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We calculate the electric dipole form factor of the nucleon that arises as a low-energy manifestation
of time-reversal violation in quark–gluon interactions of effective dimension 6: the quark electric and
chromoelectric dipole moments, and the gluon chromoelectric dipole moment. We use the framework of
two-flavor chiral perturbation theory to one loop.
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Electric dipole moments (EDMs) [1,2] provide stringent bounds
on sources of time-reversal (T ) violation beyond the phase of
the quark-mixing matrix [3]. Experiments are in preparation [4]
which aim to improve the current bound on the neutron EDM,
|dn| < 2.9 × 10−26 e cm [5], by nearly two orders of magnitude.
Novel ideas exist [6] also for the measurement of EDMs of charged
particles in storage rings, including the proton—for which an indi-
rect bound, |dp| < 7.9 × 10−25 e cm, has been extracted from the
atomic Hg EDM [7]—and the deuteron. Since the Standard Model
prediction [8,9] is orders of magnitude away from current experi-
mental limits, a signal in this new crop of experiments would be a
clear sign of new physics.

The momentum dependence of an EDM is the electric dipole
form factor (EDFF). Together with the well-known parity (P )
and T -preserving electric and magnetic form factors and the P -
violating, T -preserving anapole form factor, the P - and T -violating
EDFF completely specifies the Lorentz-invariant electromagnetic
current of a particle with spin 1/2. Although the full momentum
dependence of a nuclear EDFF will not be measured anytime soon,
the radius of the form factor provides a contribution to the Schiff
moment (SM) of the corresponding atom, because it produces a
short-range electron–nucleus interaction.

There has been some recent interest [10–12] on the nucleon
EDFF stemming from the lowest-dimension T violation in strong
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interactions, the QCD θ̄ term. As other low-energy observables,
both the EDM and the SM of hadrons and nuclei are difficult to
calculate directly in QCD. Attempts have been made to extract the
nucleon EDM from lattice simulations [13], but a signal with dy-
namical quarks remains elusive. One possible way to extract the
EDM in this case relies on a extrapolation of the EDFF to zero mo-
mentum, which provides another motivation to look at the EDFF.
QCD-inspired models have also been brought to bear on the nu-
cleon EDFF [11].

We would like to use a framework flexible enough to formu-
late the nucleon EDFF in the wider context of other low-energy
T -violating observables such as the EDMs of nuclei. Such frame-
work exists in the form of an effective field theory, chiral pertur-
bation theory (ChPT) [14–16]. (For introductions, see for example
Refs. [17,18].) Since it correctly incorporates the approximate chi-
ral symmetry of QCD, ChPT provides not only a model-independent
description of low-energy physics but also the quark-mass depen-
dence of observables, which is useful in the extrapolation of lattice
results to realistic values of the pion mass. The nucleon EDFF from
the θ̄ term has in fact been calculated in this framework [10,12],
and some implications of the particular way the θ̄ term breaks chi-
ral symmetry were discussed in Ref. [19]. (For earlier work on the
neutron EDM in ChPT, see for example Refs. [20,21].) The momen-
tum dependence of the EDFF is given by the pion cloud [10,22]:
the scale for momentum variation is the pion mass and the SM
is determined by a T -violating pion–nucleon coupling. Assuming
naturalness of ChPT’s low-energy constants (LECs), one can use an
estimate of this coupling based on SU(3) symmetry to derive [20]
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a bound on θ̄ , θ̄ � 2.5 × 10−10 [12] from the current limit on the
neutron EDM. ChPT extrapolation formulas for the nucleon EDM in
lattice QCD can be found in Ref. [23].

The smallness of θ̄ leaves room for other sources of T vio-
lation in the strong interactions. Here we calculate in ChPT the
nucleon EDFF arising from the effectively dimension-6 interactions
involving quark and gluon fields that violate T [24,25]: the quark
electric dipole moment (qEDM), which couples quarks and pho-
tons; the quark chromoelectric dipole moment (qCEDM), which
couples quarks and gluons; and the Weinberg operator, which cou-
ples three gluons and can be identified as the gluon chromoelectric
dipole moment (gCEDM). These higher-dimension operators can
have their origin in an ultraviolet-complete theory at a high-energy
scale, such as, for example, supersymmetric extensions of the Stan-
dard Model. We construct the interactions among nucleons, pions
and photons that stem from the underlying quark–gluon operators
and use them to calculate the EDFF to the order where the mo-
mentum dependence first appears. As we will see, the sizes of the
proton and neutron EDMs and SMs partially reflect the underly-
ing sources of T violation. While much effort has already been put
into estimating the EDMs from these sources [1,2], the full EDFF
apparently has been previously considered only within a particular
chiral quark model [26]. Other implications of the different chiral
transformation properties [27] of the dimension-6 operators will
be considered in a subsequent paper [28].

Well below the scale M/T characteristic of T violation, we ex-
pect T -violating effects to be captured by the lowest-dimension
interactions among Standard Model fields that respect the the-
ory’s SU(3)c × SU(2)L × U (1)Y gauge symmetry. Just above the
characteristic QCD scale MQCD ∼ 1 GeV, strong interactions are
described by the most general Lagrangian with Lorentz, and
color and electromagnetic gauge invariance among the lightest
quarks (q = (ud)T ), gluons (Ga

μ), and photons (Aμ). The effectively
dimension-6 T -violating terms at this scale can be written as

L/T = − i

2
q̄(d0 + d3τ3)σ

μνγ 5qFμν

− i

2
q̄(d̃0 + d̃3τ3)σ

μνγ 5λaqGa
μν

+ dW

6
εμνλσ f abc Ga

μρGb,ρ
ν Gc

λσ , (1)

in terms of the photon and gluon field strengths Fμν and Ga
μν , re-

spectively, the standard products of gamma matrices γ 5 and σμν

in spin space, the totally antisymmetric symbol εμνλσ , the Pauli
matrix τ3 in isospin space, the Gell-Mann matrices λa in color
space, and the associated Gell-Mann coefficients f abc . In Eq. (1) the
first (second) term represents the isoscalar d0 (d̃0) and isovector
d3 (d̃3) components of the qEDM (qCEDM). Although these inter-
actions have canonical dimension 5, they originate just above the
Standard Model scale MW from dimension-6 operators [24] involv-
ing in addition the carrier of electroweak symmetry breaking (the
Higgs field). They are thus proportional to the vacuum expectation
value of the Higgs field, which we can trade for the ratio of the
quark mass to Yukawa coupling, mq/ fq . Writing the proportional-
ity constant as eδq fq/M2

/T (4πδ̃q fq/M2
/T ),

di ∼ O
(

eδ
m̄

M2
/T

)
, d̃i ∼ O

(
4πδ̃

m̄

M2
/T

)
, (2)

in terms of the average light-quark mass m̄ and the dimensionless
factors δ and δ̃ representing typical values of δq and δ̃q . The third
term in Eq. (1) [25] is the gCEDM, with

dW ∼ O
(

4π w

M2

)
(3)
/T
in terms of a dimensionless parameter w . The sizes of δ, δ̃

and w depend on the exact mechanisms of electroweak and T
breaking and on the running to the low energies where non-
perturbative QCD effects take over. The minimal assumption is
that they are O(1), O(gs/4π) and O((gs/4π)3), respectively,
with gs the strong-coupling constant. However they can be much
smaller (when parameters encoding T -violating beyond the Stan-
dard Model are small) or much larger (since fq is unnaturally
small). In the Standard Model itself, where M/T = MW , they are
suppressed [9] by the Jarlskog parameter [29] JCP � 3 × 10−5. In
supersymmetric models with various simplifying, universality as-
sumptions of a soft-breaking sector with a common scale MSUSY ,
one has M/T = MSUSY and the size of the dimensionless param-
eters is given by the minimal assumption times a factor which
is [2,30,31], roughly (neglecting electroweak parameters), ACP =
(gs/4π)2 sin φ, with φ a phase encoding T violation. Allowing for
non-diagonal terms in the soft-breaking sfermion mass matrices,
enhancements of the type mb/md ∼ 103 or even mt/mu ∼ 105 are
possible (although they might be associated with other, smaller
phases) [2].

Since we are interested in light systems, we are integrating out
all degrees of freedom associated with quarks heavier than up and
down. The effects of qEDMs and qCEDMs of such quarks are dis-
cussed briefly at the end. T -violating four-quark operators are ef-
fectively dimension-8 because again electroweak gauge invariance
requires insertions of the Higgs field. Since higher-dimension op-
erators are suppressed by more inverse powers of the large scale
M/T , we expect them to be generically less important at low en-
ergies and we concentrate here on the dimension-6 operators in
Eq. (1). It is of course possible that in particular models the co-
efficients of the effectively dimension-6 operators are suppressed
enough to make higher-dimension operators numerically impor-
tant; low-energy implications of four-quark operators, which also
contain representations of chiral symmetry we consider, have re-
cently been studied in Ref. [32].

At momenta Q comparable to the pion mass, Q ∼ mπ � MQCD,
interactions among nucleons, pions and photons are described by
the most general Lagrangian involving these degrees that trans-
forms properly under the symmetries of the QCD. Ignoring quark
masses and charges and the θ̄ term, the dimension-4 QCD terms
are invariant under a chiral SU(2)L × SU(2)R ∼ SO(4) symmetry,
which is spontaneously broken down to its diagonal, isospin sub-
group SU(2)V ∼ SO(3). The corresponding Goldstone bosons are
identified as the pions, which provide a non-linear realization of
chiral symmetry. Pion interactions proceed through a covariant
derivative, which in stereographic coordinates [17] π for the pi-
ons is written as

Dμπ = D−1∂μπ , (4)

with D = 1 + π2/F 2
π and Fπ � 186 MeV the pion decay constant.

Nucleons are described by an isospin-1/2 field N , and the nucleon
covariant derivative is

DμN =
(

∂μ + i

F 2
π

τ · π × Dμπ

)
N. (5)

We define D† through N̄ D† ≡ D N , and use the shorthand notation

Dμ
± ≡ Dμ ± D†μ,

Dμ
±Dν± ≡ DμDν + D†μD†ν ± D†μDν ± D†ν Dμ, (6)

and

τi Dμ
± ≡ τi Dμ ± D†μτi,

τi Dμ
±Dν± ≡ τi DμDν + D†μD†ντi ± D†μτi Dν ± D†ντi Dμ. (7)
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Covariant derivatives of covariant derivatives can be constructed
similarly, for example

(DμDνπ)i =
(

∂μδi j − 2

F 2
π

εikj(π × Dμπ)k

)
Dνπ j. (8)

For simplicity we omit the delta isobar here, although one can in-
troduce [33] an isospin-3/2 field for it along completely analogous
lines. The effective interactions are constructed as isospin-invariant
combinations of chiral-covariant objects [17].

The quark mass, charge and θ̄ terms break chiral symmetry
explicitly as specific components of various chiral tensors. The
formalism to include chiral-symmetry-breaking operators in the
SU(2) × SU(2) ChPT Lagrangian has been developed in Refs. [17,
33]. Introducing the SO(4) vectors

S =
( −iq̄γ 5τq

q̄q

)
, P =

(
q̄τq

iq̄γ 5q

)
, (9)

and the SO(4) scalar and antisymmetric tensor

Iμ = 1

6
q̄γ μq, T μ = 1

2

(
εi jkq̄γ μγ 5τkq q̄γ μτ jq

−q̄γ μτiq 0

)
, (10)

the average quark-mass term transforms as S4, the quark-mass-
difference term as P3, the quark–photon coupling as I ⊕ T34, and
the θ̄ term as P4. They generate interactions containing the pion
field explicitly, which are proportional to powers of the symmetry-
breaking parameters m̄ = (mu + md)/2, εm̄ = (md − mu)/2, e (the
proton charge), and (m̄(1 −ε2) sin θ̄ )/2. The most important chiral-
breaking term is the m̄ term, which among other effective in-
teractions generates the main contribution to the pion mass,
m2

π = O(m̄MQCD). The electromagnetic coupling produces two
types of effective interactions: (i) purely hadronic interactions
proportional to αem/4π ∼ εm3

π/M3
QCD; and (ii) gauge-invariant in-

teractions with explicit soft photon fields, which appear either in
gauge-covariant derivatives or through the photon field strength.
The covariant derivatives below are all to be interpreted as gauge-
covariant derivatives. After a suitable chiral rotation eliminates it
in favor of a mass term that does not generate vacuum instabil-
ity in first order in the symmetry-breaking parameter [34], the
θ̄ term is found to break chiral symmetry as a different compo-
nent of the same vector P to which the isospin-breaking quark
mass term is associated. The construction of the corresponding ef-
fective interactions has been carried out in some detail recently
[19]. Since effective interactions proportional to two or more pow-
ers of T -violating parameters are exceedingly small, to a very
good approximation one can simply add the contributions from
dimension-6 sources considered here to the corresponding θ̄ con-
tributions calculated in Refs. [10,12].

Since nucleons are essentially nonrelativistic for Q � mN , the
nucleon mass, we work in the heavy-baryon framework [16]
where, instead of gamma matrices, it is the nucleon velocity vμ

and spin Sμ (S = (�σ/2,0) in the rest frame v = (�0,1)) that appear
in interactions. Below we use a subscript ⊥ to denote the compo-
nent of a four-vector perpendicular to the velocity, for example

Dμ
⊥ = Dμ − vμv · D. (11)

We use reparametrization invariance (RPI) [35] to incorporate
Lorentz invariance in an expansion in powers of Q /mN .

The infinite number of effective Lagrangian terms can be
grouped into sets L(�) of a given “chiral index” [15] � = d +
f /2 − 2, where d counts derivatives, powers of mπ and photon
fields, and f = 0, 2 is the number of fermion fields:

L =
∞∑

L(�). (12)

�=0
The LECs can be estimated using naive-dimensional analysis (NDA)
[25,36], in which case the index � tracks the number of inverse
powers of MQCD ∼ 2π Fπ � 1.2 GeV associated with an interaction.
(Note that since NDA associates the LECs of chiral-invariant oper-
ators to gs/4π , for consistency one should take gs ∼ 4π .) For the
purposes of our calculation, we need explicitly only the leading
T -conserving interactions,

L(0) = 1

2
Dμπ · Dμπ − m2

π

2D
π2

+ N̄

(
iv · D − 2g A

Fπ
Sμτ · Dμπ

)
N, (13)

where g A � 1.267 is the pion–nucleon axial-vector coupling. At
this order the nucleon is static; kinetic corrections have relative
size O(Q /MQCD) and appear in L(1) . Isospin breaking from the
quark masses, represented by ε, also only appears in subleading
orders [33].

The dimension-6 sources of T violation generate further effec-
tive interactions, which break chiral symmetry in their own ways.
Introducing the SO(4) singlet

IW = 1

6
εμνλσ f abc Ga

μρ Gb,ρ
ν Gc

λσ , (14)

and the SO(4) vectors

W = 1

2

( −iq̄σμνγ 5τq
q̄σμνq

)
Fμν, V = 1

2

(
q̄σμντq

iq̄σμνγ 5q

)
Fμν,

(15)

and

W̃ = 1

2

( −iq̄σμνγ 5τλaq
q̄σμνλaq

)
Ga

μν,

Ṽ = 1

2

(
q̄σμντλaq

iq̄σμνγ 5λaq

)
Ga

μν, (16)

Eq. (1) can be rewritten as

L/T = −d0 V 4 + d3W3 − d̃0 Ṽ 4 + d̃3W̃3 + dW IW . (17)

The corresponding T -violating effective Lagrangian can be con-
structed by writing down all terms that transform in the same way
under Lorentz, P , T , and chiral symmetry as the terms in Eq. (17).
We still use NDA and label operators by a generalized chiral index
� that continues to count inverse powers of MQCD. For simplic-
ity we will not keep track of explicit factors of ε. Here we present
only the interactions needed in the calculation of the nucleon EDFF
up to the order the SM first appears; as we are going to see, this
means up to � = 1 for qCEDM and gCEDM and to � = 3 for qEDM.
In the equations below, “. . . ” account for interactions not needed
in our calculation; we leave a more complete presentation of the
effective Lagrangian for a future publication [28].

Some of the contributions to the EDFF arise from virtual pions.
In the presence of T violation, pions can be annihilated into the
vacuum when an operator with the quantum numbers of the neu-
tral pion is allowed by the pattern of symmetry breaking. In the
case of the qCEDM, such a tadpole arises from W̃3 and can thus
be linear in d̃3. In the case of the gCEDM, the tadpole arises from
the tensor product of IW with the P3 in Eq. (9) and is linear in
εm̄dW . In both cases these tadpoles first appear at � = −2 and ex-
ist also at higher orders. For the qEDM, they are beyond the order
we consider here because they are suppressed by at least one fac-
tor of αem/4π . All such tadpoles represent vacuum misalignment.
Because they are small, they can be treated in perturbation theory
or simply eliminated using the chiral rotation given in Ref. [19]. To



J. de Vries et al. / Physics Letters B 695 (2011) 268–274 271
the order we are working the effects of this rotation can be ab-
sorbed in terms that already exist in the effective Lagrangian. The
fields and LECs introduced below are to be interpreted as subse-
quent to the rotation.

Pions contribute to the EDFF in loops, which require the T -
violating pion–nucleon interactions with � = −1. Again, “indirect”
electromagnetic operators stemming from hard photons tied to
qEDM are of higher order. From the qCEDM and the gCEDM,

L(−1)
/T ,π N = − ḡ0

Fπ D
π · N̄τ N

− ı̄0

F 2
π

(v · Dπ × Dμπ) · N̄ Sμτ N + · · · . (18)

The non-derivative term in Eq. (18) arises either directly from Ṽ 4
or from the tensor product IW ⊗ S4, and thus has a LEC

ḡ0 = O
(

δ̃
m2

π

M2
/T

MQCD, w
m2

π

M2
/T

MQCD

)
. (19)

The two-derivative term is the lowest-index chiral invariants that
arise from IW , its LEC being

ı̄0 = O
(

w

M2
/T

MQCD

)
. (20)

Note that the qCEDM and the qEDM generate two-derivative inter-
actions of different form than above, since they are chiral-breaking,
but they only appear at higher order. There are other pion–nucleon
interactions with � = −1, but they do not contribute to the EDFF
at the order we calculate.

In addition to the long-range contributions from virtual pions,
the EDFF is sensitive to shorter-range effects, which in ChPT are
represented by contact interactions. The lowest-order contribution
of this type arises from the gCEDM combined with the quark–
photon coupling, IW ⊗ (I ⊕ T34):

L(−1)
/T ,γ N = 2N̄

{
D̄(−1)

0 + D̄(−1)
1

[
τ3 + 2

F 2
π D

(
π3π · τ − π2τ3

)]}

× SμN vν Fμν + · · · , (21)

where the LECs are

D̄(−1)
i = O

(
ew

M2
/T

MQCD

)
. (22)

In next order, there is a recoil correction

L(0)
/T ,γ N = i

mN
N̄

(
D̄(−1)

0 + D̄(−1)
1 τ3

)
SμDν⊥−N Fμν + · · · , (23)

and one further order up other sources contribute as well:

L(1)
/T ,γ N = 2N̄

[
D̄(1)

0

(
1 − 2π2

F 2
π D

)
+ D̄(1)

1

(
τ3 − 2π3

F 2
π D

π · τ
)]

× SμN vν Fμν + 2D̄(1)′
1

(
1 − 2π2

F 2
π D

)

× N̄

[
τ3 + 2

F 2
π D

(
π3π · τ − π2τ3

)]
SμN vν Fμν

− N̄
(

S̄ ′ (1)
0 + S̄ ′ (1)

1 τ3
)(

S · D⊥+Dμ
⊥+ + SμD2⊥+

)
N vν Fμν

− 1

4m2
N

N̄
(

D̄(−1)
0 + D̄(−1)

1 τ3
)

S · D⊥−Dμ
⊥−N vν Fμν + · · · .

(24)

Here the operators with LECs
D̄(1)
i = O

(
eδ̃

m2
π

M2
/T

M−1
QCD, eδ

m2
π

M2
/T

M−1
QCD, ew

m2
π

M2
/T

M−1
QCD

)
(25)

transform as vectors: the isoscalar component as V 4 or as the vec-
tors in Ṽ 4 ⊗ I , W̃3 ⊗ T34 and IW ⊗ (S4 ⊕ P3) ⊗ (I ⊕ T34); the
isovector component as W3 or as the vectors in W̃3 ⊗ I , Ṽ 4 ⊗ T34
and IW ⊗ (S4 ⊕ P3) ⊗ (I ⊕ T34). The operator with LEC

D̄(1)′
1 = O

(
eδ̃

m2
π

M2
/T

M−1
QCD, ew

m2
π

M2
/T

M−1
QCD

)
(26)

transforms as the tensors in Ṽ 4 ⊗ T34 and IW ⊗ S4 ⊗ (I ⊕ T34). The
operators with LECs

S̄ ′(1)
i = O

(
ew

M2
/T

M−1
QCD

)
(27)

come from IW ⊗ (I ⊕ T34). The last operator written explicitly in
Eq. (24) is a relativistic correction. It is important to realize that
the form of such corrections depends on the choice of operators
included in the effective Lagrangian; here we have eliminated time
derivatives of the nucleon field through field redefinitions.

For the qEDM, we need also

L(2)
/T ,γ N = i

mN
N̄

(
D̄(1)

0 + D̄(1)
1 τ3

)
SμDν⊥−N Fμν + · · · (28)

and

L(3)
/T ,γ N = 2N̄

(
D̄(3)

0 + D̄(3)
1 τ3

)
SμN vν Fμν

− N̄
(

S̄ ′ (3)
0 + S̄ ′ (3)

1 τ3
)(

S · D⊥+Dμ
⊥+ + SμD2⊥+

)
N vν Fμν

− 1

4m2
N

N̄
(

D̄(1)
0 + D̄(1)

1 τ3
)

S · D⊥−Dμ
⊥−N vν Fμν + · · · ,

(29)

with

D̄(3)
i = O

(
eδ

m4
π

M2
/T

M−3
QCD

)
, S̄ ′ (3)

i = O
(

eδ
m2

π

M2
/T

M−3
QCD

)
. (30)

With these interactions we can calculate the nucleon EDFF to
the order at which momentum dependence first appears. We con-
sider a nucleon of initial (final) momentum p (p′) and a (space-
like) photon of momentum q = p − p′ (q2 = −Q 2 < 0). It is conve-
nient to take q and K = (p + p′)/2 as the independent momenta.
The isoscalar (F0) and isovector (F1) EDFFs are defined from the
nucleon electromagnetic current Jμem(q) via

Jμem(q, K ) = 2
(

F0
(

Q 2) + F1
(

Q 2)τ3
){

Sμv · q − S · qvμ

+ 1

mN

[
q · K Sμ − S · qKμ

]

+ 1

2m2
N

S · K
[

Kμv · q − K · qvμ
] + · · ·

}
. (31)

The first term corresponds to the definition in Ref. [10], while the
second is a recoil correction [19] and the remaining are conse-
quences of Lorentz invariance. We will write

Fi
(

Q 2) = Di − S ′
i Q 2 + Hi

(
Q 2), (32)

where Di is the isospin i component of the EDM, S ′
i of the SM,

and Hi(Q 2) accounts for the remaining Q 2 dependence. The EDFF
of the proton (neutron) is F0 + F1 (F0 − F1).

The calculation of the EDFF to the order we are interested in in-
cludes T violation in tree and one-loop diagrams. In tree diagrams
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Fig. 1. One-loop diagrams contributing to the nucleon EDFF. Solid, dashed and wavy lines represent the propagation of nucleons, pions and photons, respectively. A square
marks a T -violating interaction, other vertices representing T -conserving interactions.
the photon is attached to the nucleon line via a T -violating oper-
ator from Eqs. (21), (23), (24), (28), and (29). The loop diagrams,
shown in Fig. 1, contain the T -violating pion–nucleon couplings in
Eq. (18) or the photon–nucleon couplings in Eqs. (21) and (24)—
which we denote by squares—while the other couplings come from
the leading, T -preserving chiral Lagrangian, Eq. (13). In addition,
nucleon wave-function renormalization from L(0) at one-loop level
[18] can appear. Since in this Lagrangian the nucleon is static, in
one-loop diagrams we take v · q = v · K = 0. We use dimensional
regularization in d dimensions and encode divergences in the fac-
tor

L ≡ 2

4 − d
− γE + ln 4π. (33)

The loops bring in also a renormalization scale μ, which is elimi-
nated through the accompanying LECs.

We start with the contributions from the qCEDM, which are
very similar to those of θ̄ [10,12]. In this case the lowest-order
momentum dependence arises from the loops 1–6 in Fig. 1, where
the T -violating vertex is the first term in Eq. (18). At the same or-
der, O(eδ̃m2

π/M2
/T MQCD), there are also tree contributions from the

first term in Eq. (24). The isoscalar form factor does not receive
loop corrections and can be expressed purely in terms of coeffi-
cients of short-distance operators,

D0,qCEDM = D̄(1)
0 , (34)

S ′
0,qCEDM = 0, (35)

H0,qCEDM
(

Q 2) = 0. (36)

Contributions to the isoscalar SM appear in higher orders. In con-
trast, the loop diagrams with static nucleons not only renormal-
ize the contributions of short-distance operators to the isovector
EDM, but also generate a non-trivial momentum dependence in
the isovector EDFF. The μ-independent isovector EDM is found to
be

D1,qCEDM = D̄(1)
1 + D̄(1)′

1 + eg A ḡ0

(2π Fπ )2

(
L − ln

m2
π

μ2

)
, (37)

while the momentum dependence is encoded in

S ′
1,qCEDM = eg A ḡ0

6m2
π (2π Fπ )2

, (38)

H1,qCEDM
(

Q 2) = 4eg A ḡ0

15(2π Fπ )2
f

(
Q 2

4m2
π

)
, (39)

where the function f (Q 2/4m2
π ) is defined as

f (x) ≡ −15

4

[√
1 + 1

x
ln

(√
1 + 1

x + 1√
1 + 1

x − 1

)
− 2

(
1 + x

3

)]
. (40)

Note that f (x � 1) = x2 + O(x3).
Contrary to the qCEDM, the momentum dependence for qEDM

and gCEDM arises only two orders down with respect to the
lowest-order contribution to the EDM. To this order, a calcula-
tion of the electromagnetic current yields, in addition to strong-
interaction corrections, also the Lorentz terms ∝ m−1 and ∝ m−2
N N
in Eq. (31). In the strong-interaction corrections given below we
include the nucleon wave-function renormalization.

For the qEDM short-range contributions to the EDM start at chi-
ral index � = 1 and others appear at � = 3. To this order there are
no contributions from pion–nucleon T -violating interactions, while
the loop diagrams 7, 8, 10, and 11 in Fig. 1, with interactions from
Eq. (24), only renormalize the tree-level contributions without any
energy dependence. To O(eδm4

π/M2
/T M3

QCD), we find the EDMs

D0,qEDM = D̄(1)
0 + D̄(3)

0 + 3

4
D̄(1)

0
m2

π

(2π Fπ )2

×
[(

2 + 4g2
A

)(
L − ln

m2
π

μ2

)
+ 2 + g2

A

]
, (41)

D1,qEDM = D̄(1)
1 + D̄(3)

1 + 1

4
D̄(1)

1
m2

π

(2π Fπ )2

×
[(

2 + 8g2
A

)(
L − ln

m2
π

μ2

)
+ 2 + 3g2

A

]
, (42)

and the momentum dependence given entirely by the SMs,

S ′
i,qEDM = S̄ ′ (3)

i , (43)

Hi,qEDM
(

Q 2) = 0. (44)

In the case of the gCEDM, short-range contributions to the EDFF
start at � = −1, which dominate, and appear again at � = 1,
suppressed by m2

π/M2
QCD. At this order there are also contribu-

tions from the T -violating pion–nucleon interactions in Eq. (18)
through the loops 1–10 in Fig. 1, and from the photon–nucleon
interactions in Eq. (21) through the loops 10 and 11. Thus, to
O(ewm2

π/M2
/T MQCD) we find the μ-independent EDMs

D0,gCEDM = D̄(−1)
0 + D̄(1)

0 + 3g2
A D̄(−1)

0
m2

π

(2π Fπ )2

(
L − ln

m2
π

μ2

)
,

(45)

D1,gCEDM = D̄(−1)
1 + D̄(1)

1 + D̄(1)′
1

+ m2
π

(2π Fπ )2

{(
1 + g2

A

)
D̄(−1)

1 + eı̄0

8

+
[(

1 + 2g2
A

)
D̄(−1)

1 + e

(
ḡ0 g A

m2
π

+ ı̄0

8

)]

×
(

L − ln
m2

π

μ2

)}
. (46)

The isoscalar momentum dependence is entirely due to short-
range operators in Eq. (24),

S ′
0,gCEDM = S̄ ′ (1)

0 , (47)

H0,gCEDM
(

Q 2) = 0. (48)

The isovector part, on the other hand, receives also non-analytic
contributions:
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S ′
1,gCEDM = S̄ ′ (1)

1 + e

6(2π Fπ )2

[
− ı̄0

8

(
L − ln

m2
π

μ2

)
+ g A ḡ0

m2
π

]
,

(49)

H1,gCEDM
(

Q 2) = 4em2
π

15(2π Fπ )2

{(
g A ḡ0

m2
π

+ ı̄0

12

)
f

(
Q 2

4m2
π

)

+ ı̄0

12

Q 2

4m2
π

[
−5

2

Q 2

4m2
π

+ f

(
Q 2

4m2
π

)]}
. (50)

We are now in position to discuss the implications of the vari-
ous dimension-6 T -violation sources to the nucleon EDFF.

First, we note that to this order the nucleon EDFF stemming
from the qCEDM has a form that is identical to that [10,12] from
the θ̄ term. In both cases the momentum dependence (and thus
the SM) is isovector, has a scale (relative to the EDM) set by 2mπ ,
and is determined by the lowest-order pion nucleon coupling ḡ0.
The EDFF depends on just three independent combinations of LECs,

ḡ0 and the short-range EDM contributions D̄(1)
0 and D̄(1)

1 + D̄(1)′
1 ,

which contain nucleon matrix elements of Ṽ 4 for qCEDM and P4
for the θ̄ term. The numerical factors relating these couplings to
either δ̃ or θ̄ will thus be different. In the case of θ̄ , the matrix
element in ḡ0 can be determined from T -conserving observables,
because it is related [19] to the matrix element of P3 that gen-
erates the quark-mass contribution to the nucleon mass splitting:
ḡ0/θ̄ � 3 MeV. For the qCEDM, an argument identical to that in
Ref. [20] serves to estimate D1,qCEDM in terms of ḡ0, but no anal-
ogous constraint exists for ḡ0 in this case and without a lattice
calculation or a model we cannot do better than dimensional anal-
ysis. (For an estimate with QCD sum rules, see Ref. [39].) In any
case, to the order we consider here, any EDFF measurement alone
will be equally well reproduced by a certain value of θ̄ or a certain
value of δ̃. Note that the qCEDM does give rise to additional effec-
tive interactions generated by W̃3, which contribute to the nucleon
EDFF only at higher orders but could generate sizable differences
for other observables.

Second, the pion–nucleon sector of the qEDM is suppressed
compared to that of the qCEDM because of the smallness of αem
compared to g2

s /4π at low energies. The consequence is that, up
to the lowest order where momentum dependence appears, both
the EDM and the SM from the qEDM are determined by four com-
binations of six independent LECs, which at this point can only be
estimated by dimensional analysis. The momentum dependence is
expected to be governed by the QCD scale MQCD, small relative to
the EDM, and nearly linear in Q 2.

Finally, in the case of the gCEDM loops are also suppressed, but
do bring in non-analytic terms not only to isoscalar and isovector
EDMs, but also to the isovector momentum dependence (and thus
SM). Again the momentum dependence is governed by MQCD. In
addition to seven short-range contributions to the EDMs and SMs,
also two independent pion–nucleon LECs appear ( ḡ0 and ı̄0) which
endow the isovector EDFF with a richer momentum dependence
than in other cases. The isoscalar momentum dependence is iden-
tical to qEDM. For the gCEDM, using the pion loop together with
an estimate of ḡ0 [40] is likely to be an underestimate of the EDM,
because chiral symmetry allows a short-range contribution that is
larger by a factor M2

QCD/m2
π .

As it is clear from Eqs. (36), (39), (44), (48), and (50), the full
EDFF momentum dependences (for example, the second deriva-
tives of Fi with respect to Q 2) are different for qCEDM (and θ̄ ),
qEDM, and gCEDM. Although the isoscalar components all have lin-
ear dependences in Q 2 (with different slopes) to the order consid-
ered here, the isovector components show an increasingly complex
structure as one goes from qEDM to θ̄ and qCEDM to gCEDM. De-
termination of nucleon EDMs and SMs alone would not be enough
Table 1
Expected orders of magnitude for the neutron EDM (in units of e/MQCD), the ratio
of proton-to-neutron EDMs, and the ratios of the proton and isoscalar SMs (in units
of 1/m2

π ) to the neutron EDM, for the θ̄ term [10,12] and for the three dimension-6
sources of T violation discussed in the text.

Source θ̄ qCEDM qEDM gCEDM

MQCDdn/e O
(
θ̄

m2
π

M2
QCD

)
O

(
δ̃

m2
π

M2
/T

)
O

(
δ

m2
π

M2
/T

)
O

(
w

M2
QCD

M2
/T

)

dp/dn O(1) O(1) O(1) O(1)

m2
π S ′

p/dn O(1) O(1) O
(

m2
π

M2
QCD

)
O

(
m2

π

M2
QCD

)

m2
π S ′

0/dn O
( mπ

MQCD

)
O

( mπ
MQCD

)
O

(
m2

π

M2
QCD

)
O

(
m2

π

M2
QCD

)

to separate the four sources, yet they would yield clues. Expec-
tations about the orders of magnitude of various dimensionless
quantities are summarized in Table 1.

In the first line of Table 1 one finds the expected NDA size
of the neutron EDM. As it is well known [2], this is consistent
with many other estimates, such as dn = O(di) in the constituent
quark model, and dn = O(ed̃i/4π, edW MQCD/4π) from QCD sum
rules. If δ̃ ∼ δ ∼ w = O(1) (as would be the case for gs ∼ 4π and
no small phases), then the gCEDM gives the biggest dimension-6
contribution to the EDFF because of the chiral-symmetry-breaking
suppression O(m2

π/M2
QCD) for the qCEDM and qEDM. However,

models exist (for example, Ref. [30]) where δ and δ̃ are enhanced
relative to w , and all three sources produce EDFF contributions of
the same overall magnitude. Even so, there is no a priori reason to
expect cancellations among the various sources. A measurement of
the neutron EDM dn could be fitted by any one source. Conversely,
barring unlikely cancellations, the current bound yields order-of-
magnitude bounds on the various parameters at the scale where
NDA applies: using 2π Fπ � 1.2 GeV for MQCD,

θ̄ � 10−10, (51)

δ̃

M2
/T

,
δ

M2
/T

�
(
105 GeV

)−2
, (52)

w

M2
/T

�
(
106 GeV

)−2
. (53)

(For comparison, Eq. (51) is consistent within a factor of a few with
bounds obtained by taking representative values of μ in the non-
analytic terms to estimate [20] the size of the renormalized LECs
for the EDM, and using either SU(2) [19] or SU(3) [12] symmetry
to constrain ḡ0.) In all four cases we expect the proton and neutron
EDMs to be comparable, |dp| ∼ |dn|, but the presence of undeter-
mined LECs does not allow further model-independent statements.

It is in the pattern of the S ′
i that we see some texture. (This pat-

tern is not evident in Ref. [26], possibly because of the way chiral
symmetry is broken explicitly in the model used, both in the form
of the T -conserving pion–nucleon Lagrangian and in the gCEDM
magnitude of the T -violating pion–nucleon coupling.) While in all
cases one expects |S ′

p| ∼ |S ′
n|, the relative size to the EDMs, in par-

ticular of the isovector component, allows one in principle to sepa-
rate qEDM and gCEDM from θ̄ and qCEDM. Since all these sources
generate different pion–nucleon interactions thanks to their dif-
ferent chiral-symmetry-breaking properties, nuclear EDMs might
provide further probes of the hadronic source of T violation.

More could be said with input from lattice QCD. For each source
the pion-mass dependence is different. A fit to lattice data on the
Q 2 and m2

π dependences of the nucleon EDFF with the expressions
of this Letter would allow in principle the separate determination
of LECs. In this case a measurement of the neutron and proton
alone would suffice to pinpoint a dominant source if it exists, but
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in the more general case of two or more comparable sources fur-
ther observables are needed.

One should keep in mind that our approach is limited to low
energies. The contributions associated with quarks heavier than up
and down are buried in the LECs, as done, for example, in other
calculations of nucleon form factors: electric and magnetic [37],
anapole [38], and electric dipole from θ̄ [10]. Heavy-quark EDMs
and CEDMs are also singlets under SU(2)L × SU(2)R , so they gen-
erate in two-flavor ChPT interactions with the same structure as
those from the gCEDM, and cannot be separated explicitly from
the latter. (This is clear already in the one-loop running of dW ,
which gets a contribution of the heavy-quark CEDMs [25].) The
parameter w here should be interpreted as subsuming heavier-
quark EDMs and CEDMs. With the additional assumption that ms

makes a good expansion parameter, effects of the s quark could be
included explicitly. The larger SU(3)L × SU(3)R symmetry would
yield further relations among observables (for example, between
the EDFFs of the nucleon and of the Λ), and we could, in principle,
isolate the contributions of the strange quark. Since our nucleon
results, which can be used as input in nuclear calculations in two-
flavor nuclear EFT, would be recovered in the low-energy limit
anyway—as was explicitly verified in Ref. [12] for the θ̄ results of
Ref. [10]—we leave a study of the identification of explicit s-quark
effects to future work.

In summary, we have investigated the low-energy electric
dipole form factor that emerges as a consequence of effectively
dimension-6 sources of T violation at the quark–gluon level: the
quark electric and color-electric dipole moments, and the gluon
color-electric dipole moment. Only the full momentum depen-
dence could in principle separate these sources, although the Schiff
moments, if they were isolated, would partially exhibit a texture of
T violation. Further implications of the different chiral-symmetry-
breaking patterns of these sources will be studied in a forthcoming
paper [28].
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