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ABSTRACT

For an n by n matrix A, let K(A) be the associated matrix corresponding to a
permutation group (of degree m) and one of its characters. Let D,(A) be the
coefficient of x™ " in K(A+xI). If A is reducible, then D,(A) is reducible. If A is
irreducible and the character is identically one, then D,(A) is irreducible. If A is row
stochastic and the character is identically one, then D,(A) is essentially row sto-
chastic. Finally, the results motivate the definition of group induced digraphs.

1. INTRODUCTION

The primary purpose of this note is to extend the results of [2] to
associated matrices based on groups and characters. To define these associa-
ted matrices we first consider the set I, ,, of all functions from the first m
positive integers to the first n. Let H be a permutation group of degree m,
and let x be a character of H of degree 1. (We shall point out in the sequel
which results continue to hold for characters of degree greater than one.)
The group H induces an equivalence relation on I, , as follows: a =g (mod
H) if there is a 6 €H such that as=p8. Let A be a system of distinct
representatives for the equivalence classes mod H so chosen that a €A if and
only if a is first, in lexicographic (dictionary) ordering, in its equivalence
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class. For each y€ET, , define Hy={cEH:yo=v}, ie., the stabilizer
subgroup of y. Let

Z:{yeA: > x(o)aeo}.

ocEH,

If B=(b;;} is an m by m matrix, define

m

2 X H to(t)'

oEH

For example, if H=S§,,, the full symmetric group, and if x=e¢, the alternating
character, then d is the determinant. If H=S_ and x=1, d is the permanent.

Suppose, now, that A=(a,;) is an n by n matrix. For a, B€T,, ,, define
Ala|B] to be the m by m matrix, the (i, ) entry of which is the (a(i), B())
entry of A. Finally, K(A) is a matrix indexed by A. The (a, 8) entry of this
matrix is [#(a)r(B)]~'/2d(A*[B|a]), where v(a) is the order of H_, and A’ is
the transpose of A [4, p. 126]. For example, if H=S_ and x=¢, K(A) is the
mth compound of A. If H=S, and x=1, K(A) is the mth induced power of
A. If H={id}, K(A) is the mth Kronecker power of A. The most important
feature of associated matrices is that they are multiplicative, i.e., K(A,Ag)=
K(A,)K(A,). Of course K depends on the quadruple (m,n, H, x), a fact
which, for the sake of simplicity, we suppress in the notation.

For an indeterminate x, the associated matrix K(A+xI), I being the
identity matrix, is a matrix polynomial in x of degree m:

K(A+xI =2

The matrices D,(A), 1 <r<m, have variously been called generalized associ-
ated matrices [8] and derivations [5].

We shall investigate what influence the irreducibility or reducibility of A
has on the irreducibility or reducibility of D,(A). Recall that the n by n
matrix A is weakly reducible if there are n by n permutation matrices P and
Q such that

PA o All O )
=4, An)

where A, and A ,, are square matrices of order at least one. The matrix A is
reducible if it can be brought to the above form with Q=P*. A matrix which
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is not reducible is irreducible; one which is not weakly reducible is fully
irreducible.

We shall also have occasion to discuss the directed graph G(A) of the n
by n matrix A: G(A)=[N, E], where N={1,2,...,n} is the set of vertices
and (i, j) EE, the set of edges, if and only if i5j (we ignore diagonal entries)
and a,;70. It is well known [3] that a square matrix of order n>2 is
irreducible if and only if G(A) is strongly connected, i.e., if there is a path in
G(A) from every vertex into any other vertex.

2. PRELIMINARIES

We may think of a YET,, , as a sequence of length m chosen from
N={1,2,...,n}, ie, y=(y(1), Y(2)...., Y(m)). For each tEN, let m,(y) be
the multiplicity of ¢ in the sequence y. (The next definition and lemma are
valid for characters of degree greater than one.)

DerFiniTioN.  The quadruple (m,n, H, x) is regular if there is a pair
@, BEA and an integer i EN such that m,(a) =07m,(B).

We will need the following technical observation about this definition.

Lemma. If (m,n, H, x) is regular, then for all jEN there is a pair
a, BEA such that m;(a)=07#m(B).

Proof. Suppose y,8€1I, | are equivalent (mod H). Then there is a
o €H for which yo=34. If 7 €H,, then 80 ~'mo=ymo=y0=34, i.e., 6 "lns E
H;. Similarly, if 7€ H;, then oo ™' €H,. In other words, if y=48 (mod H),
then H, is conjugate to H; in H. Since characters are conjugacy class
functions, it follows that

2 x(6)#0 & > x(o)#0. (1)

6EH, ocEHy

Let 7 be a permutation of N. Then 7 is a permutation of I, ,, by means
of the action y—7y, YET,, ,.. Suppose v,8€ET,, . Notice that Y= (mod H)
if and only if 7y=6 (mod H). Now if yEA, 7y need not be an element of
A, but, since H, =H_, it follows from (1) that there is a unique sequence
r(my) €A such that ry=r(77y) (mod H).

Since (m, n, H, x) is regular, there is a pair , €A and an integer iEN
such that m,(a) =07=m,(B). Suppose jEN, j#i. Let w be some permutation
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of N such that 7(i)=j. Then m,(wa)=07#m(aB). Since r(ma) [r(mB)] con-
tains the same integers as wa [78], the result follows. |

Further remarks about the definition: If n>m, then (m,n, H, x) is
always regular. This is because any increasing sequence of distinct integers
belongs to A. Moreover, if n,>n, and if (m,n,, H, x) is regular, then
(m,n,, H, x) is regular. Finally, if n>1 and x=1, then (m,n, H, x) is

regular.

THEOREM 1. Suppose (m,n, H, x) is regular, Let A be an n by n matrix.
If A is reducible, then D,( A) is reducible, 1 <r<m.

Proof. Since A is reducible, there is a subset M cN, @#M, such that

;; =0 whenever iEM and jEN\M. Let the cardmallty of M be k. Without

loss of generality, we may assume M={1,2,...,k}. Let s be the smallest

number of distinct integers that occur in any sequence of A. There are two
cases.

Case 1: k>s. Let =T, ,NA. Since k<n, A\Q#Q. Let a€Q and
BEA\Q. Since B&Q, there is an re{1,2,...,m} such that B(r)EN\M.
Therefore, the rth column of Ala|B] is zero. It follows from the definition
that the a, B8 entry of K(A) is zero (A*[B|a]=A[a|B])

Case 2: k<s. Letp(y)=myy)+--- +my), YET,, ,. Let

t=max ().
yeA

Let Q= {yEA: pu,(y)=t}. Then Q. Suppose A=%. Since (m, n, H, ) is
regular, there exist w, » €A such that m,(w)=0#m,(»). Since s >k, there is
an integer j>k such that m,(w)#0. Consider the sequence y€&T,, , defined
as follows: y(i)=w(i) if w(z)#=1 and y(i)=k if w(i)={. Let 8 be that
sequence of A which is equivalent (mod H) to y. Since H,=H,, it follows
from (1) that §EA. But this contradicts the definition of t, since p ()=
pr(Y) > pa(w). Thus A\Q#=D.

Now, let a€Q and BEA\Q. Consider A[a|B]. Since p,(B)<t, at least
m—t+1 of the entries of B (multiplicities included) come from N\M.
Therefore, A[a| B] contains a ¢ by m— ¢+ 1 submatrix consisting of zeros. By
Konig's theorem, every diagonal product from A[a|B] is zero. It follows
again that the a, 8 entry of K(A) is zero.

Since A + I is reducible in the same manner as A, K(A +«I) is reducible.
It follows that D,(A) is reducible, 1 < r<m. The proof is complete. |
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RemMark. This theorem remains valid for higher degree characters. (For
a definition of K(A) in this case, see [9, Theorem 3].)

CoroLLARrY 1. Suppose (m,n, H, x) is regular. Let A be an n by n
matrix. If A is weakly reducible, then K(A) is weakly reducible.

Proof. 1If A is weakly reducible, there is a permutation matrix P such
that AP is reducible. Therefore K(AP)=K(A)K(P) is reducible. It is proved
in [6] that K(P) is a generalized permutation, i.e., a diagonal matrix times a
permutation matrix. It follows that K(A) is weakly reducible. n

3. THE FIRST (ADDITIVE) DERIVATION

We begin with an explicit description of the matrix D\(A) valid when
x(id)=1. Let a, BEA. Then, according to [8, Eq. (2.7)], the (a, 8) entry of
D,(A) is

1 i o
pp—— 2 2 X(a)aao(i)ﬁ(i) H sao(t)ﬂ(t)'
V((l)V(B) i=1 cEH t=1

ti

We identify three cases:

Case 1: a=f. For each 0 €EH, either as=a or ao differs from « in at
least two places. Therefore, only those o € H, contribute nonzero terms to
the summation. Since the restriction of x to H, is identically 1, we obtain in
this case

m

[DI(A)]au= 2 A o(i)ali) (2a)

Case 2: There is a € H such that a7 and B differ in exactly one place,
say m,(a)=m,(B)+1 and m(a)=m (B)—1. Let H=H,m UH.m
U---UHm, r=[H: H,]=0(H)/v{a), be the decomposition of H into right
cosets afforded by H,. Assume that 7, m,,...,7, are ordered so that
am, amy, ..., an, each differ from B in exactly one place, and am_, ,,..., an,
each differ from £ in at least two places. (It may happen that s=r.) A
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moment of reflection will establish that for 1<i<s, the entry which differs
will always be a p in a7, and a g in 8. So, in this case,

2 2 X 0771
‘/ ji=1o0€EH,

; Qpg g x(m, (2b)

since x(om)=x(0)x(m), and x(0)=1, 0EH,,.
Case 3: For all ’TEH ar differs from B in at least two places. In this
case,

[DI(A)]aB=O‘ (ZC)

ExampLe. Take m=4, H={(1234)>, x(1234)=—1, n=2. Then A=
{(1,1,1,2),(1,1,2,2),(1,2,1,2),(1,2,2,2)}. [In particular, (m, n, H, x) is not
regular.] If A=(a,;) is a 2 by 2 matrix, then

3a,,+ay 0 V2a, 0
D,(A) 0 2(ay +ag) 0 0
' V2 ay 0 2a,+ay) V2ay
0 0 V2 ay, a,, +3ay

Notice that in this example D,(A) is reducible for every 2 by 2 matrix A.
This cannot happen if x is identically 1.

Tueorem 2. Let H be a subgroup of S,. Let x be the principal
(identically 1) character of H. Let A be an n by n matrix. Then A is reducible
if and only if D,(A) is reducible.

Proof. Suppose A is irreducible. Then G(A) is strongly connected. Let
a, BEA (=A), a% B. Of all the rEH, there will be (at least) one for which
ar and B differ in the fewest places. The proof is by induction on this
number. So, suppose 7 is chosen so that as differs from § in at least as many
places as ar, 0 €EH. Let y=ar and assume y(r)5 B(r). There is a path in
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G(A) from y(r) to B(r), say y(r)=i,—>iy—- - - >, =p(r), i.e, i, 7iy7* - #*
iy, and the (i, i,), the (ig,is),..., and the (i;_,,i;) entries of A are all
different from zero. For each t=1,2,..., k, there is a unique sequence v,EA
such that v,=(v(1), ¥(2),..., y(r—1),4,, y(r+1),..., y(m)) (mod H). By (2b),
the (Y, ¥,4+,) entry of D;(A) is a nonzero multiple of the (i, i,,,) entry of A,
1< t<k. Therefore, in the directed graph G(D,(A)), there is a path from
a=1y, to y;. Now, v, is equivalent to a sequence which differs from 8 in one
fewer place than y. By the induction assumption, there is a directed path
from ¥, to B and hence one from a to B. It follows that G(D,(A)) is strongly
connected.

The converse is a special case of Theorem 1. [ ]

Remark. One of us (Fiedler [2]) has shown for H=S,,, x =¢, A irreduci-
ble n by n with n>m, that D,(A) is irreducible. It would be interesting to
know if the assumption n>m [or perhaps (m,n, H, x) regular] eliminates
examples of the type given above, i.e., if m<n, is D)(A) irreducible for
every irreducible n by n matrix A, and every subgroup H of S, and character
x of degree one?

4. STOCHASTIC MATRICES

In [7], M. Marcus and M. Newman investigated conditions on A which
made K(A) doubly stochastic for the case x=1. In general, they found that
A must be an rth root of unity times a permutation.

TueoReM 3. Let H be a subgroup of S,,. Let x be the principal character
of H. Let n be a positive integer. Let ACT,, , be the corresponding system of
distinct representatives for the equivalence classes (mod H). For each yEA,
let d,=[H:H,)"* Let Y be the diagonal matrix indexed by A and with d,
in the (, v) position. If A is an n by n row stochastic matrix, then

(™) 'y-'D(A)Y

is row stochastic.

Proof. Let V be a real (or complex) inner product space of dimension n.
Let B={e,,€,,...,€,} be an ordered, orthonormal basis of V. Let T be the
linear operator on V whose matrix representation, with respect to B, is A.
Then Tu=u, where u=e,+e,+ -+ +e,.
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Let ®™V be the mth tensor power of V, and write 0; ®0,& - Qu,

for the decomposable temsor product of the indicated vectors. To cach
0€ES,,, there corresponds a linear operator P(¢) on @™V such that

P(e™ 10, @+ Bo,=1,;,@ - Qv

Define

aEH

Then ©,, is an orthogonal projection (with respect to the induced inner
product of ®™V) onto its range VI(G) Define v *vy% -+ *1,, =0y(0, &
0, Qu, ) and write e¥=e¢_,* - *€,,, Then it is well known {4)
that F= {d,e}:yEA} is an orthonormal basis of Vi(G). Define D(T) on

Vi(G) by
D,

r

(Tler= 2 eq* - *Teum*  *Tem* ** *em)
weQ,,m

yY€E€A, and linear extension, where Q, ., is the set of strictly increasing
functions from the first r to the first m positive integers. Then it turns out
that

Dr(T)vl*“'*vm= 2 vl*...*va(l)*...*va(f)*..'*v
WEQ, m

for all v, v,,...,0,,EV. Finally, the matrix representation of D(T) with

respect to F is D(A) [8].
We next observe that
4
i=1

et *“=(,§1 ) (Zle)
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since e, =e* for all s€EH. If S is the linear operator on V(G) defined by
Sey=d e}, then the matrix representation of S with respect to Fis Y.

Finally, observe

s—lD,(T)s( D dye,;")=5_lD,(T)( > [H=Hy]ey*)

YEA

=S7'D(T)(u*rux--- *u)

=S—1( > u*---*Tu*---*Tu*---*u)

weQr.m

=S“1[(T)(u*u*"' *u)}

(") 2 4)

yEA

ie., ST'D,(T)S applied to the sum of the basis elements is (T) times the
sum of the basis elements. In other words, the row sums of Y~ 'D,(A)Y are
all equal to (T ) The result now follows from the definitions. "

We remark that

(™) 'yD(A)Y !

is column stochastic for all column stochastic A.

5. A CLASS OF INDUCED DIGRAPHS

Let G=[V, E] be a finite directed graph without multiple edges, with
vertex set V={1,2,...,n}, and with edge set E. Let m be a positive integer,
and let H be a subgroup of S,,. Let ACT,, , be the corresponding system of
distinct representations for the equivalence classes (mod H). The H-induced
graph Gy of G is the graph [A, Ey], where (a, B) €EEy if and only if there is
a 1€ H such that a7 and B differ in exactly one place, say with a p in a7 and
aqin B, and (p,q)EE.

THEOREM 4. Let H be a subgroup of S,,,. Let x be the principal character
of H. If A is an n by n matrix, then G(D,(A))=(G(A))y.
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Proof. This follows immediately from (2b), (2c), and the definitions. W

Tueorem 5. Let G be a finite directed graph without multiple edges.

Let H be a subgroup of S,,. Then G is strongly connected if and only if G is
strongly connected.

Proof. Inview of Theorem 4, this is but a restatement of Theorem 2. W
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