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We study the expansion of the Universe using an effective Friedmann equation obtained from the 
dynamics of GFT (Group Field Theory) isotropic condensates. The evolution equations are classical, with 
quantum correction terms to the Friedmann equation given in the form of effective fluids coupled to 
the emergent classical background. The occurrence of a bounce, which resolves the initial spacetime 
singularity, is shown to be a general property of the model. A promising feature of this model is the 
occurrence of an era of accelerated expansion, without the need to introduce an inflaton field with an 
appropriately chosen potential. We discuss possible viability issues of this scenario as an alternative to 
inflation.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

Inflation, despite its undoubtful success in explaining cosmo-
logical data and the numerous models studied in the literature, 
still remains a paradigm in search of a theory. The inflationary 
era should have occurred at the very early stages of our Universe, 
however the inflationary dynamics are commonly studied in the 
context of Einstein’s classical gravity and assuming the existence of 
a classical scalar field with a particularly tuned potential. Clearly, 
the onset of inflation [1,2] and the inflationary dynamics must be 
addressed within a quantum gravity proposal. In this letter, em-
ploying results from Group Field Theory [3,4] (GFT), we attempt 
to bridge the gap between the quantum gravity era and the stan-
dard classical cosmological model. In particular, in the context of 
GFT we propose a model that can account for an early accelerated 
expansion of our Universe in the absence of an inflaton field. We 
hence show that modifications in the gravitational sector of the 
theory can account for its early stage dynamics. Indeed, it is rea-
sonable to expect that quantum gravity corrections at very early 
times – when geometry, space and time lose the meaning we are 
familiar with – may effectively lead to the same dynamics as the 
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introduction of a hypothetical inflaton field with a suitable poten-
tial to satisfy cosmological data.

Group Field Theory is a non-perturbative and background in-
dependent approach to quantum gravity. In GFT, the fundamental 
degrees of freedom of quantum space are associated to graphs la-
belled by algebraic data of group theoretic nature. The quantum 
spacetime is seen as a superposition of discrete quantum spaces, 
each one generated through an interaction of fundamental build-
ing blocks (called “quanta of geometry”), typically considered as 
tetrahedra. In the continuum classical limit, one then expects to 
recover the standard dynamics of General Relativity. In this sense, 
the notion of spacetime geometry, gravity and time can be seen 
as emergent phenomena. Group Field Theory cosmology is built 
upon the existence of a condensate state of GFT quanta, interpreted 
macroscopically as a homogeneous universe.

2. GFT cosmology

In this work we study the properties of solutions of the modi-
fied Friedmann equation [5], obtained within the context of GFT 
condensates. The condensate wave function can be written as 
σ j = ρ jeiθ j , where j is a representation index. Evolution is purely 
relational, thus all dynamical quantities are regarded as functions 
of a massless scalar field φ. Derivatives with respect to φ will be 
denoted by a prime. There is a conserved charge associated to θ j :
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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ρ2
j θ

′
j = Q j. (1)

The modulus satisfies the equation of motion

ρ ′′
j − Q 2

ρ3
j

− m2
jρ j = 0, (2)

leading to another conserved current, the GFT energy:

E j = (ρ ′
j)

2 + Q 2
j

ρ2
j

− m2
jρ

2
j , (3)

where m2
j can be expressed in terms of coefficients in the corre-

sponding GFT theory, see Ref. [5] for details. Equation (2) admits 
the following solution

ρ j(φ) = e
(−b−φ)

√
m2

j �(φ)

2
√

m2
j

, (4)

where

�(φ) =
√

a2 − 2ae
2(b+φ)

√
m2

j + e
4(b+φ)

√
m2

j + 4m2
j Q 2

j (5)

and a, b are integration constants. From Eq. (3) follows

E j = a, (6)

whereas the charge Q j contributes to the canonical momentum of 
the scalar field (see Ref. [5])∑

j

Q j = πφ. (7)

The dynamics of macroscopic observables is defined through that 
of the expectation values of the corresponding quantum operators. 
In GFT, as in Loop Quantum Gravity, the fundamental observables 
are geometric operators, such as areas and volumes. The volume of 
space at a given value of relational time φ, is thus obtained from 
the condensate wave function as

V =
∑

j

V jρ
2
j , (8)

where V j ∝ j3/2�Pl is the eigenvalue of the volume operator cor-
responding to a given representation j. Using this as a definition 
and differentiating w.r.t. relational time φ one obtains, as in Ref. [5]
the following equations, which play the rôle of effective Friedmann 
(and acceleration) equations describing the dynamics of the cos-
mos as it arises from that of a condensate of spacetime quanta

V ′

V
= 2

∑
j V jρ jρ

′
j∑

j V jρ
2
j

, (9)

V ′′

V
=

2
∑

j V j

(
E j + 2m2

jρ
2
j

)
∑

j V jρ
2
j

. (10)

In the context of GFT, spacetime is thus seen to emerge in the 
hydrodynamic limit of the theory; the evolution of a homoge-
neous and isotropic Universe is completely determined by that of 
its volume. Notice that the above equations are written in terms of 
functions of φ. In fact, as implied by the background independence 
of GFT, and more in general of any theory of quantum geometry, a 
priori there is no spacetime at the level of the microscopic theory 
and therefore no way of selecting a coordinate time. Nevertheless, 
we will show how it is possible to introduce a preferred choice 
of time, namely proper time, in order to study the dynamics of 
the model in a way similar to the one followed for standard ho-
mogeneous and isotropic models. This will be particularly useful 
for the study of the accelerated expansion of the Universe. In the 
following we will restrict our attention to the case in which the 
condensate belongs to one particular representation of the sym-
metry group. This special case can be obtained from the equations 
written above by considering a condensate wave function σ j with 
support only on j = j0. Representation indices will hereafter be 
omitted. Hence, we have

V ′

V
= 2

ρ ′

ρ
≡ 2g(φ), (11)

V ′′

V
= 2

(
E

ρ2
+ 2m2

)
. (12)

As φ → ±∞, g(φ) → √
m2 and the standard Friedmann and ac-

celeration equations with a constant gravitational coupling and a 
fluid with a stiff equation of state are recovered. We will intro-
duce proper time by means of the relation between velocity and 
momentum of the scalar field

πφ = φ̇V . (13)

Furthermore, we can define the scale factor as the cubic root of the 
volume

a ∝ V 1/3. (14)

We can therefore write the evolution equation of the Universe 
obtained from GFT in the form of an effective Friedmann equation

(H = V̇
3V is the Hubble expansion rate and ε = φ̇2

2 the energy den-
sity)

H2 =
(

V ′

3V

)2

φ̇2 = 8

9
g2ε. (15)

Using Eqs. (3), (7), (13) we can recast Eq. (15) in the following 
form

H2 = 8

9
Q 2

(γm

V 2
+ γE

V 3
+ γQ

V 4

)
, (16)

where we introduced the quantities

γm = m2

2
, γE = V j E

2
, γQ = − V 2

j Q 2

2
. (17)

The first term in Eq. (16) is, up to a constant factor, the energy 
density of a massless scalar field on a conventional FLRW back-
ground, whereas the others represent the contribution of effective 
fluids with distinct equations of state and express departures from 
the ordinary Friedmann dynamics. Respectively, the equations of 
state of the terms in Eq. (17) are given by w = 1, 2, 3, consistently 
with the (quantum corrected) Raychaudhuri equation Eq. (27). Ef-
fective fluids have been already considered in the context of LQC 
as a a way to encode quantum corrections, see e.g. [6].

This equation reduces to the conventional Friedmann equation 
in the large φ limit, where the contributions of the extra fluid com-
ponents are negligible

H2 = 8πG

3
ε. (18)

Thus, consistency in the limit demands m2 = 3πG , which puts 
some constraints on the parameters of the microscopic model 
based on its macroscopic limit (see Ref. [5]).

The interpretation of our model is made clear by Eq. (16). In 
fact the dynamics has the usual Friedmann form with a classical 
background represented by the scale factor a and quantum geo-
metrical corrections given by two effective fluids, corresponding to 
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the two conserved quantities Q and E . In the following we will 
consider for convenience Eq. (15) in order to study the properties 
of solutions.

Let us discuss in more detail the properties of the model at 
finite (relational) times. Eq. (11) predicts a bounce when g(φ) van-
ishes. We denote by � the “instant” when the bounce takes place. 
One can therefore eliminate the integration constant b in favour 
of �

b =
log

(√
E2 + 4m2 Q 2

)
2
√

m2
− �. (19)

We define the effective gravitational constant as

Geff = 1

3π
g2, (20)

which can be expressed, using Eqs. (4), (11) as

Geff =
G

(
E2 + 12πG Q 2

)
sinh2

(
2
√

3πG(φ − �)
)

(
E −

√
E2 + 12πG Q 2 cosh

(
2
√

3πG(φ − �)
))2

. (21)

Its profile is given in Figs. 1(a), 1(b), in the cases E < 0, E > 0
respectively. Notice that it is symmetric about the line φ = �, cor-
responding to the bounce.

The energy density has a maximum at the bounce, where the 
volume reaches its minimum value

εmax = 1

2

Q 2

V 2
bounce

, (22)

where

V bounce =
V j0

(√
E2 + 12πG Q 2 − E

)
6πG

. (23)

Clearly, the singularity is always avoided for E < 0 and, provided 
Q 	= 0, it is also avoided in the case E > 0. Moreover, if the GFT 
energy is negative, the energy density has a vanishing limit at the 
bounce for vanishing Q :

lim
Q →0

εmax = 0, E < 0. (24)

Therefore in this limiting case the energy density is zero at all 
times. Nevertheless, the Universe will still expand following the 
evolution equations (11) and

lim
Q →0

V (φ) =
|E|V j0 cosh2

(√
3πG(φ − �)

)
3πG

, E < 0. (25)

This is to be contrasted with classical cosmology (18), where the 
rate of expansion is zero when the energy density vanishes.

It is possible to express the condition that the Universe has a 
positive acceleration in purely relational terms. In fact this very 
notion relies on the choice of a particular time parameter, namely 
proper time, for its definition. Introducing the scale factor and 
proper time as in Eqs. (13), (14) one finds

ä

a
= 2

3
ε

[
V ′′

V
− 5

3

(
V ′

V

)2
]

. (26)

We observe that the last equation can also be rewritten as

ä = −4
Q 2

(
4
γm

2
+ 7

γE
3

+ 10
γQ

4

)
. (27)
a 9 V V V
(a)

(b)

Fig. 1. The effective gravitational constant as a function of relational time φ for 
E < 0 (a) and E > 0 (b), in arbitrary units. There is a bounce replacing the clas-
sical singularity in both cases. The origin in the plots corresponds to the bounce, 
occurring at φ = �. The asymptotic value for large φ is the same in both cases and 
coincides with Newton’s constant. In the case E < 0 this limit is also a supremum, 
whereas in the E > 0 case Gef f has two maxima, equally distant from the bounce, 
and approaches Newton’s constant from above.

We can trade the condition ä > 0 for having an accelerated ex-
pansion with the following one, which only makes reference to 
relational evolution of observables.

V ′′

V
>

5

3

(
V ′

V

)2

(28)

The two conditions are obviously equivalent. However, the second 
one has a wider range of applicability, since it is physically mean-
ingful also when the scalar field has vanishing momentum. Making 
use of Eq. (11) the condition above can be rewritten as

4m2 + 2E

ρ2
>

20

3
g2. (29)

This is satisfied trivially in a neighbourhood of the bounce since 
g vanishes there and the l.h.s. of the inequality is strictly positive, 
see Figs. 2(a), 2(b). It is instead violated at infinity, consistently 
with a decelerating Universe in the classical regime.

3. Discussion

The dynamics of the Universe predicted by the GFT model is 
purely relational, i.e., using the language of Ref. [7], it is expressed 
by the functional relation between partial observables, here given 
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(a)

(b)

Fig. 2. The l.h.s. and the r.h.s of inequality (29) as functions of the relational time φ
correspond to the dashed (blue) and thick (orange) curve respectively, in arbitrary 
units. When the dashed curve is above the thick one the Universe is undergoing an 
epoch of accelerated expansion following the bounce. (a) corresponds to the case 
E < 0, whereas (b) is relative to the opposite case E > 0. Notice that for the latter 
there is a stage of maximal deceleration after exiting the “inflationary” era. After 
that the acceleration takes less negative values until it relaxes to its asymptotic 
value. For E < 0 instead the asymptote is approached from below. (For interpreta-
tion of the references to colour in this figure legend, the reader is referred to the 
web version of this article.)

by the volume V and the scalar field φ. According to this interpre-
tation, physically meaningful statements about the predicted value 
of V can only be made in conjunction with statements about the 
predicted outcome of a measurement of φ. In fact, this interpreta-
tion is inspired by one of the main insights of GR, namely by the 
observation that coordinate time is purely gauge-dependent, and 
is therefore deprived of any physical meaning. Thus, it cannot be 
expected to play any rôle in the quantum theory either. In other 
words, the dynamics is entirely given by the so called complete 
observables, which in this model are exhausted by the functional 
relation V (φ). In a theory with gauge invariance, such quantities 
are the only ones having physical meaning; they can be seen as 
functions on the space of solutions modulo all gauges [7]. Gauge 
invariance of V (φ) is trivially verified in classical cosmology; it 
is also valid at the quantum level, since gauge invariance of the 
volume operator follows from its general definition in GFT [4]. A 
discussion on the implementation of diffeomorphism invariance in 
GFT can be found in Ref. [8].

The reader might be interested in finding a closer correspon-
dence between our discussion of relational dynamics and examples 
considered, e.g., in Ref. [9]. In that work relational dynamics was 
obtained, both at the classical and the quantum level, adopting 
a canonical formulation and constructing complete observables in 
the case of simple models. However, we must point out that the 
definition of partial and complete observables is much more gen-
eral and does not rely on a phase space structure, but only on the 
possibility of identifying gauge equivalence classes in the space of 
solutions.1 Furthermore, since the quantum theory is not based on 
canonical quantization, it is not clear how a presymplectic struc-
ture might emerge in the classical limit from the full theory. It 
should nevertheless be possible to find such a geometric structure 
and a Hamiltonian at least for the cosmological sector of the the-
ory considered here; an investigation which however lies beyond 
the scope of the present work.

Our classical model is free of gauge redundancies since Eqs. (11), 
(12) are equations of motion for the expectation value of a gauge 
invariant operator in the quantum theory. Therefore, the complete 
observable V (φ) can be found by solving the equations of mo-
tion. Gauge redundancies can nevertheless be reintroduced at the 
macroscopic level by means of a time parameter, in order to make 
contact with the corresponding symmetry of classical cosmology. 
More specifically, one could write Eq. (13) with the velocity of the 
field evaluated w.r.t. a time t′ distinct from proper time t as

πφ = N−1 V
dφ

dt′ , N = dt

dt′ , (30)

using which it is possible to write the dynamical equations for 
all time parametrizations. From the above it is clear how Eq. (15)
follows as a consequence of the choice of a specific time parameter, 
or equivalently lapse function N = 1.

We have shown that the bounce is accompanied by an early 
stage of accelerated expansion, occurring for any values of the con-
served quantities E , Q (provided that the latter is non-vanishing) 
and despite the fact that no potential has been introduced for the 
scalar field. This is a promising feature of the model which indi-
cates that the framework adopted allows for a mechanism leading 
to an accelerated expansion through quantum geometry effects. 
From the point of view of Eq. (15) one can say that the acceler-
ated expansion is a consequence of Gef f not being constant. By 
looking at Eqs. (16), (17), (27) one sees that this phenomenon can 
be traced back to an effective fluid component having a negative 
energy density arising from quantum geometry effects. The model 
we considered is a very simple one and represents a first step to-
wards a new understanding of cosmology in the GFT framework. 
However, there are some caveats. In fact, a full viability of the 
scenario of geometric inflation can only be proven by showing the 
robustness of the result when considering more complicated GFT 
models with different matter fields coupled to gravity. Only then 
one would be able to give a definite answer as whether the era of 
accelerated expansion lasts long enough to cure the shortcomings 
of the standard Hot Big Bang model, while it eventually leads to a 
radiation-dominated era though a graceful exit scenario. Neverthe-
less, despite the simplicity of the model, we expect it to provide 
a good description of the dynamics of the Universe at least at the 
onset of inflation, where the energy density of the scalar field is 
supposed to dominate over all other forms of energy.

4. Outlook and conclusions

We studied the properties of a model of quantum cosmology 
obtained in Ref. [5] in the hydrodynamic limit of GFT. We have 
shown that this model displays significant departures from the 
dynamics of a classical FLRW spacetime. The emergent classical 
background satisfies an evolution equation of the Friedmann type 

1 In the canonical formalism such space is defined as the space of gauge orbits 
generated by the first class constraints on the constraint surface [7].
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with quantum corrections appearing in the r.h.s as effective flu-
ids with distinct equations of state. Such correction terms vanish 
in the limit of infinite volume, where the standard Friedmann dy-
namics is recovered.

The main results of this work are two. First, confirming the 
result of Ref. [5], we have shown that there is a bounce, taking 
place regardless of the particular values of the conserved charges 
Q and E . It should be pointed out that the origin of this bounce 
is quite different from the one given by Loop Quantum Cosmology 
(see Refs. [10,11]), which is an independent approach based on a 
symmetry reduced quantization.

The second result is the occurrence of an era of accelerated ex-
pansion without the need for introducing ad hoc potentials and ini-
tial conditions for a scalar field. We suggest that the picture given 
could replace the inflationary scenario. Since it is an inherently 
quantum description of cosmology, it does not share the unsatis-
factory features of inflationary models, which were spelled out in 
the introduction. However, the viability of our model as an alter-
native to inflation is at this stage still an hypothesis, which will be 
investigated further in future work. In fact the model must be ex-
tended to include also other forms of energy and to ensure that 
common problems of inflationary models (as those spelled out in 
the last part of Section 3) are solved.

We have seen that the interesting features of the model arise 
from quantum geometry corrections which are captured by a de-
scription in terms of effective fluids defined on the emergent clas-
sical background. A similar phenomenon was already observed in 
LQC (see e.g. [6]). In light of our results, it will be interesting to 
understand whether it is possible to relate the origin of such ef-
fective fluids coming from quantum geometry in LQC and GFT. We 
also showed that there is another way of formulating the dynam-
ics, which makes no reference to such effective fluids, but instead 
differs from the standard Friedmann equation in that the gravita-
tional constant is replaced by a dynamical quantity. In fact, another 
interesting result is that, even though Newton’s constant is related 
to, and actually constrains, the parameters of the microscopic GFT 
theory (as shown in [5]), the dynamics of the expansion of the 
Universe is actually determined by the effective gravitational con-
stant Geff. We should stress that such quantity was introduced in 
first place for the only purpose of studying the properties of so-
lutions of the model. Nevertheless, it is tempting to go one step 
further and consider it as an effective macroscopic quantity deter-
mined by the collective behaviour of spacetime quanta. However, 
such an interpretation would possibly pose more puzzles than it 
solves since, as shown in Refs. [12,13], a dynamical gravitational 
constant must bear with it extra sources of energy–momentum in 
order to ensure compatibility with the Bianchi identities. Violation 
of the Bianchi identities would in fact imply that the structure of 
the emergent spacetime is non-Riemannian. The way in which in-
flation could be understood in that case is not clear and would 
deserve further study. Nevertheless, the formally equivalent de-
scription of the dynamics (as far as the Friedmann equation is 
concerned) in terms of an effective gravitational constant deserves 
further investigation. More precisely, if interpretational issues in 
the non-Riemannian framework can be properly addressed, such 
studies might shed some light on the nature of the gravitational 
constant and point out whether it actually deserves the status of 
fundamental constant, along with the possibility of measuring its 
time variation.
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