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Abstract

Prostate cancers metastasize to bone leading to
osteolysis. Here we assessed proteolysis of DQ-
collagen | (a bone matrix protein) and, for comparison,
DQ-collagen IV, by living human prostate carcinoma
cells in vitro. Both collagens were degraded, and this
degradation was reduced by inhibitors of matrix metallo,
serine, and cysteine proteases. Because secretion
of the cysteine protease cathepsin B is increased in
human breast fibroblasts grown on collagen | gels, we
analyzed cathepsin B levels and secretion in prostate
cells grown on collagen | gels. Levels and secretion
were increased only in DU145 cells—cells that ex-
pressed the highest baseline levels of cathepsin B.
Secretion of cathepsin B was also elevated in DU145
cells grown in vitro on human bone fragments. We fur-
ther investigated the effect of the bone microenviron-
ment on cathepsin B expression and activity in vivo in
a SCID-human model of prostate bone metastasis.
High levels of cathepsin B protein and activity were
found in DU145, PC3, and LNCaP bone tumors,
although the PC3 and LNCaP cells had exhibited low
cathepsin B expression in vitro. Our results suggest
that tumor—-stromal interactions in the context of the
bone microenvironment can modulate the expression
of the cysteine protease cathepsin B.
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Introduction

Metastasis to the bones is commonly observed in advanced
prostate cancer. The interaction of tumor cells with the bone
microenvironment may lead to a selective advantage for
tumor growth in bones compared to tumor growth in other
organ microenvironments. Successful tumor invasion re-
quires degradation of extracellular matrices by multiple pro-
teases, including matrix metalloproteases (MMPs), serine
proteases [urokinase plasminogen activator (UPA), plasmin],
aspartic proteases, and cysteine proteases, but the relative
contribution of individual proteases is still debated. Proteo-
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lytic enzymes from all four classes have been shown to degrade
extracellular matrix proteins and basement membrane in vitro
[1-3]. In vivo studies reveal decreases in staining for extracel-
lular matrix proteins at the invading edges of tumors, perhaps
indicative of proteolytic degradation by tumor cells [4,5].

Several mechanisms appear to be associated with meta-
static processes including interactions of tumor cells with
surrounding stroma; interactions with extracellular matrix; re-
lease of cytokines, growth factors, and proteolytic enzymes;
and altered cell attachment and proliferation. Interactions be-
tween cancer cells and the host environment are critical for
successful tumor invasion. In prostate cancer, understanding
the bone microenvironment is important for the assessment of
the mechanisms of preferential metastasis to the bones. Within
bones, there is a highly abundant and metabolically active bone
marrow consisting of hematopoietic and mesenchymal stem
cells, which give rise to blood cells, osteoclasts, osteoblasts,
adipocytes, chondrocytes, and stromal cells. Bone-forming
osteoblasts and bone-resorbing osteoclasts are of particular
importance, as cancer cells use the normal bone remodeling
machinery to successfully colonize the bone and subsequently
degrade it [6]. The main organic component of bone is type |
collagen, a protein implicated in the attachment and prolifera-
tion of various cancer cells in skeletal tissues [7,8]. The
interactions of tumor and stromal cells with collagen | and other
extracellular matrix proteins can alter their protease expression
[9-11]. For example, we have previously shown that the
growth of human breast fibroblasts in collagen | gels alters
the expression of the cysteine protease cathepsin B, a process
regulated by integrin binding to collagen | [12].
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Increased expression of cathepsin B occurs at the invad-
ing edges of many tumors (i.e., the edges interacting with
extracellular matrices) [13,14]. Altered expression and activ-
ity at the tumor—stromal interface suggest that this protease
may be one key player in the events associated with tumor
cell invasion. Cathepsin B has been shown to activate the
serine protease pro-uPA to uPA [15,16], leading to the
activation of serum-derived latent transforming growth factor
[17]. Cathepsin B also increases MMP activity directly by
activation of the proenzymes [18], and indirectly through
degradation of tissue inhibitors of MMPs (TIMPs) [19].
A continuous interplay between prostate cancer cells and
the bone microenvironment is a critical feature of bone
metastasis. Here we demonstrate that osteolytic DU145
prostate carcinoma cells express high levels (message,
protein, and activity) of cathepsin B, and that these levels
are further increased by interaction with collagen | or the
human bone. Interaction with the human bone leads to
secretion of the active enzyme, suggesting the importance
of tumor—stroma and tumor—host interactions in the regula-
tion of cathepsin B in prostate cancer cells. The importance
of the tumor—stroma interface and the impact of the meta-
bolically rich bone microenvironment are further validated by
in vivo studies using a SCID-human model of prostate cancer
metastasis [20]. Upregulation of cathepsin B expression and
activity in DU145, PC3, and LNCaP bone tumors are ob-
served—a result consistent with an involvement of cathepsin
B in prostate cancer metastasis to the bones.

Experimental

Materials

RPMI 1640, Dulbecco’s modified Eagle’s medium
(DMEM), BGJg, MES (2-[N-morpholino] ethane-sulfonic
acid), PIPES (piperazine-N' N'-bis[2-ethanesulfonic acid]),
Hanks salt solution, sodium bicarbonate, antibiotics, di-
methyl sulfoxide (DMSO), paraformaldehyde, the broad-
spectrum cysteine protease inhibitor E-64, the serine
protease inhibitor aprotinin, and other chemicals, unless
otherwise stated, were obtained from Sigma (St. Louis,
MO). Fetal bovine serum (FBS), trypsin—EDTA, collage-
nase, and Trizol reagent were obtained from Invitrogen
(Carlsbad, CA). Vitrogen-100 collagen type | was from
Cohesion Laboratories (Palo Alto, CA). The quenched
fluorescent substrates, DQ-collagen | and DQ-collagen 1V,
and SlowFade antifade reagent were purchased from Mo-
lecular Probes (Eugene, OR). The fluorogenic substrate Z-
Arg-Arg-NHMec and its cleavage product NH2Mec were
purchased from Bachem (King of Prussia, PA). CA074 and
its membrane-permeable derivative CA074Me were pur-
chased from Peptides International (Louisville, KY). The
broad-spectrum MMP inhibitor GM6001 was purchased
from Chemicon (Temecula, CA). Rabbit antihuman cathep-
sin B antibodies were produced and characterized in our
laboratory [21]. Fluorescein or Texas Red—conjugated don-
key antirabbit IgG and normal donkey serum were obtained
from Jackson ImmunoResearch (West Grove, PA). Horse-

radish peroxidase—labeled goat antirabbit IgG and micro-
bicinchoninic acid (BCA) protein kit were purchased from
Pierce (Rockford, IL). Western blotting detection kits were
from Amersham Pharmacia Biotechnologies (Piscataway,
NJ). In situ hybridization Renaissance TSA-Indirect detec-
tion kit was obtained from NEN Life Sciences (Boston, MA).
The 25-mer 5'-biotin—labeled cathepsin B DNA oligonucleo-
tides were synthesized by Integrated DNA Technologies,
Inc. (Coralville, 1A).

Cell Lines

Three human prostate carcinoma cell lines were pur-
chased from American Type Culture Collection (ATCC;
Manassas, VA): DU145, an androgen-independent osteo-
lytic line derived from a brain metastasis [22]; PC3, an
androgen-independent osteolytic line derived from a bone
metastasis of a high-grade adenocarcinoma [23]; and
LNCaP, an androgen-dependent, mixed-response (osteo-
lytic/osteoblastic) cell line derived from a lymph node me-
tastasis [24]. DU145 and PC3 cells were cultured in DMEM
supplemented with 10% FBS and LNCaP cells were cultured
in RPMI 1640 supplemented with 10% FBS according to
ATCC guidelines. All cell cultures were maintained ina 37°C
humidified incubator ventilated with 5% CO..

Proteolysis by Living Cells

Assays for proteolysis were performed accordingly to
previously published procedures [25-27]. Briefly, glass
coverslips were coated with 30 ul of 25 pg/ml quenched
fluorescent substrates DQ-collagen IV mixed with Matrigel,
or DQ-collagen | mixed with Vitrogen-100 bovine collagen
I. The ratios of quenched fluorescent components to
nonfluorescent components were identical for the collagen
| and collagen IV experiments (1:40). Cells were seeded
at a density of 50,000 cells per coverslip and cultured
in serum-containing media indicated above for 40 to
44 hours. The degradation of the quenched fluorescent
collagens due to the generation of fluorescent cleavage
products was then observed by confocal microscopy on
a Zeiss LSM 310 using a x40 water immersion lens.
For inhibitor studies, the following compounds were used:
the selective cell-impermeable cathepsin B inhibitor,
5 uM CAO074 [28,29]; the selective cell-permeable cathep-
sin B inhibitor, 5 uM CA074Me [30]; a broad-spectrum
cysteine protease inhibitor, 10 pM E-64; a broad-spectrum
MMP inhibitor, 25 pM GM®6001; or an inhibitor of the plas-
minogen pathway, 2 pM aprotinin. Inhibitors were added
to both the matrices and the media, and were replen-
ished after 24 hours. All inhibitors were added in DMSO
vehicle, and control cells were grown in the presence of
vehicle alone.

Viability Assays

Cell viability under assay conditions was assessed using
propidium iodide staining according to the manufacturer’s
protocol (Molecular Probes). Briefly, cells were grown on
Matrigel-coated or collagen |-coated coverslips for 40 to
44 hours, washed 3x at 37°C with Tris buffer (100 mM Tris,
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pH 7.4, 150 mM NaCl, 1 mM CaCl,, 0.5 mM MgCl,, and 0.1%
Nonidet P-40), and stained with 3 pM propidium iodide
nucleic acid stain in Tris buffer for 15 minutes. Cells were
then washed 3x with Tris buffer and, after adding serum free
media, observed with a Zeiss LSM 310 microscope with a
40x water immersion lens.

Quantification and Statistical Analysis

Fluorescence intensities in the absence and presence of
various inhibitors were quantified from confocal fluorescent
images using Image J Software (National Institutes of
Health, Bethesda, MD). For the analysis of degradation of
DQ-collagen IV by DU145 and PC3 cells, mean fluorescence
was measured directly over the area of the spheroid as well
as over the areas of pericellular fluorescence where cells
were not present. This measurement was performed for
multiple fields within a single image, and then normalized
to the smallest area measured for each of the carcinoma
cell lines (see footnote to Table 1). Because DU145 and PC3
cells do not form spheroids when grown on collagen |, and
LNCaP cells do not form spheroids on either collagen, for
those assays, we assessed mean fluorescence based on
five arbitrary squares of defined area (22,500 Px?) per field.
Statistical significance was determined by a two-tailed ttest
with assumed equal variance. *P < .05 was considered
statistically significant.

Cell Cultures on Collagen | Gels

Collagen | gels were prepared according to previously
published procedures [12]. Prostate carcinoma cells (1 x 108
cells/dish) were seeded on uncoated or collagen |-coated
(0.25 mg/cm?) 100-mm? tissue culture dishes, grown for
60 hours, and then serum-starved for an additional 12 hours.
Cells were harvested (at ~80% confluency) from collagen |
gels using 0.1% collagenase at 37°C for 10 to 20 minutes.
Cell pellets were washed in phosphate-buffered saline
(PBS); resuspended in 250 mM sucrose, 25 mM MES,
1 mM EDTA, pH 6.5, and 0.1% Triton X-100 (SME buffer);
lysed by sonication; and frozen at —80°C until used. DNA
concentration was determined by the method of Downs and
Wilfinger [31], and protein was determined using MicroBCA
protein assay kit. Conditioned media were passed through
Millipore 100K concentrators (Burlington, MA) at 150g to
remove large collagen fragments and were concentrated
using Millipore 10K concentrators.

Cell Cultures on Human Bone Fragments

For cell bone cocultures, human male fetal femurs
(16—19 weeks gestation) were obtained from Advanced
Bioscience Resources (Alameda, CA). The bones were cut
longitudinally and then transversely into six fragments and
maintained in a 24-well plate (two pieces per well) in serum-
free BGJg medium for 24 hours. After equilibration, prostate

Table 1. Protease Inhibitors Reduce Collagen Degradation by Prostate Carcinoma Cells.

DQ-Collagen IV DQ-Collagen |

Mean Fluorescence* Areal Relative Fluorescence' Mean Fluorescence**
DU145
Control 41 £ 10 45,724 18 26+6
CA074/CA074Me 2+1" 19,756" 2 18+ 8
E-64 2+ 1" 24,612 2 14 +5
GM6001 242" 24,015 2 9+ 0™
Aprotinin 4+ 3" 32,695 2 16 + 2
PC3
Control 34 +12 101,537 17 24+6
CAO074/CA074Me 3+3' 65,665 2 7 + 51
E-64 32" 54,992 2 14+3
GM6001 2+1Y 54,187 2 11+6
Aprotinin 5+ 5" 49,997* 2 14 +8
LNCaP
Control 6+1 22,5008 13+ 3
CA074/CA074Me 5=+ 2" 22,500% 5+5
E-64 6 + 0*" 22,500° 6 + 2~
GM6001 3+ 0*" 22,500° 3+ 1+
Aprotinin 4 + 01 22,500% 6 + 21

Degradation was assessed as fluorescent degradation products present within the areas specified for the three prostate carcinoma cell lines grown either on
Matrigel mixed with DQ-collagen IV or bovine type | collagen mixed with DQ-collagen | (see Experimental section for a more detailed description). Controls
contained the diluent DMSO at a concentration of 0.1%; the final concentrations of the inhibitors were 5 uM CA074 + 5 uM CA074Me, 10 pM E-64, 25 uM GM6001,

or 2 uM aprotinin.

*Mean fluorescence + SD is the sum of the gray scale value for the pixels measured directly within a single image and is expressed in arbitrary units measured

using Image J Software.

T Area (in Px?) represents the total area over which the mean fluorescence was assessed (i.e., the area of the spheroid + areas of pericellular fluorescence in which

cells were not present).

*Relative fluorescence was calculated for those cells that grow as spheroids in order to normalize the values of fluorescence to the smallest area measured for

each of the carcinoma cell lines.

$Five randomly chosen areas of 22,500 Px? in each field were used to calculate mean fluorescence.

Yndicates P < .05 compared to the control for each cell line.
#The area used for normalization.
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carcinoma cells were seeded on bone fragments (marrow
side up) in 500 pl of BGJg media containing 1% horse serum
(1 x 10° cells/well) for 48 hours. Additional wells, containing
prostate carcinoma cells alone or bone fragments alone,
were also cultured in 500 ul of BGJg media containing 1%
horse serum. After 48 hours, conditioned media were col-
lected, wells were washed twice with “real-time assay buffer”
(Hanks balanced salt solution lacking sodium bicarbonate
and containing 0.6 mM CaCl,, 0.6 mM MgCl,, 25 mM PIPES,
2 mM L-cysteine, and 10 mM bp-glucose, adjusted to pH 7.0),
and 400 pl of “real-time assay buffer” was added for analysis
of secretion of active cathepsin B from the cocultures [32].
Following assay, the wells were washed twice with PBS and
the contents were homogenized in SME buffer for analysis of
activity in total cell lysates.

Northern Blot Analysis

Total cellular RNA from prostate carcinoma cells grown
on plastic, or collagen | gels were extracted using Trizol
reagent according to the manufacturer’s instructions. Elec-
trophoresis (20 pg/lane) was performed on an 0.8% agarose
formaldehyde-denaturing gel. Gels were then transferred
using Turboblotter, UV-crosslinked, hybridized, and ana-
lyzed according to previously described procedures [12].
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
was used as a loading control.

Sodium Dodecyl Sulfate Polyacrylamide Gel
Electrophoresis and Immunoblotting

Samples of lysates, tissue extracts, or conditioned media
were electrophoresed on 12% SDS gels. For collagen |
studies, samples were loaded based on their DNA concen-
trations, whereas human bone samples and tissue extracts
were loaded based on their protein/DNA ratios to account for
the effect of bone microenvironment on cell size. All gels
were transferred to nitrocellulose membranes and immuno-
blotted using 3 pg/ml primary rabbit antihuman cathepsin B
antibody [21] and horseradish peroxidase—labeled second-
ary goat antirabbit 1I9G (1:12,000). Quantitation and analysis
of bands were performed using a Luminescent Image Ana-
lyzer LAS-1000 Plus (Fujifilm, Stamford, CT) and expressed
as arbitrary units (AU) per square millimeter.

Immunofluorescent Staining of Prostate Carcinoma
Cells Grown on Plastic and Collagen | Gels

Prostate carcinoma cells were grown on uncoated or
collagen |—coated coverslips for 48 to 72 hours (~80%
confluence). Intracellular cathepsin B was immunolocalized
in 0.1% saponin-permeabilized cells according to our previ-
ously published procedures [25]. The primary antibody was
rabbit antihuman liver cathepsin B (5 pg/ml) [21]. Controls
were run in the absence of primary antibody. Secondary
antibodies were fluorescein-conjugated donkey antirabbit
IgG. Coverslips were mounted upside down on glass slides
using SlowFade antifade reagent and observed on a Zeiss
LSM 310 confocal microscope.

Assays for Cathepsin B Activity in Cell Lysates
and Conditioned Media

Cathepsin B activity was determined by our previously
published procedures [32,33]. In cell lysates, cathepsin B
was preincubated with 10 mM DTT and 50 mM EDTA, pH
5.5, for 15 minutes at 37°C. Activity was then assayed by
adding the fluorometric substrate Z-Arg-Arg-NHMec (final
concentration, 100 pM) in “real-time assay buffer” without
L-cysteine and p-glucose. The activity of latent or proca-
thepsin B in conditioned media was assayed following acti-
vation with pepsin as has been described [12]. Cathepsin B
activity produced pericellularly by live cells (i.e., in real time)
was assayed as previously described [32]. Briefly, wells
containing cells alone, bone fragments alone, or cells and
bone together were incubated with “real-time assay buffer”
containing 100 M Z-Arg-Arg-NHMec at 37°C. The progress
of the reaction was monitored every minute for a period of
30 minutes on a Fluoroskan Il microplate reader. Similar as-
says were performed with prostate carcinoma cells grown on
collagen | gels. Results of all activity assays are expressed
as picomoles of NH>Mec formed per minute per cell unit. Cell
units were calculated as the protein/DNA ratio (mg protein/ug
DNA) to account for the effect of the metabolically active
bone microenvironment on cell size. Statistical significance
was determined by a two-tailed #test with assumed equal
variance and P < .05 was considered statistically significant.

Tissue Implantation and Establishment of Human Bone Tumors

Five-week—old male homozygous ICRSC-M scid mice
were purchased from Taconic Farms (Germantown, NY)
and were allowed to acclimate in their housing for 1 week.
Mice were maintained under aseptic conditions according to
the NIH guidelines as found in the “Guidelines for the Care
and Use of Experimental Animals.” All of the experimental
protocols were approved by the Animal Investigation Com-
mittee at Wayne State University. Implantation with human
bone fragments and tumor cell injections were performed
under isoflurane inhalational anesthesia according to
previously published procedures [20]. Briefly, fetal bones
were cut longitudinally and then transversely into six frag-
ments, and single bone fragments were implanted into both
flanks of the mouse with the opened marrow cavity placed
facing the abdomen. Following a 4-week engraftment, SCID-
human mice were injected intraosseously (directly into the
marrow) with prostate carcinoma cells (DU145, PC3, or
LNCaP; three animals per group; two injection sites per
animal). On the day of injection, prostate carcinoma cells
were trypsinized, washed in PBS, and resuspended in PBS
(5 x 10° cells/50 pl). Prostate carcinoma cells were injected
into the marrow side of the implanted bone using a 27-gauge
needle. Control groups obtained subcutaneous injections of
prostate carcinoma cell lines (1 x 10° cells/50 pl PBS) into
both flanks of the mouse (three mice per group). Mice were
euthanized by cervical dislocation before resulting tumors
were removed. In the initial experiment, bone tumors were
collected when easily palpable through the skin (5—7 weeks
after injection). In the two follow-up studies, tumors were
removed 2,4, and 6 weeks after injection. Subcutaneous
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tumors were removed when palpable through the skin
(6—7 weeks after injection).

Preparation of Tissue Extracts for Immunoblots and
Activity Assays

All harvested tumors were immediately divided into two
equal parts. One part was fixed and embedded for sectioning
(see Immunohistochemistry and In Situ Hybridization of Hu-
man Bone Tumors section), and the other was homogenizedin
500 pul of SME buffer. Resulting extracts were centrifuged at
3000 rpm for 10 minutes, and supernatants were collected and
frozen at —80°C. Immunoblotting and activity assays were
performed as described above for cell lysates.

Immunohistochemistry and In Situ Hybridization of
Human Bone Tumors

Part of each tumor was fixed overnight in 4% paraformal-
dehyde, decalcified in 10% EDTA for 2 weeks, and paraffin-
embedded. Serial sections (4 um) were cut, deparaffinized,
and rehydrated. Hematoxylin and eosin (H&E) staining was
performed to examine histologic changes. Immunofluores-
cent staining of adjacent sections of each tumor was per-
formed using a cathepsin B antibody (1:400) purified in our
laboratory [21]. Controls were run in the absence of primary
antibody. Secondary antibodies were fluorescein-conjugated
donkey antirabbit 1gG. For in situ hybridization, deparaffi-
nized tissues were treated with proteinase K (15 ug/ml) for
30 minutes at 37°C, fixed in 4% paraformaldehyde, and prehy-
bridized in buffer containing 25% formamide, 1 pg/ul yeast,
2x SSC (0.3 M NaCl, 0.03 M sodium citrate), and 0.2 pg/ul BSA
for 2 hours at 42°C. Four antisense and two sense cathepsin
B oligonucleotides were used in the hybridization protocol.
For antisense hybridization, four probes were combined
(5'-/5Bio/GTT GGA AGC CGG ATC CTA GAT CCA C-3;
5'-/5Bio/CCT CTT CAA GTA GCT CAT GTC CAC G-3'; 5'-/
5Bio/AGG ATA GCC ACC ATT ACAGCC GTC C-3; and 5~/
5Bio/CTC ACATGG CCT GTC TGC ACT GTA A-3'), and for
sense hybridization, two combined sense probes were
used (5'-/5Bio/CGT GGA CAT GAG CTA CTT GAA GAG
G-3'; and 5'-/5Bio/TTA CAG TGC AGA CAG GCC ATG TGA
G-3). Serial slides were incubated with probe-containing
(5 ng/ul) hybridization buffer overnight at 42°C. Mock hy-
bridization was performed as a control with each experi-
ment. Detection of the hybridization signal was based
on TSA-Indirect protocol for in situ hybridization. Immuno-
fluorescence results of immunohistochemistry and in situ
hybridization were observed on a Zeiss LSM 310 confo-
cal microscope.

Results

Imaging Degradation of DQ-Collagen 1V and DQ-Collagen |
by Living Prostate Cancer Cells

A novel confocal assay has been developed in our
laboratory to examine proteolysis by living cells [25-27]. In
the present study, we used this assay to examine the ability
of prostate carcinoma cells to degrade quenched fluorescent
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derivatives of collagen IV (basement membrane) and colla-
gen | (organic matrix of the bone). We plated DU145, PC3,
and LNCaP cells on DQ-collagen IV mixed with Matrigel
(Figure 1) or DQ-collagen | mixed with collagen | (Figure 2),
and visualized the fluorescence degradation products at
48 hours after plating. Phase images of the cells on Matrigel
(Figure 1) revealed that DU145 cells formed tight spheroids,
PC3 cells formed loose spheroids, and LNCaP cells grew as
clusters or strings of cells. Degradation of the DQ-collagen IV
could be observed as green fluorescence, with the DU145
cells exhibiting greater degradation than either the PC3 or
LNCaP cells. Fluorescent cleavage products of DQ-collagen
IV were found both intracellularly and pericellularly. On
collagen |, the three prostate carcinoma cells grew as
monolayers (Figure 2). Degradation products of DQ-collagen
| were less intense (Figure 2) than observed for DQ-collagen
IV (Figure 1), indicating that DQ-collagen | was digested to
a lesser extent by the prostate carcinoma cells. This is
consistent with our studies utilizing purified components, in
which collagen IV was more readily degraded than collagen
type | (data not shown). In the present study, DQ-collagen |
degradation products were mainly pericellular (Figure 2).
To assess the involvement of proteases in the degrada-
tion of the two collagens, we used inhibitors of different
protease classes. Representative images are illustrated in
Figures 1 and 2, and the quantified results for each treatment
are summarized in Table 1. As we had established that
cathepsin B participates in the degradation of DQ-collagen
IV by human breast [25,27] and colon [27] cancer cells, we
tested the effects of incubation with the highly selective cell-
impermeant cathepsin B inhibitor CA074 [28] in combination
with its cell-permeable form CA074Me [29] (Figures 1 and 2,
panels D—F). In addition, we tested the broad-spectrum
cysteine protease inhibitor E-64 [34] (Figures 1 and 2, panels
G-I), the broad-spectrum MMP inhibitor GM6001 [35]
(Figures 1 and 2, panels J—L), and an inhibitor of the
plasminogen cascade aprotinin [36] (Figures 1 and 2, panels
M-0). At the concentrations used and over the entire time
course of the assay, neither the inhibitors nor the diluent
(DMSO, 0.1% final concentration) affected the viability of the
cells as demonstrated by an absence of staining with propi-
dium iodide (not shown). All of the protease inhibitors signif-
icantly reduced the degradation of DQ-collagen IV by the
three prostate carcinoma cell lines as can be seen in Figure 1
and is quantified in Table 1. These studies suggest that more
than one protease may be responsible for the degradation of
collagen IV by the living prostate carcinoma cells, including
the cysteine protease cathepsin B. In contrast, degradation
of DQ-collagen | by the prostate carcinoma cell lines was not
significantly inhibited by all of the protease inhibitors that
are effective in reducing the degradation of DQ-collagen IV
(Table 1). For DU145 cells, only the broad-spectrum MMP
inhibitor GM6001 significantly reduced the degradation of
DQ-collagen | (Table 1 and Figure 2J), whereas for PC3
cells, only the cathepsin B inhibitors CA074 and CA074Me
significantly reduced the degradation (Table 1 and Figure 2E).
In contrast, degradation of DQ-collagen | by LNCaP cells
was significantly reduced (Table 1) by several inhibitors:
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DU145

CONTROL

CAO74/CAO74Me

E-64

GMo6001

APROTININ

Figure 1. Protease inhibitors reduce the degradation of DQ-collagen 1V by living human DU145, PC3, and LNCaP prostate carcinoma cells. Fluorescence images
of DQ-collagen 1V degradation products (green) taken at an extended depth of focus are superimposed on phase images of the living tumor cells. Single cell
suspensions of prostate carcinoma cells were mixed with diluent (DMSO, 0.1%) or protease inhibitors, plated on DQ-collagen 1V/Matrigel—coated coverslips and
imaged at 48 hours. Panels A, D, G, J, and M illustrate proteolysis by DU145 cells. Panels B, E, H, K, and N illustrate proteolysis by PC3 cells. Panels C, F, |, L, and
O llustrate proteolysis by LNCaP cells. These images are representative of three experiments. Bar = 20 um.

broad-spectrum inhibitors of cysteine proteases (Figure 2/)
and MMPs (Figure 2L), and the plasminogen cascade inhib-
itor aprotinin (Figure 20). These results suggest that degra-
dation of collagen I, the organic matrix of the bone, involves
more than one class of proteases, and that the class that is
primarily responsible is dependent on the cell line.

Expression of Cathepsin B in Prostate Carcinoma Cells
Is Affected by Growth on Collagen | Gels

We have previously reported that interactions of human
breast fibroblasts with collagen | can increase the expression
of cathepsin B protein, but not cathepsin B transcripts [12]. In
the present study, we determined whether interaction with
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collagen | affected the levels of cathepsin B expression of 4000 and 2200 nt were detected in DU145 cells (Figure 3,
(transcripts and protein) in prostate carcinoma cells. We A and C), but only the smaller predominant transcript was
isolated total RNA from the prostate cells grown on plastic detected in PC3 and LNCaP cells (Figure 3C). This is
or collagen I, and evaluated the levels of cathepsin B probably due to the lower levels of cathepsin B message in
message by Northern blotting. Two cathepsin B transcripts these cells. The levels of cathepsin B transcripts were

DU145

CONTROL

CAQ74/CAO74Me

E-64

GMo6001

APROTININ

Figure 2. Degradation of DQ-collagen | by living human DU145, PC3, and LNCaP prostate carcinoma cells is reduced by protease inhibitors. Fluorescence images
of DQ-collagen | degradation products (green) taken at an extended depth of focus are superimposed on phase images of the living tumor cells. Single cell
suspensions of prostate carcinoma cells were mixed with diluent (DMSO, 0.1%) or protease inhibitors, plated on DQ-collagen I/Matrigel—coated coverslips and
imaged at 48 hours. Panels A, D, G, J, and M illustrate proteolysis by DU145 cells. Panels B, E, H, K, and N illustrate proteolysis by PC3 cells. Panels C, F, I, L, and
O illustrate proteolysis by LNCaP cells. These images are representative of three experiments. Bar = 20 um.
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increased in DU145 cells that were cultured on collagen |
gels. The ratio of expression of cathepsin B transcripts to that
of the transcript for GAPDH, a housekeeping gene (Figure 3B),
indicates that levels of cathepsin B message were increased
>2-fold in DU145 cells grown on collagen | gels.

To determine whether the increase in cathepsin B mes-
sage in DU145 cells led to increased expression of cathep-
sin B protein, we evaluated the levels of the enzyme by
immunoblotting. The mature 31-kDa single-chain and the
26+5/25+5—kDa mature double-chain forms of cathepsin B
were present in lysates from DU145 cells, whereas the
inactive 43-kDa proform was detectable only in trace
amounts (Figure 4A, top panel), suggesting near-complete
processing of the enzyme. We have shown that cathepsin B
in normal breast epithelial cells is processed to mature
forms within 30 minutes (Sameni and Sloane, unpublished
data) (for a recent review on trafficking and processing of
cathepsin B, see Ref. [37]). On 12% gels, mature cathepsin
B migrates as a 31-kDa single-chain enzyme, and 26- and
25-kDa heavy chains of double-chain cathepsin B; the 5-
kDa light chain is not retained on the gels [21]. Cathepsin B
protein expression increased more than six-fold in DU145
cells grown on collagen | gels compared to cells grown on
tissue culture plastic (Figure 4A, middle panel). Only pro-
cathepsin B was present in overnight conditioned media
from DU145 cells grown either on plastic or collagen | gels
(Figure 4B, top panel). Secretion of the inactive proenzyme
was increased approximately five-fold when the cells were
cultured on the collagen | gels (Figure 4B, middle panel).
These results are similar to the increases observed in the
secretion of procathepsin B from human breast fibroblasts
grown on collagen | gels [12]. One possible explanation for
increased secretion into conditioned media could be stabi-
lization of the proenzyme on interaction with collagen I.
Interestingly, overall levels of intracellular and secreted

A B

4,000 nt
CatB
2,200 nt

cathepsin B protein in DU145 cells cultured on collagen |
gels increased approximately 11-fold, whereas the increase
in mRNA levels was only two-fold. This suggests an in-
crease in the translation of cathepsin B in these cells on
interaction with collagen |I. We have previously reported
increases in cathepsin B protein without increases in ca-
thepsin B transcripts in human breast epithelial cells (i.e.,
MCF 10A) and human breast fibroblasts, thus suggesting
posttranscriptional regulation of this enzyme [12,38].

The changes in overall protein expression interaction of
DU145 prostate carcinoma cells with collagen | suggest
possible changes in cathepsin B activity. To assess enzyme
activity, we used a fluorometric assay utilizing a highly
selective substrate for cathepsin B, Z-Arg-Arg-NHMec
[32,33]. Consistent with the results of immunoblotting, intra-
cellular levels of cathepsin B activity were significantly in-
creased (~2.7-fold) when DU145 cells were cultured on
collagen | gels (Figure 4A, bottom panel). In overnight con-
ditioned media, only the inactive precursor of the enzyme
(i.e., procathepsin B) was detected (Figure 4B, bottom
panel). Therefore, we determined the levels of “pepsin-
activatable procathepsin B activity” in the conditioned media
[12]. We found that there was a five-fold increase in pepsin-
activatable procathepsin B activity in the conditioned media
of DU145 cells grown on collagen | gels (Figure 4B, bottom
panel; i.e., comparable to the five-fold increase in secretion
of procathepsin B protein). Growth of PC3 and LNCaP cells
on collagen | gels did not significantly affect the levels of
cathepsin B expression and activity (data not shown).

Localization of Cathepsin B in Prostate Carcinoma Cells
Increases in cathepsin B secretion are often associated
with altered subcellular localization of the enzyme, namely
translocation from the perinuclear region to the cell periph-
ery. Redistribution and secretion of this lysosomal enzyme
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Figure 3. Cathepsin B mRNA expression increases in DU145 cells grown on collagen | gels. (A). Northern blot demonstrating cathepsin B message in prostate
carcinoma cells. Two cathepsin B transcripts of 4000 and 2200 nt were detected in DU145 cells. Twenty micrograms of total RNA was loaded per lane and equal
loading was confirmed by probing for GAPDH, a housekeeping gene. To quantify increases in cathepsin B message when DU145 cells are grown in collagen | gels,
the ratio of expression of the two cathepsin B transcripts to that of the GAPDH, control was quantified (B) (white, plastic; black, collagen I). (C). Overexposure of
blot in panel A to visualize the low levels of cathepsin B message in PC3 and LNCaP cells.
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Figure 4. Levels of cathepsin B protein and activity increase in DU145 cells grown on collagen | gels. (A). Cathepsin B protein (top and middle panels) and activity
(bottom panel) in cell lysates from DU145 cells grown on tissue culture plastic (P) or collagen | gels (C). Immunoblot samples were loaded based on DNA
concentration (20 ug/lane). The mature 31-kDa single-chain 26+5/25+5—kDa mature double-chain forms, and trace amounts of the inactive 43-kDa proform were
detected. Densitometric analyses of cathepsin B bands (43, 31, and 25/26 kDa isoforms) were performed to assess changes in cathepsin B protein expression on
interaction with collagen I. Data (expressed as AU/mm? x 10°) are representative of at least three experiments. Activity was measured by fluorometric assay
against the cathepsin B substrate Z-Arg-Arg-NHMec. “Cell unit” represents the ratio of milligrams of protein to micrograms of DNA (an index of cell size; see
Experimental section). Data are presented as mean +SD (n = 3) and were repeated at least three times with comparable results. *P < .05 is considered statistically
significant. (B). Cathepsin B protein (top and middle panels) and activity (bottom panel) in conditioned media of DU145 cells grown on tissue culture plastic (P) or
collagen | gels (C). Only latent procathepsin B was detected in the media; therefore, cathepsin B activity in the conditioned media represents pepsin-activatable
cathepsin B. “Cell unit” represents the ratio of milligrams of protein to micrograms of DNA (an index of cell size; see Experimental section). Data are presented as
mean +SD (n = 3) and were repeated at least three times with comparable results. *P < .05 is considered statistically significant. (C). Imnmunofluorescent staining
for intracellular cathepsin B (green) in permeabilized DU145 cells was superimposed on phase contrast images of the cells. Cells were cultured on uncoated (top
panel) or collagen |—coated (lower panel) glass coverslips for 48 hours. The cells were observed with a Zeiss LSM 310 microscope in confocal mode at a

magnification of x 63 under oil immersion. These images are optical slices that are representative of at least three experiments. Bar = 20 uM.

have been observed in human colon, breast, prostate,
glioma, and esophageal carcinomas, and are reported to
parallel malignant progression [14,39—41]. Therefore, in the
present study, we analyzed the subcellular localization of
cathepsin B in prostate carcinoma cells cultured on glass
coverslips either uncoated or coated with a thin layer of
collagen |. Growing the cells on glass coverslips does not
affect the levels and distribution of cathepsin B compared to
cells grown on plastic. DU145, PC3, and LNCaP cells were
permeabilized with saponin and stained as described in
Experimental section. The antibodies used in immunofluo-
rescent staining detect all forms of the enzyme: inactive
proenzyme and the active single-chain and double-chain
forms. Staining for cathepsin B in the DU145 cells grown
on glass coverslips was vesicular and localized primarily to
the perinuclear region of the cells (Figure 4C, top panel). In
DU145 cells cultured on collagen | gels, there was an
increased expression of cathepsin B but no apparent
changes in cellular localization (Figure 4C, bottom panel).
Images represent a confocal slice through the cells and
matrix; hence, the staining pattern is not uniform for all cells.
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Furthermore, no significant increase in staining intensity for
cathepsin B was observed in PC3 and LNCaP cells cultured
on collagen | gels (data not shown).

Expression and Activity of Cathepsin B in Prostate
Carcinoma Cells Grown on Human Bone

Cathepsin B has been previously shown to degrade
collagen |, the organic matrix of the bone, and has been
implicated in bone resorption [42—-46]. We demonstrated
that DU145, PC3, and LNCaP prostate carcinoma cells are
capable of degrading collagen | (Figure 2). To investigate an
effect of bone microenvironment on tumor cell—associated
cathepsin B, we cocultured these prostate carcinoma cell
lines with human bone in vitro (Figure 5). Immunoblot anal-
ysis of conditioned media from the control bone cultures
revealed the presence of inactive proenzyme (Figure 5A).
Additional bands indicated the presence of mature active
forms of cathepsin B. These forms are most likely in complex
with endogenous inhibitors (e.g., cystatin C) of cathepsin B
that are also secreted [47,48] and thus not active, as we were
unable to measure cathepsin B activity in conditioned media
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in the absence of a pepsin activation step (see results of
activity assays below). Culture of DU145 cells in the pres-
ence of human bone fragments led to a large increase in the
secretion of inactive procathepsin B into conditioned media
(Figure 5A, top panel), as was also observed when DU145
cells were grown in collagen | gels (Figure 4B). There was no
change in secretion of proenzymes into conditioned media
when PC3 or LNCaP cells were cultured on human bone
explants (Figure 5A). Activity assays on conditioned media
were performed in the absence or presence of pepsin in
order to activate the latent proenzyme, and only the pepsin-
containing samples were found to exhibit cathepsin B activ-
ity. Media conditioned by DU145 cells cultured on human
bone fragments contained the highest levels of pepsin-
activatable cathepsin B activity (i.e., DU145 PC3 = LNCaP)
and this activity exceeded the sum of activities in the media
of either bone or prostate carcinoma cells cultured alone
(Figure 5B).

To avoid the issue of complex formation between active
enzyme and endogenous inhibitors in conditioned media, we
have developed a continuous assay that measures cathep-
sin B activity produced pericellularly by living cells [32,33]. In
this “real-time assay,” the rate of secretion of active forms of
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cathepsin B is measured rather than the accumulation of
proenzyme in conditioned media. In the present study, the
assay was performed at the end of the 48-hour growth period
(i.e., at a time comparable to the analysis of conditioned
media). Secretion of active cathepsin B into the pericellular
assay buffer was then measured over a further time period of
30 minutes (Figure 5C). The results of the “real-time assay”
were comparable to those obtained by assaying conditioned
media in that there was a significant induction of secretion of
active cathepsin B when DU145 cells, but not PC3 or LNCaP
cells, were cultured on human bone fragments (Figure 5C).
Secretion of active cathepsin B could not be measured when
any of the three prostate cell lines were cultured on collagen |
gels (data not shown). These data suggest that a complete
bone microenvironment is necessary to induce the secretion
of active cathepsin B.

Expression and Activity of Cathepsin B in Experimental
SCID-Human Bone Tumors

Previous studies have shown that injections of human
prostate carcinoma cells into the marrow side of human bone
fragments implanted in SCID mice result in the formation of

0.5 -

0.4 4

0.3 1

0.2 4

0.1

P N
O édb
X

R4 4

Figure 5. DU145 cells grown on human bone exhibit increased secretion of cathepsin B. Human prostate carcinoma cells were cultured on bone explants for 48
hours (see Experimental section). (A). Representative immunoblots of conditioned media from three experiments. Samples were loaded based on protein/DNA
ratio. (B). Pepsin-activatable cathepsin B activity in 48-hour conditioned media from bones alone, tumor cells alone, and bone (B*) tumor cell cocultures. (C). Rate
of secretion of active cathepsin B from bones alone, tumor cells alone, and bone (B*) tumor cell cocultures. “Cell unit” represents the ratio of milligrams of protein to
micrograms of DNA (an index of cell size; see Experimental). Data are presented as mean +SD (n = 3) and were repeated at least three times with comparable

results. *P < .05 is considered statistically significant.
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human bone tumors [20]. We have utilized this model in the
present study to analyze the effects of an in vivo human bone
microenvironment on cathepsin B expression and activity in
human prostate tumors. In agreement with the results of our
in vitro studies, active forms (31-kDa single chain and 26/25-
kDa double chain) of cathepsin B were found by immuno-
blotting in extracts of control human bone fragments (Figure 6,
A and B). A dramatic (>10-fold) increase in cathepsin B pro-
tein was observed in DU145 bone tumors compared to the
control bone samples (Figure 6C). Significant increases in
the expression of the enzyme were also found in PC3 and
LNCaP bone tumors—effects that were not visible on the
interaction of PC3 and LNCaP cells with collagen | or human
bone in vitro. Levels of cathepsin B expression in human
bone tumors corresponded to levels of cathepsin B activity
(DU145 > PC3 = LNCaP; Figure 6D). The significant in-
crease in cathepsin B in all of the prostate bone tumors
indicates that interactions of the stroma and host tissues with
the tumor may regulate the expression of this enzyme in
prostate cancer bone metastases.

Localization of Cathepsin B mRNA and Protein in
Human Bone Tumors

The three prostate carcinoma cell lines formed large, well-
encapsulated, solid tumors on the implanted bone. On
histologic examination, all bone tumors exhibited variable
degrees of osteolytic activity (Figure 7, B—D). DU145 and
PC3 tumors, as previously reported [20], appeared to be
osteolytic in nature; however, in DU145 tumors, visible bone
fragments were still apparent at 6 weeks after tumor cell
injection (Figure 7B). At 6 weeks after injection of PC3 cells,
bone fragments were not observed in most tumors (Figure 7C).
LNCaP tumors, which have previously been reported to be
of an osteoblastic/osteolytic type, appeared to degrade
bone, as determined by H&E staining, but no evidence of
new bone formation was found (Figure 7D). In situ hybrid-
ization and immunohistochemical staining revealed unde-
tectable levels of cathepsin B message and relatively low
levels of cathepsin B protein in bone fragments from control
mice (Figure 7, E and /). Cathepsin B protein appeared to be
localized to the lacunae areas of the bone (Figure 7/). When
compared to bone fragments from control mice, cathepsin B
mRNA and protein levels were significantly increased in all
bone tumors. Cathepsin B message and protein appeared
to be mainly localized to the tumor cells, and not to the
surrounding stromal cells (Figure 7, F—H and J-L). The
residual bone fragments that were visible in some tumors
showed minimal staining for cathepsin B in the lacunae,
consistent with the staining in bone fragments from control
mice. We did not observe a comparable increase in expres-
sion of either cathepsin B message or protein in subcutane-
ous tumors of the three cell lines (Figure 8), again consistent
with the importance of bone microenvironment in regulating
cathepsin B expression in prostate cancer. Overall, immu-
nostaining for cathepsin B correlated with our immunoblot-
ting and activity assays. The exception was LNCaP bone
tumors (Figure 7, H and L), in which there was intense
staining for cathepsin B. One possible explanation for this
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intense staining could be background fluorescence due to
increased angiogenesis in LNCaP tumors. Neovessels in
some tumors (e.g., gliomas) [49] have previously been
shown to exhibit intense staining for cathepsin B. On histo-
logic examination, these tumors appear to have an increased
number of red blood cells and angiogenic vasculature—an
effect that is not observable in DU145 and PC3 tumors.

Discussion

The bone marrow microenvironment has been hypothe-
sized to favor the growth of prostate cancer cells that enter
the bone marrow from the circulation [50,51]. Skeletal
metastasis is a complex, multistep process, the mecha-
nisms of which are not fully understood. Clinically, prostate
cancer bone metastases are predominantly osteoblastic in
nature; however, osteolytic bone resorption is still an im-
portant factor in bone colonization by prostate cancer cells
and numerous studies demonstrate the presence of osteo-
lytic activity in human clinical specimens [52—-56]. Without
bone resorption, growth factors are less available to meta-
static cancer cells, leading to a widely accepted dogma that
prostate cancer is dependent on osteoclasts for expansion
in the bone marrow and subsequent progression of osteo-
lytic metastases [6]. Osteoclasts attach themselves to the
bone surface and create an acidic environment that allows
for matrix demineralization. They also secrete proteolytic
enzymes, including MMPs and cysteine proteases, that aid
in matrix degradation [57—-62]. The most abundant cysteine
protease found in osteoclasts is cathepsin K, a protease
implicated in bone resorption [63—65]. Cathepsin B has also
been found in the extracellular resorption lacunae of osteo-
clasts, and has been implicated in osteoclastic bone resorp-
tion [42,45,46]. Interestingly, osteoclast resorption activity
has been shown to be reduced by inhibition of cathepsin B
or TRAP in isolated osteoclasts [66—68]. Recently, cathep-
sin B in rheumatoid arthritis synovial fluid has been dem-
onstrated to participate in the degradation of subchondral
bone collagen [66].

In the present study, we examined the proteolytic poten-
tial of prostate carcinoma cells and demonstrated that these
cells are not only able to degrade basement membrane
collagen 1V, but also collagen |, a major component of bone
matrix and connective tissues. Using a novel confocal assay
developed in our laboratory that allows one to image matrix
degradation by living cells [25,26], we showed that degrada-
tion of collagen | by the prostate carcinoma cells depends on
various classes of proteases. Our results suggested that
during tumor-mediated proteolysis of collagen I, there may
be an interplay between cathepsin B and other proteases,
including MMPs—enzymes known to be activated by ca-
thepsin B [18,19]. These results also indicate that tumor
cell-mediated proteolysis might be an important factor in
the ability of prostate cancer cells to colonize the bone and
participate in osteoclast-mediated osteolysis. Some studies
have suggested such roles for tumor cell—expressed degra-
dative enzymes, including matrix metalloproteases, serine pro-
teases (i.e., uPA), and cysteine proteases (i.e., cathepsin K)
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in the establishment of prostate carcinoma cells within the previously that the growth of human breast fibroblasts in col-
bone marrow [67,68]. lagen | gels alters the expression of cathepsin B [12]. In the
Interaction with extracellular matrix can also regulate the present study, altered cathepsin B expression and activity
expression of proteases in a variety of cells including fibro- were demonstrated on the interaction of DU145 cells with
blasts and tumor cells [9,10,69—71]. Our studies have shown collagen | and the human bone, but not of PC3 or LNCaP cells
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Figure 6. Cathepsin B expression and activity are increased in human prostate carcinoma bone tumors. (A). Cathepsin B expression in extracts from human bone
tumors was assessed by immunoblotting. Two tumors from each group were analyzed, and samples were loaded based on protein/DNA ratio. For purposes of
clarity, we purposefully loaded half as much protein from the DU145 bone tumor samples as we did for the other bone tumor samples. (B). An overexposed blot
used to demonstrate the presence of active forms of cathepsin B in control bone samples. (C). Densitometric analysis of cathepsin B isoforms was performed to
assess changes in cathepsin B protein expression in bone tumors as compared to bone fragments in control mice. Data (expressed as AU/mm?) are representative
of at least three experiments. (D) Cathepsin B activity in bone tumors was measured by fluorometric assay against the cathepsin B substrate Z-Arg-Arg-NHMec.
“Cell unit” represents the ratio of milligram of protein to micrograms of DNA (an index of cell size; see Experimental section). Data are presented as mean +SD
(n = 3) and were repeated at least three times with comparable results. *P < .05 is considered statistically significant.
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Figure 7. Levels of cathepsin B expression in human prostate carcinoma bone tumor xenografts are high. Paraffin-fixed, decalcified, and dehydrated serial
sections of each tumor were analyzed by H&E staining, in situ hybridization, and immunohistochemistry. (A—D) H&E staining, x40. (E—H) Immunofluorescent
staining for cathepsin B mRNA expression. (I-L) Cathepsin B protein expression. Bar = 20 uM. Panels A, E, and | illustrate human bone fragments from control
mice. Panels B, F, and J illustrate DU145 bone tumors with evidence of osteolysis. Panels C, G, and K illustrate PC3 bone tumors, with tumor cells and fibrous
stroma, but no remaining bone fragments. Panels D, H, and L illustrate LNCaP bone tumors with evidence of osteolysis, but no apparent new bone formation. The
slides were observed with a Zeiss LSM 310 microscope in confocal mode at a magnification of x 63 under oil immersion. These images are optical slices that are

representative of at least three experiments.

with either collagen | or the human bone in vitro. Interestingly,
the DU145 cell line has also been shown to express uPA/
uPAR, a protease system that can be activated by cathepsin
B [15] and one implicated in the proliferation and metastasis
of cancer cells. Elevated levels of uPA have been detected in
breast, lung, colon, and prostate bone metastases [72—-74].
Recently, overexpression of maspin, a serine protease inhib-
itor [75], in tumor cells was shown to inhibit motility, invasion,
angiogenesis, and bone degradation [76—78]. Cathepsin B—
mediated activation of pro-uPA leads to activation of TGF-3
[17], a growth factor implicated in interactions between pros-
tate cancer cell lines and bone marrow stromal cells [79].
DU145 cells have been shown to express the highest levels of
TGF-3 among the three prostate cell lines analyzed in the
present study [80]. TGF-3 has also been implicated in the
regulation of the SMAD family of transcription factors [81], an
activity further increased by Ets-1 [82]. Interestingly, Ets-1 is
a transcription factor that regulates cathepsin B expression
[83]. In addition, both TGF-3 and Ets-1 have been implicated
in the regulation of expression of uPA [84,85]. A growing body
of evidence suggests that a functional interaction between
TGF-3 and Ets-1 is important for the acquisition of an invasive
phenotype by tumor cells.

For instance, expansion of breast cancer cells in the bone
has been shown to depend on parathyroid hormone-related
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protein (PTHrP), the expression of which is stimulated by
TGF-3 through SMAD/Ets-1 synergism [82,86]. This sug-
gests the importance of Ets-1 in the homing of cancer cells in
the bone microenvironment. Cell adhesion to bone matrix
protein, collagen type |, has been shown to induce Ets-1
expression in endothelial cells, a process ultimately leading
to the activation of MMP-1 [87]. Given the widely demon-
strated involvement of Ets-1 in the transcriptional regulation
of matrix-degrading enzymes, it is possible that regulation by
Ets-1 could be responsible for the unique changes in ca-
thepsin B expression and activity that occur on interaction of
DU145 cells with bone matrix.

Differences in tumor cell-associated cathepsin B among
the three cell lines may be regulated by integrins, which are
important mediators of tumor cell/bone or tumor cell/collagen
| associations [8]. We have already shown that the interac-
tion of collagen | with integrins alters cathepsin B expression
and secretion in human breast fibroblasts [12]. Modulation of
other proteases, including MMPs [88,89] and the uPA/uPAR
system by integrins [90,91], has also been demonstrated. In
prostate cancer, integrins have been shown to mediate the
preferential adhesion of cancer cells to bone marrow endo-
thelium [50,51]. A major contributor to this binding is ax34, an
integrin expressed by DU145 and PC3 cells, but not by
LNCaP cells, and also one implicated in the regulation of
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procathepsin B secretion by human breast fibroblasts [12].
Interestingly, de novo synthesis of ao31 subunits is stimu-
lated by TGF-3 [92], a growth factor found in higher amounts
in DU145 than PC3 cells [80]. Signaling through 33, an
integrin commonly expressed by DU145 and PC3 cells
[98,94], is yet another mechanism implicated in prostate
cancer metastasis to the bones [95]. Blocking «,33 integrin
in DU145 cells almost completely abolishes the adhesion of
these cells to crude bone protein extract [96]. Moreover,
inhibition of o33 integrin in the bone environment results in
reduced recruitment of osteoclasts, reduced osteolysis, and
growth of tumor cells in the bone [97].

An interesting effect observed when DU145 cells inter-
acted with the human bone but not with the pure bone matrix,
collagen I, was secretion of active cathepsin B. Mechanisms
for secretion of active cathepsin B are not well understood;
however, procathepsin B is secreted constitutively and se-
cretion of active cathepsin B can be induced (e.g., by
lowering the pericellular pH) [98]. It is possible that the
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enzyme is processed through a classic lysosomal pathway
and secreted by a retrograde mechanism. Lysosomal exo-
cytosis and secretion of mature active enzyme due to fusion
of lysosomes with secretory granules have been observed in
rat exocrine pancreas [99]. The presence of active cathepsin
B pericellularly might also reflect the activation of procathep-
sin B on the cell surface (for a recent review on trafficking
and processing of cathepsin B, see Ref. [37]). Secretion of
active enzyme from cells interacting with human bone, but
not from cells interacting with pure collagen I, suggests that it
is not the bone matrix itself, but the metabolically rich bone
microenvironment that is responsible. Our working hypothe-
sis that tumor—stromal and tumor—host interactions modu-
late the expression of cathepsin B in prostate tumors was
further supported by our in vivo studies using the SCID-
human model of prostate cancer bone metastasis [20]. Here
we demonstrated an upregulation of cathepsin B levels in
bone tissues colonized by human prostate carcinoma
cells. Increased cathepsin B expression and activity were

mor LNCaP tumor

20um

Figure 8. Levels of cathepsin B expression in subcutaneous human prostate tumor xenografts. (A—C) H&E staining, x<40. Immunofluorescent staining for
cathepsin B mRNA (D —F) and cathepsin B protein (G—1). Bar = 20 uM. Panels A, D, and G illustrate DU145 subcutaneous tumors. Panels B, E, and H illustrate
PC3 subcutaneous tumors. Panels C, F, and | illustrate LNCaP subcutaneous tumors. The slides were observed with a Zeiss LSM 310 microscope in confocal
mode at a magnification of x 63 under oil immersion. These images are optical slices that are representative of at least three experiments.
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observed in all tumor tissues, including PC3 and LNCaP
tumors, which show relatively low levels of the enzyme
in vitro. It is somewhat surprising and yet unclear why PC3
cells that were isolated from a bone metastasis exhibit
upregulation of cathepsin B in vivo, yet do not respond to
bone matrix components in vitro. It is possible that cathepsin
B in these cells is regulated by nonmatrix components of the
bone microenvironment. One such candidate is osteoprote-
gerin, a protein shown to downregulate expression of the
cysteine protease cathepsin K in osteoclast cultures [100].
Our future studies will include the analysis of the effects of
osteoprotegerin and other bone proteins on cathepsin B
expression in prostate cancer.

To the best of our knowledge, the present study is the first
proof that the tumor microenvironment can modulate the
expression of a cysteine protease, in this case cathepsin B—
a finding that might translate into novel therapeutic agents for
treatment of prostate cancer patients.
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