′. Then x = ai and y = aj for some i < j. But a′

i ≼ a′

i+1 ≼ a′

j ,
so a′

i = a′

i+1, and thus ai ∉ ξ red, a contradiction. It follows that ξ red
∈C red(n). �

Lemma 7. With the above notation, φ is injective.

Proof. Let ξ1, ξ2 be inC(n) and suppose that φ(ξ1) = φ(ξ2). Then ξ red
1 = ξ red

2 , and, to prove that ξ1 = ξ2, it remains to show
that ξ1 \ ξ red

1 = ξ2 \ ξ red
2 . We accomplish this by proving that, for any chain ξ inC(n), each element x ∈ ξ \ ξ red corresponds

to a unique element xd ∈ Aξ , and that, in fact, x can be explicitly constructed from the element xd ∈ Aξ and the chain ξ red.
Performing this construction for each element of Aξ then yields the entire set ξ \ ξ red. To describe the construction, let x be
any element of ξ \ ξ red, and let k denote the length of ξ . Then x = ai for some i, where a′

i = a′

i+1 and xd = aid ∈ Aξ . Let
t = max{j|, a′

i = a′

j}. Then t ≥ i + 1 and a′

i = a′

i+1 = · · · = a′
t . Also, either t < k and a′

t ≠ a′

t+1 or else t = k and at = n. In
either case, at ∈ ξ red, and ai, . . . , at−1 ∉ ξ red. So at = min{y|y ∈ ξ red and x ≺ y}. Observe that, since x ≺ at and x′

= a′
t , it

must be the case that xd < atd. It follows that at = min{y|y ∈ ξ redandxd < yd}. Since x′
= a′

t and has dth coordinate xd, we
have now shown that x is completely determined by the element xd in Aξ and the chain ξ red. It follows that ξ is determined
by the pair (Aξ , ξ

red), so φ is injective. �

Lemma 8. With the above notation, φ is surjective.

Proof. To see that φ is surjective, we associate a chain inC(n) with any given pair (A, ζ ) in P ×C red(n). Suppose that ζ has
t elements b1 ≺ · · · ≺ bt , where bi = (bi1, . . . , bid)T for each i(1 ≤ i ≤ t). For each x in A, define m := min{j|x < bjd} and
set bx = (bm1, . . . , bm(d−1), x)T in L(n). In other words, we define bx by putting b′

x := b′
m and setting the dth coordinate of

bx equal to x. Then the chain inC(n) that we associate with the pair (A, ζ ) is simply ξ(A,ζ ) := ζ ∪ {bx|x ∈ A}. It is easy to
check that φ(ξ(A,ζ )) = (A, ζ ), as desired. �

The preceding lemmas yield the following.

Theorem 9. With the above notation, the map φ is a bijection betweenC(n) and P ×C red(n).

Combining Theorems 4 and 9, we obtain the following corollary.

Corollary 10. Fix n ∈ Nd and let C(n) denote the set of chains in L(n). Then

|C(n)| = 2nd+1
k′max−
k=1

k−
i=1

(−1)i+k

k − 1
i − 1


nd + k − 1

nd

 d−1∏
j=1


nj + i − 1

nj


.

Proof. By (1) and Theorem 9, |C(n)| = 2 · |C(n)| = 2 · |P | · |C red(n)|. But |P | = 2nd , so the result follows by Theorem 4. �
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3. Results on Delannoy numbers

The set D = D(n) of (generalized) Delannoy paths contains precisely those chains in L(n) that contain both the origin
0 = (0, . . . , 0)T and n = (n1, . . . , nd)

T , and whose successive elements differ by at most one in each coordinate. In other
words, the elements of D(n) correspond to walks from 0 to n in which only positive steps from the d-dimensional unit
hypercube are allowed. This follows Kaparthi and Rao [12]. The cardinalities |D(n)| are referred to as (generalized) Delannoy
numbers. For more about generalizations of the Delannoy numbers, we refer the reader to the literature [2,12].

When all the ni share a common value n, we have n = (n, . . . , n)T , and we refer to the cardinalities |D(n)| as the
(d-dimensional) centralDelannoynumbers. Below,weuse inclusion/exclusion to find an expression for the general Delannoy
numbers which specializes to a useful expression for the central case in Theorem 13.

3.1. Delannoy paths with k steps

In contrast with lattice chains, it is common to refer to the size of a Delannoy path by the number of steps it contains,
rather than the number of elements it has. In other words, if a chain ξ in D(n) has elements

a0 ≺ a1 ≺ · · · ≺ ak,

thenwe say ξ has k steps. (Notice that ξ has k+1 elements, and hence length k+1 as a chain.) The set of all k-step Delannoy
paths is denoted by Dk(n).

Due to symmetry, the ordering of the dimensions in L is often irrelevant, so we frequently assume that n1 ≤ n2 ≤ · · · ≤

nd. Under this assumption, it is easy to show that the minimum number of steps a Delannoy path can have is nd, while the
maximum is n1 + · · · + nd, which equals kmax − 1.

Finally, we remark that, since each k-step Delannoy path begins and ends with the points a0 = 0 and ak = n, we
can uniquely represent a path a0 ≺ a1 ≺ · · · ≺ ak by the sequence b1, b2, . . . , bk, where each bi = ai − ai−1. In this
representation, the bi are nonzero d-tuples of zeros and ones. This observation is the key to the following result.

Theorem 11. Fix n ∈ Nd such that n1 ≤ n2 ≤ · · · ≤ nd. Let kmax = n1 + · · · + nd + 1. Then, for each k(nd ≤ k ≤ kmax − 1),
the number of k-step Delannoy paths in the lattice L(n) is given by

|Dk(n)| =


k
nd

 k−nd−
i=0

(−1)i

k − nd

i

 d−1∏
j=1


k − i
nj


.

Proof. Each k-step Delannoy path a0 ≺ a1 ≺ · · · ≺ ak corresponds to a unique sequence B = ⟨b1, b2, . . . , bk⟩, where
each bi = ai − ai−1. Each bi is a nonzero d-tuple (bi1, bi2, . . . , bid)T of zeros and ones. By the definition of a Delannoy path,
projection of B onto the j-coordinate must give a sequence Bj = ⟨b1j, b2j, . . . , bkj⟩ of zeros and ones that contains precisely
nj ones, for each j(1 ≤ j ≤ d).

To count the number of such sequences B, we first choose the sequence Bd = ⟨b1d, b2d, . . . , bkd⟩ of nd ones and k − nd

zeros. There are


k
nd


choices for Bd. Next, we choose sequences Bj for 1 ≤ j ≤ d − 1 so that each Bj has exactly nj ones,

and so that, when they are combined, the resulting sequence B has no zero terms. This amounts to ensuring that, for each i
where bid = 0, there is a j for which bij = 1. This is achieved by inclusion/exclusion, as follows.

Let Z = {i|bid = 0}, and, for each T ⊆ Z, let s(T ) be the number of sequences S = ⟨s1, s2, . . . , sk⟩, such that (i)–(iv)
hold below.

(i) Each si(1 ≤ i ≤ k) is a d-tuple (si1, si2, . . . , sid)T of zeros and ones.
(ii) The d-projection of S satisfies Sd = Bd.
(iii) Each j-projection Sj = ⟨s1j, s2j, . . . , skj⟩ has precisely nj ones.
(iv) For each t ∈ T , the term st = 0.

To count s(T ), note that (ii) fixes the d-projection of S. To satisfy (iii), we independently form d − 1 sequences Sj, each

with the specified number nj of ones, and subject to the constraint (iv) that stj = 0 for t ∈ T . For each j, there are


k−t
nj


choices for Sj, where t = |T |. Taken together, we find that s(T ) =

∏d−1
j=1


k−t
nj


.

Now, since |T | can range from 0 to k−nd, the number of sequencesB that have the specified d-projectionBd and contain
no zero terms is, by inclusion/exclusion,−

T ⊆Z

(−1)|T |s(T ) =

k−nd−
t=0

(−1)t

k − nd

t

 d−1∏
j=1


k − t
nj


.

Recalling that the number of choices for Bd was


k
nd


, we obtain the result. �
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3.2. The total number of Delannoy paths

Now that the number of k-step Delannoy paths has been given in Theorem 11, it is a simple matter to find the total
number of Delannoy paths.

Theorem 12. Fix n ∈ Nd such that n1 ≤ n2 ≤ · · · ≤ nd and let k′
max = n1 +· · ·+ nd−1 + 1. Then the total number of Delannoy

paths in the lattice L(n) is given by

|D(n)| =

k′max−
k=1

k−
i=1

(−1)i+k

k − 1
i − 1


nd + k − 1

nd

 d−1∏
j=1


nd + i − 1

nj


.

Proof. To find |D(n)|, we sum the expression for |Dk(n)| from Theorem 11 over all k from nd to kmax − 1 to obtain

|D(n)| =

kmax−1−
k=nd


k
nd

 k−nd−
i=0

(−1)i

k − nd

i

 d−1∏
j=1


k − i
nj


.

Reindexing the outer sum, this simplifies to

|D(n)| =

k′max−
k=1


nd + k − 1

nd

 k−1−
i=0

(−1)i

k − 1

i

 d−1∏
j=1


nd − 1 + k − i

nj


.

Replacing i by k − i reverses the order of the inner sum, and simplification gives the desired result. �

The expressions for the total number of chains from Corollary 10 and the total number of Delannoy paths from
Theorem 12 are strikingly similar in form. Specializing to the central case, we have the following.

Theorem 13 ([9]). Fix n ∈ Nd such that ni = n for all i(1 ≤ i ≤ d). Then

C(n) = 2n+1D(n).

Proof. Immediate from Corollary 10 and Theorem 12. �

4. Generating functions

Another approach to the study of lattice chains and Delannoy paths is to investigate their generating functions. These
functions have been separately computed by MacMahon using techniques that will not be reproduced here, but that can
found in his well-known text [13, pp. 156–9]. However, noticing that the coefficients for these sequences satisfy similar
recurrence relations, we introduce a concept that describes the recursive structure they share. We exploit this concept to
derive an explicit formula for any such generating function easily and uniformly in arbitrary dimension.

4.1. The class of a-recurrent sequences

The chain numbers in various dimensions satisfy similar recurrence relations. Consider the following.

• When d = 1 and i ∈ P, the number of chains ci = |C(i)| satisfies

ci = 2ci−1,

where c0 = 2.
• When d = 2 and i, j ∈ P, the number of chains ci,j = |C(i, j)| satisfies

ci,j = 2(ci−1,j + ci,j−1) − 2ci−1,j−1,

where ci,0 = c0,i = ci, and where c0,0 = c0.
• When d = 3 and h, i, j ∈ P, the number of chains ch,i,j = |C(h, i, j)| satisfies

ch,i,j = 2(ch−1,i,j + ch,i−1,j + ch,i,j−1) − 2(ch,i−1,j−1 + ch−1,i,j−1 + ch−1,i−1,j) + 2ch−1,i−1,j−1,

where ci,j,0 = ci,0,j = c0,i,j = ci,j, and ci,0,0 = c0,i,0 = c0,0,i = ci, and c0,0,0 = c0.

Notice the increasing depth of the recurrence as d increases, and the pattern of alternating 2s as coefficients in these
recurrences. Notice also how, in the boundary cases, when one or more of the parameters is zero, the values are determined
by the lower-dimensional numbers.
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Generalizing to higher dimensions requires some additional notation. For any d ∈ P, define Bd := {0, 1}d \ {0}. Also, let
[d] := {1, 2, . . . , d} and recall that the support of n ∈ Nd is

supp(n) := {j ∈ [d] | nj ≠ 0}.

Observe that for v ∈ Bd we have that wt(v) = |supp(v)|, which is nonzero by the definition of Bd.
Suppose that T ( [d], where |T | = m. For n ∈ Nd, we define nT to be the (d − m)-tuple obtained by removing the

i-components of n for each i ∈ T . Note that when T = ∅ we have nT = n.
Using the above notation, we can now describe the recursive structure of the chain numbers. For any dimension d, and

for any n ∈ Pd, we have

|C(n)| =

−
v∈Bd

2(−1)wt(v)+1
|C(n − v)|.

Considering the boundary, for nonzero n ∈ Nd
\ Pd, we have

C(n) = C(nT ),

where T := [d] \ supp(n). And for a base case, we have |C(0)| = 2.
We make the following definition.

Definition 14. Let a = ⟨a0, a1, a2, . . .⟩ be a sequence of real numbers. A sequence of functions F = ⟨F1, F2, F3, . . .⟩, where
Fd : Nd

→ R for all d ∈ P, is a-recurrent if the following hold.

(i) For all d ∈ P and n ∈ Pd,

Fd(n) =

−
v∈Bk

awt(v)Fd(n − v).

(ii) For all d ∈ P and nonzero n ∈ Nd
\ Pd,

Fd(n) = Fd−|T |(nT ),

where T := [d] \ supp(n).
(iii) For all d ∈ P,

Fd(0) = a0.

It is not difficult to see that, for any given sequence a = ⟨a0, a1, a2, . . .⟩ of real numbers, there is a unique sequence of
functions which is a-recurrent.

To illustrate this definition, let Fd(n) = |C(n)|, where n ∈ Nd. Then the sequence of chain numbers is a-recurrent with
a = ⟨2, 2, −2, 2, −2, 2, . . .⟩, where the signs alternate after the first two entries.

Similarly, if we let Fd(n) = |D(n)|, where n ∈ Nd, then the sequence of Delannoy numbers is seen to be a-recurrent with
a = ⟨1, 1, 1, . . .⟩.

4.2. Generating functions for a-recurrent sequences

In this final section, we establish a theorem that offers an explicit expression for the generating functions of any
a-recurrent sequence of functions. This theorem generalizes the expressions for the generating functions of chains and
Delannoy paths given by MacMahon [13, pp. 156–9].

Theorem 15. Let F = ⟨F1, F2, F3, . . .⟩ be an a-recurrent sequence of functions with a = ⟨a0, a1, a2, . . .⟩. For d ∈ P, let

gd(x) = gd(x1, x2, . . . , xd) =

−
(n1,...,nd)

Fd(n1, . . . , nd)x
n1
1 · · · xndd

be the generating function for Fd. Then

gd(x) = a0


1 −

−
∅≠S⊆[d]

a|S|

∏
i∈S

xi

−1

.

Proof. We proceed by induction on d. If d = 1, then F1(n) = a1F1(n − 1) for n ∈ P by Definition 14(i) and F1(0) = a0 by
Definition 14(iii). So

∞−
n=1

F1(n)xn =

∞−
n=1

a1F1(n − 1)xn.

Thus g1(x) − a0 = xa1g1(x), giving that g1(x) = a0(1 − a1x)−1, as desired.
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Now, fix an integer d ≥ 2 and suppose that the statement holds for all j ∈ [d − 1]. Using the fact that our sequence of
functions is a-recurrent, we have that−

n∈Pd

Fd(n)xn11 xn22 · · · xndd =

−
n∈Pd

−
v∈Bd

awt(v)Fd(n − v)xn11 xn22 · · · xndd . (2)

Consider the left-hand side of (2). By inclusion–exclusion and the definition of a-recurrent, we have−
n∈Pd

Fd(n)xn11 xn22 · · · xndd = (−1)da0 +

−
S([d]

(−1)|S|gd−|S|(xS). (3)

Now, consider the right-hand side of (2). Let v ∈ Bd and let Sv := supp(v) = { i1, i2, . . . , iwt(v)}. Note that wt(v) ≥ 1.
Again by inclusion–exclusion, for this particular v, we have−

n∈Pd

awt(v)Fd(n − v)xn11 xn22 · · · xndd = awt(v)xi1xi2 · · · xiwt(v)

−
T⊆[d]\Sv

(−1)|T |gd−|T |(xT ). (4)

By (2), the expression on the right-hand side of (3)must equal the sumover all v ∈ Bd of the expression on the right-hand
side of (4), giving

(−1)da0 +

−
S([d]

(−1)|S|gd−|S|(xS) =

−
v∈Bd

awt(v)xi1xi2 · · · xiwt(v)

−
T⊆[d]\Sv

(−1)|T |gd−|T |(xT ). (5)

Each v ∈ Bd corresponds to a unique nonempty subset V ⊆ [d] and conversely, so (5) can be rewritten as

(−1)da0 +

−
S([d]

(−1)|S|gd−|S|(xS) =

−
∅≠V⊆[d]

a|V |

∏
i∈V

xi
−

T⊆[d]\V

(−1)|T |gd−|T |(xT ).

Swapping the order of summation on the right yields

(−1)da0 +

−
S([d]

(−1)|S|gd−|S|(xS) =

−
T([d]

(−1)|T |gd−|T |(xT )
−

∅≠V⊆[d]\T

a|V |

∏
i∈V

xi.

Collecting all instances of gd(x) on the left-hand side, we obtain

gd(x)


1 −

−
∅≠V⊆[d]

a|V |

∏
i∈V

xi


= (−1)d+1a0 −

−
∅≠S([d]

(−1)|S|gd−|S|(xS)

+

−
∅≠T([d]

(−1)|T |gd−|T |(xT )
−

∅≠V⊆[d]\T

a|V |

∏
i∈V

xi. (6)

It remains to show that the right-hand side equals a0. To this end, observe that the two sums on the right can be combined.
Doing so reduces the right-hand side of the above to

(−1)d+1a0 −

−
∅≠S([d]

(−1)|S|gd−|S|(xS)


1 −

−
∅≠V⊆[d]\S

a|V |

∏
i∈V

xi


.

By the induction hypothesis,

gd−|S|(xS) = a0


1 −

−
∅≠V⊆[d]\S

a|V |

∏
i∈V

xi

−1

.

Therefore, substitution into (6) gives us

gd(x)


1 −

−
∅≠V⊆[d]

a|V |

∏
i∈V

xi


= (−1)d+1a0 −

−
∅≠S([d]

(−1)|S|a0.

= a0


(−1)d+1

d−1−
i=1


d
i


(−1)i


.

The bracketed expression equals 1, by a well-known identity [1, Th. 1.7], and the result now follows. �

To illustrate the above result, we apply it to the chains andDelannoy numbers in any dimension to obtain their generating
functions.
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Corollary 16 ([13, p. 156]). Let gC
d (x1, . . . , xd) be the generating function for the d-dimensional chain numbers. Then

gC
d (x1, . . . , xd) =

2
1 + 2

∑
∅≠S⊆[d]

(−1)|S|
∏
i∈S

xi
.

Proof. The sequence of chain numbers is a-recurrent with a = ⟨2, 2, −2, 2, . . .⟩. �

Corollary 17 ([13, p. 159]). Let gD
d (x1, . . . , xd) be the generating function for the d-dimensional Delannoy numbers. Then

gD
d (x1, . . . , xd) =

1
1 −

∑
∅≠S⊆[d]

∏
i∈S

xi
.

Proof. The sequence of Delannoy numbers is a-recurrent with a = ⟨1, 1, 1, . . .⟩. �
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