Dlx5 Is a Positive Regulator of Chondrocyte Differentiation during Endochondral Ossification

Deborah Ferrari and Robert A. Kosher
Department of BioStructure and Function, University of Connecticut Health Center, Farmington, CT 06030

The process of endochondral ossification in which the bones of the limb are formed after generation of cartilage models is dependent on a precisely regulated program of chondrocyte maturation. Here, we show that the homeobox-containing gene Dlx5 is expressed at the onset of chondrocyte maturation during the conversion of immature proliferating chondrocytes into postmitotic hypertrophying chondrocytes, a critical step in the maturation process. Moreover, retroviral misexpression of Dlx5 during differentiation of the skeletal elements of the chick limb in vivo results in the formation of severely shortened skeletal elements that contain excessive numbers of hypertrophying chondrocytes which extend into ectopic regions, including sites normally occupied by immature chondrocytes. The expansion in the extent of hypertrophic maturation detectable histologically is accompanied by expanded and upregulated domains of expression of molecular markers of chondrocyte maturation, particularly type X collagen and osteopontin, and by expansion of mineralized cartilage matrix, which is characteristic of terminal hypertrophic differentiation. Furthermore, Dlx5 misexpression markedly reduces chondrocyte proliferation concomitant with promoting hypertrophic maturation. Taken together, these results indicate that Dlx5 is a positive regulator of chondrocyte maturation and suggest that it regulates the process at least in part by promoting conversion of immature proliferating chondrocytes into hypertrophying chondrocytes. Retroviral misexpression of Dlx5 also enhances formation of periosteal bone, which is derived from the Dlx5-expressing perichondrium that surrounds the diaphyses of the cartilage models. This suggests that Dlx5 may be involved in regulating osteoblast differentiation, as well as chondrocyte maturation, during endochondral ossification. © 2002 Elsevier Science (USA)

Key Words: Dlx5; chondrocyte differentiation; chondrocyte maturation; chondrocyte hypertrophy; endochondral ossification; osteoblast differentiation; bone development; limb.

INTRODUCTION

The skeletal elements of the limb develop by a process called endochondral ossification in which bone is formed after the establishment of a cartilaginous template (Olsen et al., 2000; de Crombrugghe et al., 2001; Wagner and Karsenty, 2001). At the onset of this process, mesenchymal cells in discrete regions of the developing limb bud aggregate into precartilage condensations which prefigure the future skeletal elements. The cartilage anlagen undergo rapid longitudinal and appositional growth as a result of proliferation and matrix deposition to form the cartilage models of the bones of the limb. The developing cartilage models become surrounded by a longitudinally oriented group of flattened cells called the perichondrium. Interactions between the perichondrium and chondrocytes of the cartilage model play a major role in regulating various aspects of endochondral ossification (Long and Linsenmayer, 1998; Di Nino et al., 2001).

Chondrocytes within the cartilage models progressively undergo a precisely regulated and coordinated program of maturation from proliferating to prehypertrophic to hypertrophic chondrocytes (Olsen et al., 2000; de Crombrugghe et al., 2001; Wagner and Karsenty, 2001). Maturation commences in the central regions or diaphyses of the cartilage models where immature chondrocytes exit the cell cycle, enlarge, and are converted into prehypertrophic chondrocytes which are characterized by the expression of the secreted signaling molecule Indian hedgehog (Ihh) (Vortkamp et al., 1996). The prehypertrophic chondrocytes undergo further differentiation to hypertrophic chondrocytes during which they continue to enlarge, initiate expression of type X collagen and other hypertrophic markers, includ-
The rate and progression of hypertrophic chondrocyte maturation during endochondral ossification is regulated by a coordinated balance between negative and positive signals. Ihh and parathyroid hormone-related peptide (PTHrP) function in a regulatory loop to negatively control chondrocyte maturation (Vortkamp et al., 1996; Kronenberg et al., 1997; St-Jacques et al., 1999). In particular, Ihh expressed by newly postmitotic prehypertrophic chondrocytes induces PTHrP expression in the perichondrial perichondrium adjacent to the immature proliferating chondrocytes in the epiphysis. In turn, PTHrP signals via its receptor PTH/PTHrP-R to suppress the maturation of proliferating chondrocytes in the subjacent epiphysis, thus maintaining a zone of immature chondrocytes competent to undergo proliferation (Vortkamp et al., 1996; Kronenberg et al., 1997; St-Jacques et al., 1999). Members of the TGF-β family produced by the perichondrium have also been implicated as negative regulators of chondrocyte maturation (Serra et al., 1997) and may act upstream of PTHrP to suppress the process (Serra et al., 1999). In addition, the transition from prehypertrophic to hypertrophic chondrocytes is negatively controlled by Wnt-5a produced by the perichondrium (Hartmann and Tabin, 2000) and by the Notch receptor ligand Delta-1 produced by hypertrophic chondrocytes (Crowe et al., 1999).

Recently, several positive regulators of chondrocyte maturation have been identified. These include one or more members of the BMP family (Enomoto-Iwamoto et al., 1998; Volk et al., 2000; Pathi et al., 1999; Minina et al., 2001), particularly BMP-6 (Grimsrud et al., 1999; Ito et al., 1999; Kameda et al., 2000; Boskey et al., 2002), which is specifically expressed by the prehypertrophic and hypertrophic chondrocytes (Kingsley, 1994; Vortkamp et al., 1996; Inada et al., 1999). Wnt-4 expressed by cells flanking the epiphysis of the cartilage models has also been implicated in the positive control of maturation (Hartmann and Tabin, 2000), and gain- and loss-of-function studies in vitro and in vivo have shown that the transcription factor Cbfa1/Runx2 expressed by prehypertrophic and hypertrophic chondrocytes is an important positive regulator of the maturation process (Inada et al., 1999; Kim et al., 1999 Enomoto et al., 2000; Takeda et al., 2001; Ueta et al., 2001; Leboy et al., 2001).

Identification of the regulatory genes and signaling molecules that control the progression of chondrocyte maturation toward hypertrophy and the regulatory interactions among them is crucial to understanding normal and abnormal bone growth and development. In the present study, we provide evidence indicating that the homeodomain transcription factor Dlx5 is an important positive regulator of chondrocyte maturation during endochondral ossification. Dlx5 is one of six members of the Dlx family of homeobox-containing genes that are homologs of the Drosophila Distal-less gene, which is required for limb development in the fly embryo (Merlo et al., 2000; Zerucha and Ekker, 2000). Dlx5 has been implicated in several aspects of early vertebrate limb morphogenesis, including specification of the limb territories of the lateral plate, activity of the apical ectodermal ridge which directs limb outgrowth, and patterning along the anteroposterior axis (Ferrari et al., 1995, 1999). Later in development, Dlx5 is expressed by differentiating osteoblasts during intramembranous and endochondral ossification (Simeone et al., 1994; Zhao et al., 1994), and several studies suggest that it may play a role in osteoblast differentiation (Newberry et al., 1998; Miyama et al., 1999; Benson et al., 2000; Tadic et al., 2001, 2002).

Here, we report that Dlx5 is expressed during the conversion of immature proliferating chondrocytes into postmitotic hypertrophic chondrocytes, which is a critical step in chondrocyte maturation during endochondral ossification. Moreover, retroviral misexpression of Dlx5 during the differentiation of the skeletal elements of the chick limb in vivo promotes chondrocyte maturation, resulting in the formation of severely shortened skeletal elements that contain excessive numbers of hypertrophying chondrocytes. Our results indicate that Dlx5 positively regulates chondrocyte maturation, and may do so at least in part by promoting conversion of immature proliferating chondrocytes to hypertrophying chondrocytes.

MATERIALS AND METHODS

Preparation of Dlx5 Retroviral Expression Vector and Infection Protocol

The methods used for the preparation and propagation of the avian replication competent Dlx5 expression vector were essentially the same as those previously described (Ferrari et al., 1998) and follow standard established protocols (Morgan and Fekete, 1996). Briefly, our cDNA containing the full coding sequence of
chicken Dlx5 (Ferrari et al., 1995) was cloned into the C1al site of RCASBP(A), a derivative of Rous Sarcoma Virus (RSV) containing a portion of the pol gene from the Bryan high titer strain of RSV (obtained from Steve Hughes). Chick embryo fibroblasts (CEF) were transfected with the retroviral plasmid DNA, and the cells were cultured until virus production was high as assayed by media reverse transcriptase activity (Ferrari et al., 1998). Concentrated retroviral stocks were prepared by ultracentrifugation of the virus-containing media (Morgan and Fekete, 1996; Ferrari et al., 1998), and aliquots were rapidly frozen. Titers were determined by adding limiting dilutions of the concentrated retroviral stock to subconfluent CEF cultures, immunostaining with a monoclonal antibody against the RSV viral gag antigen p19, and counting the number of positive colonies (Morgan and Fekete, 1996; Ferrari et al., 1998). Titers ranged from 0.5 to 1×10^9 cfu/ml.

Concentrated Dlx5 retrovirus or control RCASBP(A) retrovirus lacking the Dlx5 cDNA insert was microinjected as previously described (Ferrari et al., 1998) into the proximal posterior portion of stage 21/22 right chick wing buds, which will give rise primarily to the humerus, ulna, and radius. This resulted in widespread Dlx5 expression detectable by in situ hybridization throughout the proximal skeletal elements and soft tissue of the infected limbs (data not shown). Limbs infected with control retrovirus exhibited no detectable abnormalities.

Skeletal Staining and Histology

The skeletons of day 13–18 embryos were whole-mount stained with Alcian blue and Alizarin Red to visualize cartilage and mineralized bone, respectively. Older embryos were usually sacrificed before staining. Briefly, embryos were incubated in 0.015% Alcian blue in 95% ethanol/20% glacial acetic acid for 2–4 days, after which they were cleared for 2–4 days in 2% KOH. They were then stained overnight in 0.1% Alizarin Red S in 1% KOH followed by clearing in 0.5% KOH and a graded series of KOH/glycerine solutions to 100% glycerine. Infected and contralateral control limbs were removed in 100% glycerine and photographed. After photography, some of the limbs were washed in PBS, dehydrated in 100% ethanol, cleared in xylene, embedded in paraffin, sectioned, and stained with hematoxylin and eosin.

In Situ Hybridization

In situ hybridization on serially sectioned limbs that had been fixed in Bouin’s solution was performed by using $[^{33}P]$-labeled cDNA probes (see below) and high-stringency hybridization conditions as previously described (Coelho et al., 1991). In order to carefully correlate expression patterns of different genes or to compare different parameters, in many cases, adjacent sections (within 20 μm of one another) of the same specimens were mounted on separate slides and hybridized with different probes and/or subjected to different analyses (see below).

The cDNA probes used for in situ hybridization were as follows: a 323-bp probe from the 3’ untranslated region of chicken Dlx5 cDNA prepared as previously described (Ferrari et al., 1999); a 560-bp probe from the 5’ end of chicken Ihh cDNA prepared by digesting clone pchHHR-1 Sac (provided by Cliff Tabin) (Vortkamp et al., 1996) in Bluescript SK+ with EcoRI and SacI; a 234-bp probe from the 5’ end of chicken PTHrP cDNA prepared by digesting clone PTHrP2 (provided by Cliff Tabin) (Vortkamp et al., 1996) in pGEMT with Ncol and Spel; a 1.1-kb probe corresponding to the full coding sequence of chicken osteopontin cDNA prepared by digesting clone pMMPP2 (provided by Louis Gerstenfeld) (Moore et al., 1991) in Bluescript SK with EcoRI.

The cDNA probes were labeled with $[^{33}P]$dCTP by the random oligonucleotide primer procedure.

Immunohistochemistry

Immunostaining for type X collagen with monoclonal antibody X-AC9 (Schmid and Linsenmayer, 1985) (Developmental Studies Hybridoma Bank) on serially sectioned limbs that had been fixed in Bouin’s solution was carried out as previously described (Kosher and Solush, 1989) by using a Vectastain Elite ABC Kit. Sections were treated with 5 mg/ml bovine testicular hyaluronidase (Type I-S; Sigma) prior to immunostaining, and staining was done with a 1:80 dilution of X-AC9 in PBS containing 5% normal horse serum.

Histochemical Analysis of Mineralization

For histochemical detection of mineralized matrix, serially sectioned limbs that had been fixed in 95% ethanol were stained with 0.5% Alizarin Red S, pH 4.0, for 5 min at room temperature as described by Yagami et al. (1999).

Analysis of Cell Proliferation

Cell proliferation was assayed immunohistochemically by staining serially sectioned limbs that had been fixed in Bouin’s solution for PCNA (proliferating cell nuclear antigen), an accessory protein for DNA polymerase that is present in the nuclei of dividing cells (Hall et al., 1990; Waseem and Lane, 1990), using a monoclonal antibody against PCNA (clone PC10) and a kit obtained from Novocastra. Before immunostaining, sections were treated with Vector antigen unmasking solution at 95° for 5 min, and after immunostaining, the sections were lightly counterstained with hematoxylin to detect unlabeled nuclei. The number of PCNA labeled and unlabeled nuclei in four adjacent sections through the middle of the metaphyseal region of Dlx5-infected and contralateral control limbs were counted in photomicrographs.

RESULTS

Dlx5 Is Expressed at the Onset of Chondrocyte Maturation Concomitant with the Conversion of Immature Proliferating Chondrocytes into Hypertrophying Chondrocytes

After the formation of the cartilage models of the long bones of the limb, Dlx5 is highly expressed by the perichondrium adjacent to the diaphysis of the models that will give rise to the osteoblasts that deposit the periosteal bony collar (Fig. 1). As endochondral ossification proceeds, Dlx5 is indeed very highly expressed in the inner layers of the periosteum where osteoblasts are differentiating and depositing periosteal bone (data not shown). These observations suggest the possibility that Dlx5 may be involved in regulating the onset of periosteal bone differentiation during endochondral ossification.

In addition to being expressed by the perichondrium/periosteum, Dlx5 is expressed by the maturing prehypertro-
phic and hypertrophic chondrocytes in the central regions or diaphyses of the cartilage models (Fig. 1). In contrast, Dlx5 is not expressed by the immature proliferating chondrocytes in the epiphyses (Fig. 1). Thus, Dlx5 expression in the cartilage models is initiated concomitant with the conversion of immature proliferating chondrocytes into postmitotic prehypertrophic chondrocytes, which is a critical step in chondrocyte maturation. This pattern of expression is suggestive of a possible role for Dlx5 in the regulation of chondrocyte maturation during endochondral ossification.

Dlx5 Misexpression during Skeletal Differentiation in Vivo Results in the Formation of Severely Shortened Skeletal Elements

To explore the role of Dlx5 in endochondral ossification, we misexpressed Dlx5 during the differentiation of the skeletal elements of the developing chick limb in ovo with the avian replication competent retroviral vector RCASBP to determine whether misexpression of Dlx5 modified the process of chondrocyte maturation or other aspects of endochondral ossification. In these studies, we microinjected concentrated Dlx5 retrovirus into the proximal posterior portions of stage 21/22 (day 4) right chick wing buds, which will give rise primarily to the humerus, ulna, and radius. At various times after microinjection, the skeletons of the embryos were stained with Alcian blue and Alizarin Red to visualize cartilage and mineralized bone, respectively.

At day 13 (Fig. 2) and day 18 (Fig. 3), the proximal skeletal elements, particularly the humerus rudiments of the Dlx5 infected limbs are severely shortened. The humerus rudiments of the Dlx5 infected limbs are on average 30.3 ± 3.2% shorter than their corresponding uninjected contralateral control limbs at day 13 and 45.6 ± 2.8% shorter at day 18. Furthermore, the length of the Dlx5-infected humerus rudiments increases by only 13% between days 13 and 18, whereas the length of the control rudiments increases by 50% during the same period. The radius and particularly the ulna rudiments of the Dlx5-infected limbs are also shorter than controls (ulna and radius 30.6 ± 2.1% and 18.2 ± 2.8% shorter, respectively on E18), although not to quite the same extent as the humerus, whereas the distal skeletal elements are little affected (91.2 ± 2.1% the length of controls on E18). This proximodistal difference in severity of effect is not unexpected, and reflects the fact that the Dlx5 retrovirus was initially microinjected into the prospective proximal portions of the limb bud at stage 21/22.

Consistent with this, when Dlx5 retrovirus is injected throughout the distal posterior portion of the limb bud at an earlier developmental stage (stage 17), shortening of the digits (29.7 ± 3.4% shorter than controls at E13) as well as more proximal skeletal elements is detected (data not shown). These results clearly indicate that misexpression of Dlx5 inhibits the longitudinal growth of developing long bones.
Interestingly, the humerus rudiments of the Dlx5-infected limbs are not only considerably shorter, but are also characteristically misshapen and bent (Figs. 2 and 3). Although the reason for this characteristic bending is not clear, it is possible that the impaired elongation of the Dlx5-infected humerus rudiments coupled with normal growth of the surrounding nonskeletal tissues such as tendons might result in such misshaping.

It is noteworthy that a narrow zone of chondrocytes that stain very darkly with Alcian blue is present adjacent to the marrow cavity in control skeletal elements (arrows in Fig. 2B). Significantly, in the Dlx5-infected skeletal elements, the zone of darkly staining chondrocytes is greatly expanded and extends deeply into the marrow cavity (arrow in Figs. 2C). As described below, these darkly staining zones consist of terminally differentiated hypertrophic chondrocytes detectable histologically and histochemically.

It is also noteworthy that the Alizarin Red-stained peri-
osteal bony collars that form around the diaphyses of the Dlx5-infected skeletal elements are broader than controls, particularly at day 18 (Fig. 3). The Alizarin Red-stained periosteal bony collars are 53 ± 11% wider in the Dlx5-infected humerus rudiments than in contralateral controls, and the bony collars of the Dlx5-infected ulna and radius rudiments are 32 ± 1.6% and 22 ± 2% wider than controls, respectively. So, although Dlx5 misexpression inhibits longitudinal growth, it does not inhibit periosteal bone formation, and in fact seems to stimulate it (see below).

The Shortened Skeletal Elements Formed in Response to Dlx5 Misexpression Contain Excessive Numbers of Hypertrophying Chondrocytes

To gain further insight into the mechanism by which Dlx5 misexpression inhibits the longitudinal growth of developing long bones, control and Dlx5-infected skeletal elements were sectioned and the histology of the skeletal rudiments was examined after staining with hematoxylin and eosin. As shown in Fig. 4, Dlx5-infected skeletal elements contain an excessive number of enlarged rounded cells morphologically resembling hypertrophying chondrocytes. Whereas control humerus rudiments have a relatively small zone of large rounded hypertrophic chondrocytes adjacent to the marrow cavity, in the Dlx5-infected rudiments, the zone of apparently hypertrophic chondrocytes is greatly expanded and extends deeply into the marrow cavity of the diaphysis (Fig. 4). Furthermore, as shown at high magnification in Fig. 5, in severely affected Dlx5-infected skeletal elements, enlarged rounded cells clearly resembling hypertrophying chondrocytes extend into the metaphyseal and proximal epiphyseal regions that are normally occupied by immature proliferating chondrocytes. These regions of contralateral control skeletal elements consist of adjacent organized groups of small rounded and radially flattened chondrocytes which represent immature proliferating chondrocytes (Fig. 5) (Hartmann and Tabin, 2000). In contrast, the metaphyseal and proximal epiphyseal regions of severely affected Dlx5 rudiments contain relatively large numbers of enlarged rounded cells morphologically resembling hypertrophying chondrocytes and lack the organized groups of small rounded and radially flattened putative immature proliferating chondrocytes that are present throughout the corresponding regions of controls (Fig. 5). These histological analyses suggest that chondrocyte maturation is promoted as a consequence of Dlx5 misexpression.

Although ectopic hypertrophic chondrocytes are present in the proximal epiphyseal and metaphyseal region of Dlx5-infected skeletal elements, they are rarely observed in the epiphyseal region at the articular ends of the rudiments. This suggests the interesting possibility that the chondrocytes directly subjacent to the perarticular perichondrium are refractory or less sensitive to Dlx5 misexpression than the immature proliferating chondrocytes in more proximal regions of the epiphysis and in the metaphysis.

It is also noteworthy that there is an obvious increase detectable histologically in the amount of periosteal bone that is present along the diaphysis of the Dlx5-infected humerus rudiments compared with contralateral controls (Fig. 4), and this apparently accounts for the increased thickness of the Alizarin Red-stained periosteal bony collar detectable by whole-mount staining in the Dlx5 limbs.

Dlx5 Misexpression during Skeletal Differentiation in Vivo Results in Expanded Domains of Expression of Markers of Chondrocyte Maturation

To confirm the apparent striking expansion in the extent of hypertrophic maturation detectable histologically in response to Dlx5 misexpression and to gain further insight into the mechanism of Dlx5 action during endochondral ossification, we examined the effect of Dlx5 misexpression on the expression of molecular markers of hypertrophic chondrocyte maturation particularly osteopontin and type X collagen. Osteopontin is a late marker of chondrocyte maturation which is characteristically expressed by terminally differentiated hypertrophic chondrocytes that are undergoing mineralization (Gerstenfeld and Shapiro, 1996; Iwamoto et al., 1993; Koyama et al., 1999). At day 13 (Fig. 6) and day 18 (Fig. 7), the expression domain of osteopontin detectable by in situ hybridization is greatly expanded in the Dlx5-infected skeletal elements compared with uninfected contralateral controls. The length of the osteopontin expression domain in the Dlx5-infected humerus rudiment is expanded by about twofold compared with contralateral controls. Not only is the expression domain of osteopontin expanded, but there is also a striking increase in the intensity of the osteopontin hybridization signal in the Dlx5-infected elements compared with controls (Fig. 6). A similar expansion in the expression domain of type X collagen, a definitive molecular marker of hypertrophic chondrocytes, is present in the Dlx5-infected skeletal elements (Fig. 7). Thus, the apparent expansion in the extent of hypertrophic maturation detectable histologically in response to Dlx5 misexpression is accompanied by expanded and apparently upregulated domains of expression of molecular markers of hypertrophic chondrocyte maturation.

During terminal phases of maturation, the matrix surrounding hypertrophic chondrocytes becomes progressively mineralized. To further examine the effect of Dlx5 misexpression on maturation, sections through Dlx5-infected and control skeletal elements were stained with Alizarin Red which specifically binds to mineralized matrix. In day 13 control skeletal elements, Alizarin Red-stainable mineralized cartilage matrix is limited to small regions of terminally differentiated hypertrophic chondrocytes near the bone marrow cavity (Fig. 8). As shown in Fig. 8, the region of Alizarin Red-stained mineralized cartilage matrix is greatly expanded in Dlx5-infected skeletal elements. To study further the effects of Dlx5 on the regulation of chondrocyte maturation, the expression domains of Ihh and PTHrP were examined in control and Dlx5-infected skeletal
Although at day 13 there is an expansion in the Ihh expression domain in Dlx5-infected skeletal elements, the expression domain of PTHrP in the periarticular perichondrium appears normal, and no ectopic expression of PTHrP is detectable in the Dlx5-infected elements (Fig. 9). Thus, Dlx5 does not appear to interfere with the Ihh/PTHrP regulatory loop that negatively controls the progression of proliferating chondrocytes to prehypertrophic chondrocytes.

As described above, in addition to enhanced chondrocyte maturation, there is an increase in thickness of the periosteal bony collar along the diaphyses of the Dlx5 infected skeletal elements compared with contralateral controls detectable by whole-mount staining (Fig. 3) and histologically (Fig. 4). As shown in Fig. 10, the increase in the amount of mineralized periosteal bone in response to Dlx5 misexpression is also clearly evident in Alizarin Red-stained tissue sections, and is also reflected in an expanded periosteal domain of expression of osteopontin, which is a marker of differentiated osteoblasts as well as a late marker of chondrocyte maturation. These results further suggest that Dlx5 may be involved directly or indirectly in regulating osteoblast differentiation during the formation of the periosteal bony collar, as well as in regulating chondrocyte maturation.

Dlx5 Misexpression Markedly Reduces Chondrocyte Proliferation as It Promotes Maturation

At the onset of chondrocyte maturation, immature proliferating chondrocytes exit the cell cycle concomitant with initiating hypertrophic differentiation. As described above, our histological analyses indicated that, in addition to an enhancement of hypertrophic maturation, there was an apparent decrease in the size of the zone of proliferation in response to Dlx5 misexpression. In particular, Dlx5-infected skeletal elements lack the organized groups of rounded and radially flattened chondrocytes that constitute the zones of proliferation in the metaphyseal regions of control skeletal elements. To confirm and quantify the apparent reduction in proliferation detectable histologically in response to Dlx5 misexpression, we compared the expression of PCNA (proliferating cell nuclear antigen) by radially flattened (toward the right) immature proliferating chondrocytes. The corresponding region of the Dlx5-infected rudiment (B) contains large numbers of enlarged rounded cells resembling hypertrophying chondrocytes. The images of the control and Dlx5-infected rudiments are at equivalent distances (about 0.5 mm) from the articular surfaces.

FIG. 5. High-magnification images of hematoxylin and eosin-stained sections through the proximal epiphyseal and metaphyseal regions of day 18 control (A) and Dlx5-infected (B) humerus rudiments. This region of the control rudiment (A) consists of adjacent organized zones of small rounded (toward the left) and

FIG. 6. Osteopontin expression in a contralateral control (A) and Dlx5-infected (B) humerus rudiment at day 13. The osteopontin expression domain is expanded in the Dlx5-infected humerus and the hybridization signal is considerably more intense.

© 2002 Elsevier Science (USA). All rights reserved.
immunohistochemistry in Dlx5-infected and control humerus elements. PCNA is an accessory protein for DNA polymerase that is synthesized in the late G1 and S phases of the cell cycle and thus is specifically present in the nuclei of dividing cells (Hall et al., 1990; Waseem and Lane, 1990).

As shown in Fig. 11, there is a striking reduction in the number of PCNA-positive nuclei in the metaphyseal region of Dlx5-infected skeletal elements compared with uninfected contralateral controls. Most of the nuclei of the rounded and radially flattened immature chondrocytes in the zone of proliferation in the metaphyseal region of control skeletal elements are PCNA-positive. In contrast, the metaphyseal region of the Dlx5-infected elements contains far fewer PCNA-positive nuclei, and the majority of the nuclei are unlabeled (Fig. 11). There is on average a 44.3% reduction in the proportion of dividing (PCNA-positive) cells in the metaphyseal region of the Dlx5-infected elements compared with contralateral controls. Whereas 69.3 ± 1.9% of the nuclei in the proliferation zone of control humerus elements are PCNA-positive, only...
38.6 ± 2.6% of the nuclei in the metaphyseal region of the Dlx5-infected elements are labeled. The difference in proliferation in Dlx5-infected and control elements is most pronounced in the lower portion of the metaphysis, where 95.9 ± 0.9% of the radially arranged chondrocytes in control elements are proliferating, whereas only 30.5 ± 2.7% of the enlarged chondrocytes in the corresponding region of Dlx5 infected rudiments are dividing. Thus, Dlx5 misexpression markedly reduces chondrocyte proliferation as it promotes chondrocyte maturation.

DISCUSSION

Dlx5 is a Positive Regulator of Chondrocyte Maturation during Endochondral Ossification

The process of endochondral ossification in which the bones of the limb are formed after the generation of cartilage models is dependent on a precisely regulated and coordinated program of chondrocyte maturation. A crucial event in chondrocyte maturation is differentiation of immature proliferating chondrocytes into postmitotic prehypertrophic chondrocytes which then undergo hypertrophy. Hypertrophic maturation appears to be the main determinant of longitudinal growth (Hunziker, 1994). Identification of regulatory genes that control the progression of chondrocyte maturation toward hypertrophy is crucial to understanding normal and abnormal bone growth and development.

The results of the present study indicate that the homeodomain transcription factor Dlx5 is an important positive regulator of chondrocyte maturation in the developing skeletal elements of the limb. First, we demonstrate that Dlx5 is expressed at the onset of chondrocyte maturation during the conversion of immature proliferating chondrocytes into hypertrophying chondrocytes, which is a critical step in the maturation process. Moreover, misexpression of Dlx5 during the differentiation of the skeletal elements of the chick limb in vivo promotes chondrocyte maturation resulting in the formation of severely shortened skeletal elements that contain excessive numbers of hypertrophying chondrocytes extending into ectopic regions. In response to Dlx5 misexpression, ectopic hypertrophying chondrocytes not only extend deeply into the marrow cavity, but also are present in the metaphyseal and proximal epiphyseal regions that are normally occupied by immature proliferating chondrocytes. The expansion in the extent of hypertrophic maturation in response to Dlx5 misexpression is accompanied by expanded domains of expression of molecular markers of hypertrophic chondrocyte maturation, particularly osteopontin and type X collagen, and also by an expansion of mineralized cartilage matrix, which is characteristic of terminal hypertrophic differentiation. Finally, Dlx5 misexpression markedly reduces chondrocyte proliferation concomitant with promoting hypertrophic maturation.

Taken together, these results indicate that Dlx5 is an important positive regulator of chondrocyte maturation during endochondral ossification and suggest that it may...
regulate maturation at least in part by promoting the conversion of immature proliferating chondrocytes into hypertrophying chondrocytes. This possibility is consistent with our finding that during normal development Dlx5 expression is initiated concomitant with the conversion of immature proliferating chondrocytes into postmitotic prehypertrophic chondrocytes.

Since our gain-of-function study clearly implicates Dlx5 in the regulation of chondrocyte maturation, it is of considerable interest that Dlx5-null mice exhibit no obvious defects in the longitudinal growth of long bones or malformations of the limbs (Acampora et al., 1999; Depew et al., 1999), although there is a subtle reduction of the periosteal bone lamina and defects in craniofacial skeletogenesis (Acampora et al., 1999). In this regard, it is noteworthy that Dlx6, a closely related and potentially functionally redundant member of the Dlx family, has been reported to be coexpressed with Dlx5 during skeletogenesis (Simeone et al., 1994; Acampora et al., 1999; Chen et al., 1996). Thus, in the absence of Dlx5, Dlx6 or some other member of the Dlx family may compensate for Dlx5 in regulating chondrocyte maturation. It is therefore of considerable interest that it has recently been demonstrated that chondrocyte maturation is severely inhibited and retarded in mouse embryos in which the Dlx5 and Dlx6 genes have been simultaneously inactivated (Robledo et al., 2002). This loss-of-function study complements and confirms our gain-of-function study, indicating that Dlx5 and other Dlx genes are positive regulators of chondrocyte maturation during endochondral ossification. The Dlx5/Dlx6 double inactivation study also indicates that Dlx5, Dlx6, and perhaps other members of the Dlx family function in a redundant or concerted fashion to regulate chondrocyte maturation.

Although our results clearly indicate Dlx5 is a positive regulator of chondrocyte maturation, the extension of hypertrophic chondrocytes into the marrow cavity in response to Dlx5 misexpression might also reflect, at least in part, alterations in mechanisms of remodeling or removal of the hypertrophic zone. Alternatively, the rate of removal of the hypertrophic chondrocytes in the marrow cavity might not be able to keep pace with the enhanced rate of hypertrophic maturation that occurs in response to Dlx5 misexpression. In any case, the possibility that Dlx5 may be involved in remodeling as well as in chondrocyte maturation warrants consideration.

Possible Relationships between Dlx5 and Other Regulators of Chondrocyte Maturation during Endochondral Ossification

In addition to Dlx5, several other regulatory molecules, including BMPs, particularly BMP-6, the transcription factor Cbfa1/Runx2, and β-catenin-mediated Wnt signaling, have been implicated in the positive regulation of chondrocyte maturation during endochondral ossification (see Introduction). Unraveling the ways in which Dlx5 and other transcription factors and signaling pathways interact and cooperate with one another to regulate the progression of hypertrophic chondrocyte maturation is critical to understanding the differentiation and growth of the skeletal elements of the limbs. Although the relationships between Dlx5 and the other positive regulators of maturation remain to be determined, previous studies are suggestive of several possible regulatory interactions.

Like Dlx5, BMP-6, which can stimulate chondrocyte maturation in vitro (Grimsrud et al., 1999; Ito et al., 1999; Kameda et al., 2000; Boskey et al., 2002), is expressed in prehypertrophic and hypertrophic chondrocytes in vivo (Kingsley, 1994; Vortkamp et al., 1996; Inada et al., 1999). It is therefore noteworthy that Dlx5 is a direct downstream target gene of BMP signaling in osteoblasts (Miya et al., 1999) and other cell types (Luo et al., 2001; Park and Morasso, 2002). Thus, it is possible that Dlx5 expression may be regulated by BMP-6 or another member of the BMP family during chondrocyte maturation. If so, Dlx5 may participate in mediating at least some of the positive effects of BMP signaling on hypertrophic differentiation. It is also possible that Dlx5 and BMP-activated Smad transcription factors, such as Smads 1, 5, or 8, might function as coactivators of the transcription of some target genes during chondrocyte maturation. Both homeodomain binding elements and BMP responsive Smad binding elements are involved in regulation of the osteopontin gene promoter in osteoblasts (Hullinger et al., 1999), and the osteopontin gene is a candidate direct target of Dlx5 during chondrocyte maturation, since its expression domain is expanded and upregulated in response to Dlx5 misexpression.

Cbfa1/Runx2, another positive regulator of chondrocyte maturation, is coexpressed with Dlx5 and BMP-6 by prehypertrophic and hypertrophic chondrocytes of the cartilage models (Inada et al., 1999; Kim et al., 1999), and the skeletal elements of Cbfa1/Runx2 knockout mice in which chondrocyte maturation is suppressed do not express BMP-6 (Inada et al., 1999). Thus, it is possible that Cbfa1/Runx2 might be an upstream regulator of BMP-6 expression at the onset of hypertrophic differentiation, and, in turn, as described above, BMP signaling may regulate the expression of Dlx5. Conversely, several studies have shown that BMP signaling can upregulate the expression of Cbfa1/Runx2 in osteoblasts (Chen et al., 1998; Lee et al., 1999, 2000; Gori et al., 1999; Bannerjee et al., 2001) and in a chondrocyte-like cell line, TC6 (Takazawa et al., 2000). Thus, BMP signaling has the potential to regulate expression of both Dlx5 and Cbfa1/Runx2 during chondrocyte maturation, and these transcription factors may then function separately or work together as comodulators of some target genes in chondrocytes, perhaps in conjunction with BMP-activated Smad transcription factors. It is indeed noteworthy that the pattern of expression of Cbfa1/Runx2 is modified in Dlx5/- mutant mouse embryos (Robledo et al., 2002).

Several observations suggest that it is also possible that Dlx5 may interact or cooperate with β-catenin-mediated Wnt signaling in positively regulating chondrocyte matura-
tion. The effects of retroviral misexpression of Wnt-4 or activated β-catenin during skeletal development in the chick limb (Hartmann and Tabin, 2000) are quite similar to those we observe as a consequence of misexpression of Dlx5. Misexpression of each not only promotes chondrocyte maturation resulting in the formation of shortened skeletal elements containing excess numbers of hypertrophic chondrocytes, but misexpression of each also stimulates periosteal bone formation. These similar phenotypic effects suggest there may be a direct regulatory relationship between β-catenin-mediated Wnt signaling and Dlx5 in the positive control of chondrocyte maturation. Thus, it is noteworthy that the expression of Dlx genes is regulated by β-catenin-mediated Wnt signaling in some developing systems (Neumann and Cohen, 1997; Beanan et al., 2000). In particular, during development of the wing imaginal disc in Drosophila, Distal-less, the Drosophila homolog of vertebrate Dlx genes, is a target gene of Wingless, the Drosophila homolog of Wnt-1, which signals through the canonical β-catenin pathway (Neumann and Cohen, 1997). Taken together, these results suggest the possibility that Dlx5 might participate in mediating at least some of the effects of the β-catenin Wnt signaling pathway during chondrocyte maturation, and/or that the Wnt signaling pathway and Dlx5 may work together in regulating the process.

Dlx5 May Also Be Involved in Regulating Osteoblast Differentiation during Formation of the Periosteal Bony Collar

In addition to promoting chondrocyte maturation in the cartilage models, Dlx5 misexpression enhances periosteal bone formation. Conversely, periosteal bone formation is severely reduced and retarded in Dlx5/– mutant mouse embryos (Robledo et al., 2002). The increase in periosteal bone we observe as a result of Dlx5 misexpression could result from Dlx5 directly promoting enhanced osteoblast differentiation from osteogenic precursor cells in the periosteum, or it may be a secondary consequence of the enhanced chondrocyte maturation that is occurring resulting in enhanced osteogenic signaling from the maturing chondrocytes to the periosteum. Although the latter possibility cannot be excluded, several observations suggest that Dlx5 may play a direct role in regulation of osteoblast differentiation during formation of the periosteal bony collar.

During normal development, Dlx5 is highly expressed by the perichondrium adjacent to the diaphysis of the models that will give rise to the osteoblasts that deposit the periosteal bony collar. As endochondral ossification proceeds, Dlx5 is indeed very highly expressed in the inner layers of the periosteum, where osteoblasts are differentiating and depositing periosteal bone. Dlx5 is also expressed by differentiating osteoblasts during intramembranous ossification (Simeone et al., 1994; Zhao et al., 1994). Furthermore, we have found that retroviral overexpression of Dlx5 in primary cultures of chick embryo calvarial cells dramatically accelerates osteoblast differentiation and prematurely induces expression of several osteoblast markers (Tadic et al., 2002). Dlx5 also stimulates osteoblastic differentiation of calvarial periosteal cells that do not normally undergo osteoblastic differentiation in vitro (Tadic et al., 2002). Overexpression of Dlx5 also upregulates production of osteocalcin and mineralization in MC3T3 osteoblast cells (Miyama et al., 1999). Dlx5 has been directly implicated in the transcriptional activation of several osteoblast genes, including Col1a1 (Tadic et al., 2001), bone sialoprotein (Benson et al., 2000), and osteocalcin (Newberry et al., 1998). Taken together, these observations suggest that Dlx5 may be directly involved in regulating osteoblast differentiation during the formation of the periosteal bony collar, as well as in regulating chondrocyte maturation.

It is possible that the increase in periosteal bone in response to Dlx5 misexpression could result in part from decreased turnover or remodeling of periosteal bone. However, an increase in periosteal bone formation is detectable in Dlx5-infected skeletal rudiments as early as day 13, which is before significant remodeling and turnover of the periosteal bone at its inner (endosteal) surface normally occurs (Pechak et al., 1986b).

ACKNOWLEDGMENTS

We thank Louis Gerstenfeld and Cliff Tabin for cDNA probes, and Steve Hughes for the RCASBP vector. The monoclonal antibody X-AC9 developed by Thomas Linsenmayer was obtained from the Developmental Studies Hybridoma Bank developed under the auspices of the NICHD and maintained by The University of Iowa, Department of Biological Sciences (Iowa City, IA). This work was supported by NIH Grant HD22610 (to R.A.K.).

REFERENCES

Grimsrud, C. D., Romano, P. R., D’Souza, M., Puza, J. E., Reynolds, P. R., Rosier, R. N., and O’Keefe, R. J. (1999). BMP-6 is an autocrine stimulator of chondrocyte differentiation. J. Bone Miner. Res. 14, 475–481.

Dlx5 Regulates Chondrocyte Differentiation

