Irreducibility of Assoclated Matrices

Miroslav Fiedler

Matematický ústav ČSAV
Žitná 25
Praha 1, Czechoslovakia
and
Russell Merris*
Califormia State University
Hayward, California 94542

Submitted by Richard A. Brualdi

Abstract

For an n by n matrix A, let $K(A)$ be the associated matrix corresponding to a permutation group (of degree m) and one of its characters. Let $D_{r}(A)$ be the coefficient of x^{m-r} in $K(A+x I)$. If A is reducible, then $D_{r}(A)$ is reducible. If A is irreducible and the character is identically one, then $D_{1}(A)$ is irreducible. If A is row stochastic and the character is identically one, then $D_{r}(A)$ is essentially row stochastic. Finally, the results motivate the definition of group induced digraphs.

1. INTRODUCTION

The primary purpose of this note is to extend the results of [2] to associated matrices based on groups and characters. To define these associated matrices we first consider the set $\Gamma_{m, n}$ of all functions from the first m positive integers to the first n. Let H be a permutation group of degree m, and let χ be a character of H of degree 1 . (We shall point out in the sequel which results continue to hold for characters of degree greater than one.) The group H induces an equivalence relation on $\Gamma_{m, n}$ as follows: $\alpha \equiv \beta$ (mod H) if there is a $\sigma \in H$ such that $\alpha \sigma=\beta$. Let Δ be a system of distinct representatives for the equivalence classes $\bmod H$ so chosen that $\alpha \in \Delta$ if and only if α is first, in lexicographic (dictionary) ordering, in its equivalence

[^0]class. For each $\gamma \in \Gamma_{m, n}$ define $H \gamma=\{\sigma \in H: \gamma \sigma=\gamma\}$, i.e., the stabilizer subgroup of γ. Let
$$
\bar{\Delta}=\left\{\gamma \in \Delta: \sum_{\sigma \in H_{\gamma}} x(\sigma) \neq 0\right\}
$$

If $B=\left(b_{i j}\right)$ is an m by m matrix, define

$$
d(B)=\sum_{\sigma \in H} \chi(\sigma) \prod_{t=1}^{m} b_{t \sigma(t)}
$$

For example, if $H=S_{m}$, the full symmetric group, and if $\chi=\epsilon$, the alternating character, then d is the determinant. If $H=S_{m}$ and $\chi \equiv 1, d$ is the permanent.

Suppose, now, that $A=\left(a_{i j}\right)$ is an n by n matrix. For $\alpha, \beta \in \Gamma_{m, n}$, define $A[\alpha \mid \beta]$ to be the m by m matrix, the ($i, j)$ entry of which is the $(\alpha(i), \beta(j))$ entry of A. Finally, $K(A)$ is a matrix indexed by Δ. The (α, β) entry of this matrix is $[\nu(\alpha) \nu(\beta)]^{-1 / 2} d\left(A^{t}[\beta \mid \alpha]\right)$, where $\nu(\alpha)$ is the order of H_{α}, and A^{t} is the transpose of $A\left[4\right.$, p. 126]. For example, if $H=S_{m}$ and $\chi=\epsilon, K(A)$ is the m th compound of A. If $H=S_{m}$ and $\chi \equiv 1, K(A)$ is the m th induced power of A. If $H=\{\mathrm{id}\}, K(A)$ is the m th Kronecker power of A. The most important feature of associated matrices is that they are multiplicative, i.e., $K\left(A_{1} A_{2}\right)=$ $K\left(A_{1}\right) K\left(A_{2}\right)$. Of course K depends on the quadruple (m, n, H, χ), a fact which, for the sake of simplicity, we suppress in the notation.

For an indeterminate x, the associated matrix $K(A+x I), I$ being the identity matrix, is a matrix polynomial in x of degree m :

$$
K(A+x I)=\sum_{r=0}^{m} D_{r}(A) x^{m-r}
$$

The matrices $D_{r}(A), 1 \leqslant r \leqslant m$, have variously been called generalized associated matrices [8] and derivations [5].

We shall investigate what influence the irreducibility or reducibility of A has on the irreducibility or reducibility of $D_{r}(A)$. Recall that the n by n matrix A is weakly reducible if there are n by n permutation matrices P and Q such that

$$
P A Q=\left(\begin{array}{ll}
A_{11} & 0 \\
A_{21} & A_{22}
\end{array}\right)
$$

where A_{11} and A_{22} are square matrices of order at least one. The matrix A is reducible if it can be brought to the above form with $Q=P^{t}$. A matrix which
is not reducible is irreducible; one which is not weakly reducible is fully irreducible.

We shall also have occasion to discuss the directed graph $G(A)$ of the n by n matrix A : $G(A)=[N, E]$, where $N=\{1,2, \ldots, n\}$ is the set of vertices and $(i, j) \in E$, the set of edges, if and only if $i \neq j$ (we ignore diagonal entries) and $a_{i j} \neq 0$. It is well known [3] that a square matrix of order $n \geqslant 2$ is irreducible if and only if $G(A)$ is strongly connected, i.e., if there is a path in $G(A)$ from every vertex into any other vertex.

2. PRELIMINARIES

We may think of a $\gamma \in \Gamma_{m, n}$ as a sequence of length m chosen from $N=\{1,2, \ldots, n\}$, i.e., $\gamma=(\gamma(1), \gamma(2), \ldots, \gamma(m))$. For each $t \in N$, let $m_{t}(\gamma)$ be the multiplicity of t in the sequence γ. (The next definition and lemma are valid for characters of degree greater than one.)

Definition. The quadruple (m, n, H, χ) is regular if there is a pair $\alpha, \beta \in \bar{\Delta}$ and an integer $i \in N$ such that $m_{i}(\alpha)=0 \neq m_{i}(\beta)$.

We will need the following technical observation about this definition.

Lemma. If (m, n, H, χ) is regular, then for all $j \in N$ there is a pair $\alpha, \beta \in \bar{\Delta}$ such that $m_{i}(\alpha)=0 \neq m_{i}(\beta)$.

Proof. Suppose $\gamma, \delta \in \Gamma_{m, n}$ are equivalent $(\bmod H)$. Then there is a $\sigma \in H$ for which $\gamma \sigma=\delta$. If $\pi \in H_{\gamma}$, then $\delta \sigma^{-1} \pi \sigma=\gamma \pi \sigma=\gamma \sigma=\delta$, i.e., $\sigma^{-1} \pi \sigma \in$ H_{δ}. Similarly, if $\tau \in H_{\delta}$, then $\sigma \tau \sigma^{-1} \in H_{\gamma}$. In other words, if $\gamma \equiv \delta(\bmod H)$. then H_{γ} is conjugate to H_{δ} in H. Since characters are conjugacy class functions, it follows that

$$
\begin{equation*}
\sum_{\sigma \in H_{\gamma}} \chi(\sigma) \neq 0 \Leftrightarrow \sum_{\sigma \in H_{\delta}} \chi(\sigma) \neq 0 . \tag{1}
\end{equation*}
$$

Let π be a permutation of N. Then π is a permutation of $\Gamma_{m, n}$ by means of the action $\gamma \rightarrow \pi \gamma, \gamma \in \Gamma_{m, n}$. Suppose $\gamma, \delta \in \Gamma_{m, n}$. Notice that $\gamma \equiv \delta(\bmod H)$ if and only if $\pi \gamma \equiv \pi \delta(\bmod H)$. Now if $\gamma \in \bar{\Delta}, \pi \gamma$ need not be an element of $\bar{\Delta}$, but, since $H_{\pi \gamma}=H_{\gamma}$, it follows from (1) that there is a unique sequence $r(\pi \gamma) \in \bar{\Delta}$ such that $\pi \gamma \equiv r(\pi \gamma)(\bmod H)$.

Since (m, n, H, χ) is regular, there is a pair $\alpha, \beta \in \bar{\Delta}$ and an integer $i \in N$ such that $m_{i}(\alpha)=0 \neq m_{i}(\beta)$. Suppose $j \in N, j \neq i$. Let π be some permutation
of N such that $\pi(i)=j$. Then $m_{j}(\pi \alpha)=0 \neq m_{i}(\pi \beta)$. Since $r(\pi \alpha)[r(\pi \beta)]$ contains the same integers as $\pi \alpha[\pi \beta]$, the result follows.

Further remarks about the definition: If $n>m$, then (m, n, H, χ) is always regular. This is because any increasing sequence of distinct integers belongs to $\bar{\Delta}$. Moreover, if $n_{1}>n_{2}$ and if (m, n_{2}, H, χ) is regular, then (m, n_{1}, H, χ) is regular. Finally, if $n>1$ and $\chi \equiv 1$, then (m, n, H, χ) is regular.

Theorem 1. Suppose (m, n, H, χ) is regular, Let A be an n by n matrix. If A is reducible, then $D_{r}(A)$ is reducible, $1 \leqslant r \leqslant m$.

Proof. Since A is reducible, there is a subset $M \subsetneq N, \varnothing \neq M$, such that $a_{i j}=0$ whenever $i \in M$ and $j \in N \backslash M$. Let the cardinality of M be k. Without loss of generality, we may assume $M=\{1,2, \ldots, k\}$. Let s be the smallest number of distinct integers that occur in any sequence of $\bar{\Delta}$. There are two cases.

Case 1: $k \geqslant s$. Let $\Omega=\Gamma_{m, k} \cap \bar{\Delta}$. Since $k<n, \bar{\Delta} \backslash \Omega \neq \varnothing$. Let $\alpha \in \Omega$ and $\beta \in \bar{\Delta} \backslash \Omega$. Since $\beta \notin \Omega$, there is an $r \in\{1,2, \ldots, m\}$ such that $\beta(r) \in N \backslash M$. Therefore, the r th column of $A[\alpha \mid \beta]$ is zero. It follows from the definition that the α, β entry of $K(A)$ is zero $\left(A^{t}[\beta \mid \alpha]=A[\alpha \mid \beta]^{t}\right)$.

Case 2: $k<s$. Let $\mu_{k}(\gamma)=m_{1}(\gamma)+\cdots+m_{k}(\gamma), \gamma \in \Gamma_{m, n}$. Let

$$
t=\max _{\gamma \in \bar{\Delta}} \mu_{k}(\gamma) .
$$

Let $\Omega=\left\{\gamma \in \bar{\Delta}: \mu_{k}(\gamma)=t\right\}$. Then $\Omega \neq \varnothing$. Suppose $\bar{\Delta}=\Omega$. Since (m, n, H, χ) is regular, there exist $\omega, \nu \in \bar{\Delta}$ such that $m_{k}(\omega)=0 \neq m_{k}(\nu)$. Since $s>k$, there is an integer $j>k$ such that $m_{j}(\omega) \neq 0$. Consider the sequence $\gamma \in \Gamma_{m, n}$ defined as follows: $\gamma(i)=\omega(i)$ if $\omega(i) \neq j$ and $\gamma(i)=k$ if $\omega(i)=j$. Let δ be that sequence of Δ which is equivalent $(\bmod H)$ to γ. Since $H_{\gamma}=H_{\omega}$, it follows from (1) that $\delta \in \bar{\Delta}$. But this contradicts the definition of t, since $\mu_{k}(\delta)=$ $\mu_{k}(\gamma)>\mu_{k}(\omega)$. Thus $\bar{\Delta} \backslash \Omega \neq \varnothing$.

Now, let $\alpha \in \Omega$ and $\beta \in \bar{\Delta} \backslash \Omega$. Consider $A[\alpha \mid \beta]$. Since $\mu_{k}(\beta)<t$, at least $m-t+1$ of the entries of β (multiplicities included) come from $N \backslash M$. Therefore, $A[\alpha \mid \beta]$ contains a t by $m-t+1$ submatrix consisting of zeros. By König's theorem, every diagonal product from $A[\alpha \mid \beta]$ is zero. It follows again that the α, β entry of $K(A)$ is zero.

Since $A+x I$ is reducible in the same manner as $A, K(A+x I)$ is reducible. It follows that $D_{r}(A)$ is reducible, $1 \leqslant r \leqslant m$. The proof is complete.

Remark. This theorem remains valid for higher degree characters. (For a definition of $K(A)$ in this case, see [9, Theorem 3].)

Corollary 1. Suppose (m, n, H, χ) is regular. Let A be an n by n matrix. If A is weakly reducible, then $K(A)$ is weakly reducible.

Proof. If A is weakly reducible, there is a permutation matrix P such that $A P$ is reducible. Therefore $K(A P)=K(A) K(P)$ is reducible. It is proved in [6] that $K(P)$ is a generalized permutation, i.e., a diagonal matrix times a permutation matrix. It follows that $K(A)$ is weakly reducible.

3. THE FIRST (ADDITIVE) DERIVATION

We begin with an explicit description of the matrix $D_{1}(A)$ valid when $\chi(\mathrm{id})=$ I. Let $\alpha, \beta \in \bar{\Delta}$. Then, according to [8, Eq. (2.7)], the (α, β) entry of $D_{1}(A)$ is

$$
\frac{1}{\sqrt{\nu(\alpha) \nu(\beta)}} \sum_{i=1}^{m} \sum_{\sigma \in H} \chi(\sigma) a_{\alpha \sigma(i) \beta(i)} \prod_{\substack{t=1 \\ t \neq i}}^{m} \delta_{\alpha \sigma(t) \beta(t)}
$$

We identify three cases:
Case 1: $\alpha=\beta$. For each $\sigma \in H$, either $\alpha \sigma=\alpha$ or $\alpha \sigma$ differs from α in at least two places. Therefore, only those $\sigma \in H_{\alpha}$ contribute nonzero terms to the summation. Since the restriction of χ to H_{α} is identically 1, we obtain in this case

$$
\begin{equation*}
\left[D_{1}(A)\right]_{\alpha \alpha}=\sum_{i=1}^{m} a_{\alpha(i) \alpha(i)} \tag{2a}
\end{equation*}
$$

Case 2: There is a $\tau \in H$ such that $\alpha \tau$ and β differ in exactly one place, say $m_{p}(\alpha)=m_{p}(\beta)+1$ and $m_{q}(\alpha)=m_{q}(\beta)-1$. Let $H=H_{\alpha} \pi_{1} \cup H_{\alpha} \pi_{2}$ $\cup \cdots \cup H_{\alpha} \pi_{r}, r=\left[H: H_{\alpha}\right]=o(H) / \nu(\alpha)$, be the decomposition of H into right cosets afforded by H_{α}. Assume that $\pi_{1}, \pi_{2}, \ldots, \pi_{r}$ are ordered so that $\alpha \pi_{1}, \alpha \pi_{2}, \ldots, \alpha \pi_{s}$ each differ from β in exactly one place, and $\alpha \pi_{s+1}, \ldots, \alpha \pi_{r}$ each differ from β in at least two places. (It may happen that $s=r$.) \mathbf{A}
moment of reflection will establish that for $1 \leqslant i \leqslant s$, the entry which differs will always be a p in $\alpha \pi_{i}$ and a q in β. So, in this case,

$$
\begin{align*}
{\left[D_{1}(A)\right]_{\alpha \beta} } & =\frac{1}{\sqrt{\nu(\alpha) \nu(\beta)}} \sum_{i=1}^{s} \sum_{\sigma \in H_{\alpha}} \chi\left(\sigma \pi_{i}\right) a_{p q} \\
& =\sqrt{\frac{\nu(\alpha)}{\nu(\beta)}} a_{p q} \sum_{i=1}^{s} \chi\left(\pi_{i}\right) \tag{2b}
\end{align*}
$$

since $\chi\left(\sigma \pi_{j}\right)=\chi(\sigma) \chi\left(\pi_{j}\right)$, and $\chi(\sigma)=1, \sigma \in H_{\alpha}$.
Case 3: For all $\tau \in H, \alpha \tau$ differs from β in at least two places. In this case,

$$
\begin{equation*}
\left[D_{1}(A)\right]_{\alpha \beta}=0 \tag{2c}
\end{equation*}
$$

Example. Take $m=4, H=\langle(1234)\rangle, \chi(1234)=-1, n=2$. Then $\bar{\Delta}=$ $\{(1,1,1,2),(1,1,2,2),(1,2,1,2),(1,2,2,2)\}$. [In particular, (m, n, H, χ) is not regular.] If $A=\left(a_{i j}\right)$ is a 2 by 2 matrix, then

$$
D_{1}(A)=\left[\begin{array}{cccc}
3 a_{11}+a_{22} & 0 & \sqrt{2} a_{12} & 0 \\
0 & 2\left(a_{11}+a_{22}\right) & 0 & 0 \\
\sqrt{2} a_{21} & 0 & 2\left(a_{11}+a_{22}\right) & \sqrt{2} a_{12} \\
0 & 0 & \sqrt{2} a_{21} & a_{11}+3 a_{22}
\end{array}\right]
$$

Notice that in this example $D_{1}(A)$ is reducible for every 2 by 2 matrix A. This cannot happen if χ is identically 1 .

Theorem 2. Let H be a subgroup of S_{m}. Let χ be the principal (identically 1) character of H. Let A be an n by n matrix. Then A is reducible if and only if $D_{1}(A)$ is reducible.

Proof. Suppose A is irreducible. Then $G(A)$ is strongly connected. Let $\alpha, \beta \in \Delta(=\bar{\Delta}), \alpha \neq \beta$. Of all the $\tau \in H$, there will be (at least) one for which $\alpha \tau$ and β differ in the fewest places. The proof is by induction on this number. So, suppose τ is chosen so that $\alpha \sigma$ differs from β in at least as many places as $\alpha \tau, \sigma \in H$. Let $\gamma=\alpha \tau$ and assume $\gamma(r) \neq \beta(r)$. There is a path in
$G(A)$ from $\gamma(r)$ to $\beta(r)$, say $\gamma(r)=i_{1} \rightarrow i_{2} \rightarrow \cdots \rightarrow i_{k}=\beta(r)$, i.e., $i_{1} \neq i_{2} \neq \cdots \neq$ i_{k}, and the $\left(i_{1}, i_{2}\right)$, the $\left(i_{2}, i_{3}\right), \ldots$, and the $\left(i_{k-1}, i_{k}\right)$ entries of A are all different from zero. For each $t=1,2, \ldots, k$, there is a unique sequence $\gamma_{t} \in \Delta$ such that $\gamma_{t} \equiv\left(\gamma(1), \gamma(2), \ldots, \gamma(r-1), i_{t}, \gamma(r+1), \ldots, \gamma(m)\right)(\bmod H)$. By (2b), the $\left(\gamma_{t}, \gamma_{t+1}\right)$ entry of $D_{1}(A)$ is a nonzero multiple of the $\left(i_{t}, i_{t+1}\right)$ entry of A, $1 \leqslant t<k$. Therefore, in the directed graph $C\left(D_{1}(A)\right)$, there is a path from $\alpha=\gamma_{1}$ to γ_{k}. Now, γ_{k} is equivalent to a sequence which differs from β in one fewer place than γ. By the induction assumption, there is a directed path from γ_{k} to β and hence one from α to β. It follows that $G\left(D_{1}(A)\right)$ is strongly connected.

The converse is a special case of Theorem 1.

Remark. One of us (Fiedler [2]) has shown for $H=S_{m}, \chi=\epsilon$, A irreducible n by n with $n \geqslant m$, that $D_{1}(A)$ is irreducible. It would be interesting to know if the assumption $n \geqslant m$ [or perhaps (m, n, H, χ) regular] eliminates examples of the type given above, i.e., if $m \leqslant n$, is $D_{1}(A)$ irreducible for every irreducible n by n matrix A, and every subgroup H of S_{m} and character χ of degree one?

4. STOCHASTIC MATRICES

In [7], M. Marcus and M. Newman investigated conditions on A which made $K(A)$ doubly stochastic for the case $\chi \equiv 1$. In general, they found that A must be an r th root of unity times a permutation.

Theorem 3. Let H be a subgroup of S_{m}. Let χ be the principal character of H. Let n be a positive integer. Let $\Delta \subset \Gamma_{m, n}$ be the corresponding system of distinct representatives for the equivalence classes $(\bmod H)$. For each $\gamma \in \Delta$, let $d_{\gamma}=\left[H: H_{\gamma}\right]^{1 / 2}$. Let Y be the diagonal matrix indexed by Δ and with d_{γ} in the (γ, γ) position. If A is an n hy n row stochastic matrix, then

$$
\binom{m}{r}^{-1} Y^{-1} D_{r}(A) Y
$$

is row stochastic.

Proof. Let V be a real (or complex) inner product space of dimension n. Let $\mathscr{G}=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ be an ordered, orthonormal basis of V. Let T be the linear operator on V whose matrix representation, with respect to \mathscr{B}, is A. Then $T u=u$, where $u=e_{1}+e_{2}+\cdots+e_{n}$.

Let $\otimes^{m} V$ be the m th tensor power of V, and write $v_{1} \otimes v_{2} \otimes \ldots \otimes v_{m}$ for the decomposable tensor product of the indicated vectors. To each $\sigma \in S_{m}$, there corresponds a linear operator $P(\sigma)$ on $\otimes^{m} V$ such that

$$
P\left(\sigma^{-1}\right) v_{1} \otimes \cdots \otimes v_{m}=v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(m)}
$$

Define

$$
\Theta_{H}=\frac{1}{o(H)} \sum_{\sigma \in H} P(\sigma)
$$

Then Θ_{H} is an orthogonal projection (with respect to the induced inner product of $\otimes^{m} V$) onto its range $V_{1}(G)$. Define $v_{1} * v_{2} * \cdots * v_{m}=\Theta_{H}\left(v_{1} \otimes\right.$ $\left.v_{2} \otimes \cdots \otimes v_{m}\right)$, and write $e_{\gamma}^{*}=e_{\gamma(1)} * \cdots * e_{\gamma(m)}$. Then it is well known [4] that $\mathscr{F}=\left\{d_{\gamma} e_{\gamma}^{*}: \gamma \in \Delta\right\}$ is an orthonormal basis of $V_{1}(G)$. Define $D_{r}(T)$ on $V_{1}(G)$ by

$$
D_{r}(T) e_{\gamma}^{*}=\sum_{\omega \in Q_{r, m}} e_{\gamma(1)} * \cdots * T e_{\gamma \omega(1)} * \cdots * T e_{\gamma \omega(r)} * \cdots * e_{\gamma(m)},
$$

$\gamma \in \Delta$, and linear extension, where $Q_{r, m}$ is the set of strictly increasing functions from the first r to the first m positive integers. Then it turns out that

$$
D_{r}(T) v_{1} * \cdots * v_{m}=\sum_{\omega \in Q_{r, m}} v_{1} * \cdots * T v_{\omega(1)} * \cdots * T v_{\omega(r)} * \cdots * v_{m}
$$

for all $v_{1}, v_{2}, \ldots, v_{m} \in V$. Finally, the matrix representation of $D_{r}(T)$ with respect to F is $D_{r}(A)$ [8].

We next observe that

$$
\begin{aligned}
u * u * \cdots * u & =\left(\sum_{i=1}^{n} e_{i}\right) *\left(\sum_{i=1}^{n} e_{i}\right) * \cdots *\left(\sum_{i=1}^{n} e_{i}\right) \\
& =\sum_{\gamma \in \Gamma_{m, n}} e_{\gamma}^{*} \\
& =\sum_{\gamma \in \Delta} \frac{1}{\nu(\gamma)} \sum_{\sigma \in H} e_{\gamma \sigma}^{*} \\
& =\sum_{\gamma \in \Delta}\left[H: H_{\gamma}\right] e_{\gamma}^{*}
\end{aligned}
$$

since $e_{\gamma \sigma}^{*}=e_{\gamma}^{*}$ for all $\sigma \in H$. If S is the linear operator on $V_{1}(G)$ defined by $S e_{\gamma}^{*}=d_{\gamma} e_{\gamma}^{*}$, then the matrix representation of S with respect to \mathscr{F} is Y. Finally, observe

$$
\begin{aligned}
S^{-1} D_{r}(T) S\left(\sum_{\gamma \in \Delta} d_{\gamma} e_{\gamma}^{*}\right) & =S^{-1} D_{r}(T)\left(\sum_{\gamma \in \Delta}\left[H: H_{\gamma}\right] e_{\gamma}^{*}\right) \\
& =S^{-1} D_{r}(T)(u * u * \cdots * u) \\
& =S^{-1}\left(\sum_{\omega \in Q_{r, m}} u * \cdots * T u * \cdots * T u * \cdots * u\right) \\
& \left.=S^{-1}\left[\begin{array}{c}
m \\
r
\end{array}\right)(u * u * \cdots * u)\right] \\
& =\binom{m}{r}\left(\sum_{\gamma \in \Delta} d_{\gamma} e_{\gamma}^{*}\right)
\end{aligned}
$$

i.e., $S^{-1} D_{r}(T) S$ applied to the sum of the basis elements is $\binom{m}{r}$ times the sum of the basis elements. In other words, the row sums of $Y^{-1} D_{r}(A) Y$ are all equal to $\binom{m}{r}$. The result now follows from the definitions.

We remark that

$$
\binom{m}{r}^{-1} Y D_{r}(A) Y^{-1}
$$

is column stochastic for all column stochastic A.

5. A CLASS OF INDUCED DIGRAPHS

Let $G=[V, E]$ be a finite directed graph without multiple edges, with vertex set $V=\{1,2, \ldots, n\}$, and with edge set E. Let m be a positive integer, and let H be a subgroup of S_{m}. Let $\Delta \subseteq \Gamma_{m, n}$ be the corresponding system of distinct representations for the equivalence classes $(\bmod H)$. The H-induced $\operatorname{graph} G_{H}$ of G is the graph $\left[\Delta, E_{H}\right]$, where $(\alpha, \beta) \in E_{H}$ if and only if there is a $\tau \in H$ such that $\alpha \tau$ and β differ in exactly one place, say with a p in $\alpha \tau$ and a q in β, and $(p, q) \in E$.

Theorem 4. Let H be a subgroup of S_{m}. Let χ be the principal character of H. If A is an n by n matrix, then $G\left(D_{1}(A)\right)=(G(A))_{H}$.

Proof. This follows immediately from (2b), (2c), and the definitions.

Theorem 5. Let G be a finite directed graph without multiple edges. Let H be a subgroup of S_{m}. Then G is strongly connected if and only if G_{H} is strongly connected.

Proof. In view of Theorem 4, this is but a restatement of Theorem 2.

REFERENCES

1 M. Fiedler, Additive compound matrices and an inequality for eigenvalues of symmetric stochastic matrices, Czechoslovak Math. J. 24 (99):392-402 (1974).
2 M. Fiedler, Irreducibility of compound matrices, CMUC 20:737-743 (1979).
3 F. Harary, R. Z. Norman, and D. Cartwright, Structural Models, Wiley, New York, 1965.
4 M. Marcus, Finite Dimensional Multilinear Algebra, Part I, Marcel Dekker, New York, 1973.
5 M. Marcus, Finite Dimensional Multilinear Algebra, Part II, Marcel Dekker, New York, 1975.
6 M. Marcus and H. Minc, Permutations on symmetry classes, J. Algebra 5:59-71 (1967).

7 M. Marcus and M. Newman, Doubly stochastic associated matrices, Duke Math. J. 34:591-597 (1967).

8 R. Merris, A generalization of the associated transformation, Linear Algebra and Appl. 4:393-406 (1971).
9 R. Merris, The structure of higher degree symmetry classes of tensors II, Linear and Multilinear Algebra 6:171-178 (1978).

Received 16 August 1979; revised 7 March 1980

[^0]: *The research of the second author was supported in part by NSF grant MCS 77-28437. The article was written while he was a NAS/CSAV Exchange Scientist in Prague.

