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Abstract

I improve the counter-example of Lubinsky, and show that the counter-example of Buslaev is also relevant
to the original form of the Baker–Gammel–Wills conjecture. I notice that these counter-examples have only a
single spurious pole and that a patchwork of just two subsequences of diagonal Pad7e approximants provides
uniform convergence in compact subsets of |z|¡ 1. I 8nd that both counter-examples can be characterized
by the observation that they are associated with bounded J -matrices. I prove a number of results for the
convergence of diagonal Pad7e approximants to functions which have bounded J -matrices.
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1. Introduction and Summary

The study of Pad7e approximants [6] remained at a rather low level of activity until the second
half of the last century. A Pad7e approximant to a function f(z) which is de8ned by a power series
at the origin is de8ned by the equations,

QM (z)f(z) − PL(z) = o(zL+M ); QM (0) = 1; (1.1)

where QM (z) and PL(z) are polynomials of degrees at most M and L, respectively. The notation for
such a Pad7e approximant is

[L=M ] =
PL(z)
QM (z)

: (1.2)
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I think that the principal reason for the low level of activity was that the computation, aside from
those results which could be obtained analytically, involved the numerical solution of sets of fre-
quently ill-conditioned, linear equations, a rather tedious task. With the advent of even primitive
digital computers, the tedium was handled by machine computation and enough approximants could
be computed to begin a numerical exploration of their convergence properties. Much to the surprise
of the early explorers, the convergence was very much better than was expected, based on expe-
rience with Taylor series. It was found that the diagonal sequences M ≈ L tended to be the best
converged, for the number of terms of the series used. However, it was soon noticed that in many
cases there were “defects” in the approximants. By a defect, is meant that there are a pole and a
zero close together. They only eIect the value of the approximant over a very small region of the
complex plane. In the cases studied, these defects only occur occasionally and these features lead
Baker, Gammel, and Wills to propose the conjecture [5].

Conjecture 1.1. If P(z) is a power series representing a function which is regular for |z|6 1,
except for m poles within this circle and except for z= +1, at which point the function is assumed
continuous when only points |z|6 1 are considered, then at least a subsequence of the [N=N ] Pad;e
approximants converge uniformly to the function (as N tends to in<nity) in the domain formed by
removing the interiors of small circles with centers at these poles.

Over time, many diIerent versions of this conjecture were proposed and studied. I quote a second
version given by Baker [2].

Conjecture 1.2. If P(z) is a power series which is meromorphic in |z|¡ 1 and continuous on the
sphere [See De<nition (3.1) below] in |z|6 1, then at least a subsequence of the [M=M ] Pad;e
approximants is equicontinuous on the sphere in |z|6 1.

By Theorem 3.3, this conjecture implies that at least a subsequence of the [M=M ] Pad7e approxi-
mants converge uniformly on the sphere to f(z).

A weaker version of this conjecture was proposed by Stahl [26].

Conjecture 1.3. Let the function f be algebraic and meromorphic in the unit disc D. Then there
exists an in<nite subsequence N ∈N such that

[n=n](z) → f(z) as n→ ∞; n∈N (1.3)

holds true locally uniformly for z ∈D \ {poles of f}.

From the point of view of workers who are trying to evaluate function values by means of Pad7e
approximants, the sum and substance of these conjectures has been to interpret them to mean, “just
disregard the approximants with defects and use the rest of them and you will be OK.”

After 40 years of study by a number of workers, Lubinsky [19] produced a counter-example
to Conjecture 1.2. Shortly thereafter, and apparently motivated by the work of Lubinsky, Bus-
laev [10,11] produced an algebraic counter-example to Conjectures 1.2 and 1.3. As I explain in
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Section 2, his counter-example can straightforwardly be converted into a counter-example to Con-
jecture 1.1 as well.

In this paper I examine the structural properties of the counter examples. Both of them are con-
structed from functions which are particularly simply described by continued fractions. In particular
they can both be cast into the form of associated continued fractions [18]. These continued fractions
can be derived from Wall’s J -matrix formulation [28], and both correspond to the J -matrices being
bounded operators.

The counter-examples also have the property that there exist two 8xed subsequences of the diagonal
Pad7e approximant such that for any point z in |z|6 1, not a singular point, that one or the other of
these two sequences converges strongly to the function value f(z). In this paper I raise the question
as to how general this type of property is.

In the Section 2, I discuss Buslaev’s [10] counter-example. I locate all the branch points and
poles of his function. I 8nd that the contradictions to the conjectures occur due to the presence of
a single rotating defect. I remind the reader of Nuttall’s conjecture on the possible limitation of the
number of spurious poles, and GonNcar’s theorem on the convergence of diagonal Pad7e approximants
in regions where there are only a 8nite number of spurious poles.

In Section 3, I discuss Lubinsky’s [19] counter-example. By discussing it in the context of the con-
vergence on the Riemann sphere, I am able to show that a contradiction to Conjecture 1.2 occurs at
a distance from the origin of less than 1

3 rather than his original result of a distance of less than 0.46.
In Section 4, I discuss the Pad7e approximation to functions which correspond to bounded J -matrices.

I show that the whole sequence converges if the J -matrix is a compact operator. If the J -matrix,
which is always a symmetric, tri-diagonal in8nite matrix, has a subsequence of oI diagonal elements
which tend to zero, then there exists a subsequence of diagonal Pad7e approximants which converge
except at singular points. If no such subsequence of oI diagonal elements exits, I prove, subject to
certain assumptions on the number of poles and zeros of the approximants, uniform convergence
of a patchwork of a 8nite number of subsequences of Pad7e approximants. A transfer-matrix type
recursion relation is given for the Pad7e polynomials in terms of the coeOcients of the associated
continued fraction.

2. Buslaev’s counter-example

Inspired by the work of Lubinsky [19], which I shall discuss in the next section, Buslaev [10]
discovered an algebraic counter-example to the Pad7e (Baker–Gammel–Wills) conjecture [5]. His
example is given by the periodic continued fraction (an associated continued fraction),

f(z) =
z=3

1 − !2z +

!z2=9
1 − !z +

!2z2=9
1 − z +

z2=9
1 − !2z +

· · · ; (2.1)

where !=− 1
2 +

√
3i=2 is a cube root of unity, and !2 =!∗ =!−1. I denote the complex conjugate

of ! by !∗. By use of the standard methods [18] he is able to sum this continued fraction to give

f(z) =
−27 + 6z2 + 3(9 + !)z3 +

√
81[3 − (3 + !)z3]2 + 4z6

2z[9 + 9z + (9 + !)z2]
: (2.2)
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The analytical properties of this function are as follows. As there is a square root of a sixth-order
polynomial, there are six square root type branch points. They are

z3 =
3

3 + !± 2i=9
;

z1 ≈ 1:0227140 − 0:14084275i; z2 = !z1; z3 = !2z1;

z4 ≈ 1:0476385 − 0:088224985i; z5 = !z4; z6 = !2z4: (2.3)

The absolute values of these branch points are

|z1| = |z2| = |z3| ≈ 1:0323665; |z4| = |z5| = |z6| ≈ 1:0513468; (2.4)

so all the branch points are outside the unit circle. Of further interest are the zeros of the quadratic
denominator polynomial. They are

r1 ≈ −0:55280095 − 0:82813567i; |r1| ≈ 0:99568951;

r2 ≈ −0:49514431 + 0:93490595i; |r2| ≈ 1:0579306: (2.5)

We see that r1 does lie in the unit circle, but direct evaluation of the numerator in (2.2) shows that
this is an ordinary point and not a pole. However, r2 is a pole, and !r2 ≈ −0:56208014−0:89626050i
is a zero, owing to cancellation in the numerator of (2.1). !2r2 turns out to be an ordinary point.
Thus, on the 8rst Riemann sheet, f(z) is holomorphic for |z|6 1.

On the second Riemann sheet, f(z) analytically continues to

f̃(z) =
−27 + 6z2 + 3(9 + !)z3 −

√
81[3 − (3 + !)z3]2 + 4z6

2z[9 + 9z + (9 + !)z2]
: (2.6)

In this case, there is the relation,

f̃(z) ≡ −9 − 9(1 + !)z − (1 − 8!)z2

[9 + 9z + (9 + !)z2]f(z)
; (2.7)

which can be derived by multiplying (2.2) by (2.6). It is important to notice that r1 is a pole of
f(z) inside |z|6 1 on the second sheet.

The main result of Buslaev is that

[3n+ j − 1=3n+ j − 1](!jr1) = f̃(!jr1) �= f(!jr1) (2.8)

for all n¿ 1 and j = 0, 1, 2. This result provides a direct counter-example to Conjecture 1.2 and
as f(z) is algebraic, it also provides a counter-example to Conjecture 1.3. It is well known [6] that
the diagonal Pad7e approximants are invariant under linear fractional transformations of the argument
which leave the origin 8xed. That is to say that the [n=n](w) Pad7e approximant to g[aw=(1 + bw)]
is the Pad7e approximant to g(z) evaluated at z = aw=(1 + bw). In order to investigate Conjecture
1.1, I need z1 �→ 1 in such a way that the maps of z2; : : : ; z6 all lie out side the unit circle while
r1; !r1 and !2r1 remain inside the unit circle. By the numerical results quoted above, the mapping
w=1:001(z=z1)=[1+0:001(z=z1)] will accomplish this transformation. Thus I will satisfy the conditions
of Conjecture 1.1 and hence I have derived from Buslaev’s counter-example a counter-example to
Conjecture 1.1 as well!
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Fig. 1. A plot of the poles and zeros of the [29=29] Pad7e approximant to f(z) from (2.2) in the region of one of the
three branch cuts. The point labeled “defect” has both a pole and a zero which are at the same location to within plotting
accuracy. This location corresponds to the point at which Buslaev found that there is convergence to the wrong value for
the [3n− 1=3n− 1] sequence. It is to be noticed that most of the poles and zeros lie neatly along the branch cut predicted
by Stahl’s convergence theorem.

The function f(z) belongs to the class of functions to which Stahl’s [27] convergence theorem
applies. For this case, if I take the set S consisting of the three straight lines, z−1

1 z−1
4 , z−1

2 z−1
5 ,

z−1
1 z−1

4 , in the w = 1=z plane, then the diagonal Pad7e approximants converge uniformly on compact
subsets of RC\S except for a set of capacity 0. Hence it must be that these “bad” points lie in defects.
A defect necessarily has a very close pole-zero pair which causes a large Suctuation from the value
of the approximated function. The occurrence of a pole is required as there is a theorem [6] which
shows that if the approximants are uniformly bounded, then the Pad7e approximants must converge.
By the just quoted theorem of Stahl this disruption must tend to a set of capacity 0 as n → ∞.
Thus there must also be a zero to cancel the eIects of the pole and they must get arbitrarily close
to each other as n→ ∞. I illustrate the behavior of a typical Pad7e approximant to f(z) in Fig. 1.
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There are some points worth mentioning. First, there is never more than one spurious pole. This
result is in line with Nuttall’s conjecture ([21, p. 305] as phrased by Stahl [26]) which states that

Conjecture 2.1. Let the function f be algebraic and have no branch point at the origin. Then there
exists a <nite upper bound for the number of spurious poles (in the sense of total order) which
each [n=n] (diagonal) Pad;e approximant may have, n= 1; 2; : : : :

Stahl [26] adds the remark that in most cases the upper bound is equal to the genus of the
Riemann surface of the function. In the case of Buslaev’s example, the genus of the surface is 2 so
this conjecture and Stahl’s remark are valid in this case. The second point is that the defect moves
around among three locations. Thus, by patching them together I 8nd that at most two subsequences
are suOcient to provide convergence uniformly in any compact subset of the unit disk for Buslaev’s
example.

In addition I mention a theorem of GonNcar [15], which relates to the case where the number of
poles is uniformly bounded for the whole sequence of diagonal Pad7e approximants.

Theorem 2.2. Let D be a domain which satis<es the condition @D ⊂ @D̃ where D̃ is the comple-
ment in the extended complex plane of the convex hull of D, and @ denotes the boundary. Further
let E be a relatively closed subset of D of capacity 0. Let �= D \ E be a domain containing the
origin as an element, and suppose that the number of poles of the [n=n] Pad;e approximant in any
compact subset K ⊂ � is uniformly bounded in n by �(K)¡∞. Further, if the [n=n] Pad;e ap-
proximants converge to a holomorphic function in a neighborhood of the origin, then the diagonal
Pad;e approximants converge uniformly on compact subsets to a function which is meromorphic in
� and holomorphic at the origin, except for a possible set of Hausdorf measure 0. If �(K) = 0,
then the convergence is uniform on compact subsets of �.

3. Lubinsky’s counter-example

Lubinsky [19] was the 8rst to produce a counter-example to the Pad7e (Baker–Gammel–Wills)
Conjecture 1.2 [2]. He has considered a special case of the Rogers–Ramanujan continued fraction.
It is de8ned by the continued fraction (a regular C-fraction),

Hq(z) = 1 +
c1z
1 +

c2z
1 +

c3z
1 +

· · · ; (3.1)

where cj = qj. This function may be re-expressed in terms of the Rogers–Ramanujan function,

Gq(z) =
∞∑
j=0

qj
2

(1 − q)(1 − q2) · · · (1 − qj)
zj: (3.2)

The formula is

Hq(z) =
Gq(z)
Gq(qz)

: (3.3)
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Since I am concerned with diagonal sequences of Pad7e approximants, it is worthwhile to convert
(3.1) into the associated continued fraction. As the general relation is

F(z) = b0 +
a1z
1 +

a2z
1 +

a3z
1 +

· · ·

= b0 +
a1z

1 + a2z −
a2a3z2

1 + (a3 + a4)z −
a4a5z2

1 + (a5 + a6)z − · · · ; (3.4)

we may rewrite (3.1) as

Hq(z) = 1 +
qz

1 + q2z −
q5z2

1 + (1 + q−1)q4z −
q9z2

1 + (1 + q−1)q6z − · · ·

−
q4p+1z2

1 + (1 + q−1)q2p+2z − · · · : (3.5)

The speci8c example chosen by Lubinsky has the |q| = 1 where q is given by

q= exp(2!i"); "=
2

99 +
√

5
: (3.6)

The diagonal Pad7e approximants are invariant under linear fractional transformations of the value [6],
that is to say, the diagonal Pad7e approximant to the linear fractional transformation of a function
is the linear fractional transformation of the Pad7e approximant. It is worthwhile at this point to
discuss the Riemann sphere. The idea is to construct a sphere whose equator is the unit circle of
the complex plane. Then every point on the plane can be mapped in a one-to-one manner onto the
sphere by connecting that point by a line to the north (upper) pole of the sphere. That way the
origin is mapped into the south pole, the unit circle into itself, and the point at in8nity into the
north pole. The distance between two points on the sphere is just the length of the chord. In terms
of the original points in the plane, the chordal metric is

D2(z1; z2) ≡ 4|z1 − z2|2
|1 + z∗1 z2|2 + |z1 − z2|2 =

4|z−1
1 − z−1

2 |2
|1 + (z∗1 )−1z−1

2 |2 + |z−1
1 − z−1

2 |2 : (3.7)

The maximum distance (between z1 =0 and z2 =∞, for example) is 2. The group of linear fractional
transformations is equivalent to the group [2] of 2× 2 matrices where the composition of two linear
fractional transformations corresponds to standard matrix multiplication.

z′ =
Bz + A
Dz + C

⇔
(
B A

D C

)
: (3.8)

Since the multiplication of A; B; C; D by a constant factor leaves z′ unchanged, and since when
the determinant of the matrix equals zero, z′= a constant is an uninteresting case, I consider only
transformations for which BC−AD=1. These transformations can be decomposed into scale changes
and unitary transformations (and compositions thereof). Any unitary transformation corresponds to
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a rotation of the sphere and vice versa. The relevant matrix is(
b a

−a∗ b∗

)
|a|2 + |b|2 = 1: (3.9)

Each Pad7e approximant is clearly a meromorphic function in the whole complex plane (including
the point at in8nity). It is therefore continuous in terms of the chordal metric (3.7). An important
concept is that of equicontinuity.

De$nition 3.1. A sequence of functions {fn(z)} all de8ned in a closed region R is equicontinuous
on the sphere on R, if for each z0 in R and each '¿ 0 there exists a ) depending on z0 and ', but
independent of n, such that

D(fn(z); fn(z0))¡'; |z − z0|¡); (3.10)

where z is in R and D is as given in (3.7).

The Riemann sphere is a compact set so for each particular value of z there is always a subse-
quence Pad7e approximants which tends to a limit. However more than this is required to establish
convergence to a function. The following relations between equicontinuity and convergence have
been proven [6].

Theorem 3.2. If Pn(z) is any sequence of meromorphic functions which converges uniformly on the
sphere in some closed region R to some limit f(z), then the limit is a meromorphic function in
the interior of R and continuous on the sphere in R, and {Pn(z)} is uniformly equicontinuous on
the sphere in R.

Theorem 3.3. If Pn(z) is any in<nite sequence of meromorphic functions which is uniformly equicon-
tinuous on the sphere over a closed region R, then at least a subsequence of the Pn(z) converges
uniformly on the sphere to a limit f(z) continuous on the sphere in R and meromorphic in the
interior of R.

Lubinsky [19] has proven,

Theorem 3.4. Let q be given by (3.6). Then Hq(z) is meromorphic in the unit ball and analytic
at 0. There does not exist any subsequence of {[n=n]}∞n=1 that converges uniformly in all compact
subsets of

A := {z | |z|¡*}; *= 0:46; (3.11)

omitting poles of Hq(z).

There are several parts to the proof of this theorem. If gj are the coeOcients of the Maclaurin
series expansion of a regular C-fraction and we de8ne

+n = det(g1+i+j)n−1
i; j=0; (3.12)
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then, as is well known [28],

+n = cn1

n−1∏
j=1

(c2jc2j+1)n−j: (3.13)

Since, for Hq(z) |cj| = 1 ∀j, we have at once that |+n| = 1 ∀n. There is a result of Polya ([22] or
more accessible [14]) which gives an upper bound on the radius of meromorphy, ,. It is

lim sup
n→∞

|+n|1=n2
6 ,−1; (3.14)

which gives us directly that ,6 1. Worpitzky’s theorem [18], applied to (3.1) gives us a lower
bound so that we have 1

4 6 ,6 1. By an examination of the radius of convergence of the series of
Gq(z) (3.2) through the use a remarkable identity of Hardy and Littlewood [16] and the Cauchy–
Hadamard formula for the radius of convergence, Lubinsky [19] has improved the lower bound on
, to unity for his choice of q. Thus follows the conclusion that Hq(z) is meromorphic in |z|¡ 1.
He has also proved that Hq(z) has a natural boundary on the unit circle.

Having established that Hq(z) is meromorphic in the unit circle, and thus a potential candidate
for a counter-example to the Pad7e conjecture, we next need to show that there does not exist a
subsequence of the [n=n] Pad7e approximants which is free of any defects inside the unit circle. The
cornerstone of this eIort is Hirschhorn’s [17] explicit result for the numerator and the denominator
polynomials Pn(z) and Qn(z), respectively, of the [n=n] Pad7e approximants. They are

Pn(z) =
n∑
k=0

zkqk
2

[
2n+ 1 − k

k

]
;

Qn(z) =
n∑
k=0

zkqk(k+1)

[
2n− k

k

]
(3.15)

for irrational ", where,[
.

l

]
=

(1 − q.)(1 − q.−1) · · · (1 − q.−l+1)
(1 − q)(1 − q2) · · · (1 − ql)

; l¿ 0; .∈C: (3.16)

First Lubinsky proved

Theorem 3.5. Let q and " be given by (3.6). There must exist a set T of integers such that for
any |0| = 1,

lim
n→∞; n∈T

q2n = 0: (3.17)

Then uniformly on compact subsets of {z | |z|¡ 1}
lim
n→∞
n∈T

Pn(z) = Gq[(0qz)∗]∗Gq(z); (3.18)

lim
n→∞
n∈T

Qn(z) = Gq[(0qz)∗]∗Gq(qz); (3.19)
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and

lim
n→∞
n∈T

Hq(z) − (Pn(z)=Qn(z))
z2n+1q(n+1)(2n+1) =

Gq(0q2z)
Gq(qz)2Gq[(0qz)∗]∗

; (3.20)

uniformly in compact subsets of {z | |z|¡ 1} omitting zeros of Gq[(0qz)∗]∗ and Gq(qz).

From this theorem, we 8nd immediately that

Corollary 3.6. For " irrational and T and 0 as given in Theorem 3.5

lim
n→∞
n∈T

D(Hq(z); [n=n](z)) = 0 (3.21)

uniformly on compact subsets of {z | |z|¡ 1} \ {z |Gq[(0qz)∗] = 0}.

That is to say, we obtain convergence on the sphere away from the defects made apparent by
Lubinsky’s results (3.18) and (3.19). Corollary 3.6, by using convergence on the sphere, gives us,
for this case, a slight improvement over GonNcar’s general Theorem 2.2. That theorem applies here
if we choose D = {z | |z|¡ 1} and proves the convergence of Lubinsky’s counter-example, outside
an exceptional set. Stahl’s [27] theorem does not apply because of the natural boundary on the unit
circle.

Lubinsky [19] further points out that the extra pole-zero pairs in the limit of large n are just
rotations and reSections of the poles of Hq(z). The poles and zeros, by (3.18) and (3.19), with
0 replaced by q2n as is allowed in the large n limit, tend as n → ∞ to the same location. Since
D(∞; 0) = 2 it is not possible to give an '¿ 0 and a )¿ 0 at such a point. It cannot be that the
pole and zero cancel identically because Hq(z) is a regular C-fraction. This fact can be seen from
the two-term Pad7e approximant identities [6],

Q(0)
M (z)P(0)

M+1(z) − Q(0)
M+1(z)P(0)

M (z) = z2M+1
2M+1∏
j=1

cj �= 0; (3.22)

where the superscript (0) is the degree of the numerator polynomial minus the degree of the denom-
inator polynomial. The normalization here is de8ned by Q(0)

M (0) = 1:0. We have, by the converse of
Theorem 3.2, that convergence must fail at such a point. Thus we have,

Corollary 3.7. The entire sequence [n=n], in the limit of large n, fails to be equicontinuous in any
closed neighborhood of a point where Gq[(q2n+1z)∗] = 0. Hence there is no uniform convergence
in any compact subset containing one of these points. In particular, we can exclude uniform
convergence in compact subsets of {z | |z|¡r} where r is any number greater than the smallest
|ẑ| where Gq(ẑ) = 0.

There is one special case of this corollary which is worthy of mention. It may be that, for a
suitable choice of 0, (0qz)∗ = qz, where z is the location of the pole which is closest to the origin.
In this case the spurious pole would converge to the same location as a real pole. However, the
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accompanying spurious zero, by (3.22), can neither be at the same point as the true pole of Hq(z)
nor at the same point as the spurious pole. In this case, it is the spurious zero, tending to the
same location as two poles that causes the loss of equi-continuity, and hence the failure of uniform
convergence on the sphere. The situation may be clearer if one thinks of 1=Hq(z) where there is a
pole (and a zero) approaching an ordinary zero.

We will see directly that this corollary improves the value of * in Theorem 3.4 when we use
convergence on the sphere and do not omit the poles of Hq(z).

The 8nal step in the proof of Theorem 3.4, is to demonstrate the existence of a ẑ such that
|ẑ|¡ 1. Since we have already seen that the radius of convergence of Gq(z) is unity for our choice
of q, we may proceed as Lubinsky did and 8nd ẑ numerically. The numerical results which I
report were computed using the Brent multi-precision arithmetic package [9]. I have solved for the
roots using Laguerre’s method as expounded in Press et al. [24]. I have retained a minimum of
58 decimal places. In searching for the roots, I use a more stringent criterion than that given in
that book. I should obtain an accuracy of about 12 decimal places, according to the authors. I 8nd
ẑ1 ≈ −0:3305614689253 − 0:130714239903i which yields |ẑ1| ≈ 0:33239517265.

Hence by Corollary 3.7 we can improve Theorem 3.4 by the choice *= 1
3 instead of the original

choice *= 0:46.
There are, in fact, an in8nite number of ẑk interior to the unit circle, but only a 8nite number in

|z|6 r ¡ 1. For example ẑ2 ≈ −0:2837288258318−0:2929172277400i with |ẑ2| ≈ 0:4078020952801.
It is interesting to see the structure of the poles and defects of the diagonal Pad7e approximants. I
illustrate this behavior in Figs. 2–4. It appears that each [n=n] approximant produces poles which
are just rotations by a factor of q−2 of the poles found in the [n− 1=n− 1] on the circles |z| = |ẑi|.
This observation is in accord with Theorem 3.4.

Hence we can conclude that in addition to the subsequence n∈T, that if we also use the sub-
sequence n + 1, n∈T, then, as the “bad” points are rotated relative to the other sequence, we
can patch the two subsequences together appropriately and thereby obtain uniform convergence in
compact subsets of the unit disk, |z|¡ 1.

I remark that there are also a number of poles outside the unit circle. In the approximants I have
computed so far I see 8ve such poles which are circling at radii of about 1.27, 2.12, 4.18, 16.8, and
105. It may be that the Pad7e approximants will converge outside the natural boundary on the unit
circle [13].

4. Bounded J -matrix

I observe that both Buslaev’s [10] and Lubinsky’s [19] counter-examples can be given as associated
continued fractions of the general form

F(z) = B0 + A0z

(
1

1 + B1z −
A2

1z
2

1 + B2z −
A2

2z
2

1 + B3z − · · ·
)
: (4.1)

It is of interest to investigate what can be said about this class of functions. I can associate Wall’s
J -matrix with this continued fraction. First let us introduce the elements ej where j = 1; 2; 3; : : :
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Fig. 2. A plot of the poles of the [N=N ] Pad7e approximants for N = 16; : : : ; 25 to the Rogers–Ramanujan function for the
value of q given in (3.6). The poles with positive imaginary parts are real poles and those with negative imaginary parts
are defects. The eye can easily pick out the path of convergence as N increases. The 8rst nine real poles are converged
by N = 25 to within graphical accuracy.

and (ei; ej) = 1 if i = j, and zero otherwise. In terms of this representation the J -matrix is

J =




B1 −A1 0 0 0 · · ·
−A1 B2 −A2 0 0 · · ·

0 −A2 B3 −A3 0 · · ·
0 0 −A3 B4 −A4 · · ·
...

...
...

...
...

. . .



: (4.2)

By its structure, J = J1 + iJ2 where J1 and J2 are real and self-adjoint. It is known [28,3] that if
the element f satis8es the equation

f = e1 − zJf ; (4.3)
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Fig. 3. A plot of the poles and the zeros of the [25=25] Pad7e approximant to the Rogers–Ramanujan function for the value
of q given in (3.6). As the poles are denoted by triangles and the zeros by up-side down triangles, the defects appear as
six pointed stars. Only the 8rst nine sets of poles and zeros and the 8rst nine defects are plotted.

and if z is not a singular point of (4.3), then the value of the continued fraction F(z) can be
expressed as

F(z) = B0 + A0z(e1; (I + zJ)−1e1): (4.4)

I now wish to consider the space spanned by the elements, J j−1e1. In general this leads to non-
orthogonal projection operators [3]. However, owing to the special circumstance that J is tri-diagonal,
I can show by induction that the projection operator on subspace spanned by J j−1e1 for j=1; 2; : : : N
is just the N × N diagonal unit matrix. For example Je1 = B1e1 − A1e2. The only unit vector in
the space spanned by e1; Je1 which is orthogonal to e1 is just e2. This argument carries through by
induction. I de8ne the orthonormal projection operator PN to project the 8rst N states. If the element
fN satis8es the equation,

fN = e1 − zPNJPN fN ; (4.5)
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Fig. 4. A plot of the poles of the [25=25] Pad7e approximant to the Rogers–Ramanujan function for the value of q given
in (3.6). This 8gure illustrates the fact that the poles form a clockwise spiral moving outward towards the unit circle,
with only a 8nite number inside each disk |z|6 r ¡ 1. The ninth pole is at a distance of about 0.9036 from the origin.
The poles which are part of the defects form a counter-clockwise spiral which is a reSected rotated version of the real
poles.

then

[N=N ]F(z) = B0 + A0z(e1; fN ); (4.6)

provided z is not a singular point of (4.5).
Next I observe that in both counter-examples, that the corresponding J -matrix is bounded in the

sense that [20]

max
i

∑
j

|Ji; j|6B¡∞; max
j

∑
i

|Ji; j|6B¡∞: (4.7)

For Buslaev’s example, we may choose B= 5
3 by (2.1), and for Lubinsky’s example we may choose

B= 2 + |1 + q−1| by (3.5). These results mean that there are no singular points in either Eqs. (4.3)
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or (4.5) for |z|¡ 0:6 in Buslaev’s example and for |z|¡ 1=(2 + |1 + q−1|) in Lubinsky’s example.
This latter result was also obtained by Lubinsky [19] by “standard methods.” Wall’s theorem ([28,
26.3]) proves convergence of the entire diagonal sequence for |z|¡ 1=B. As both of these examples
are bounded, we shall con8ne our attention in this section to the case of bounded J -matrices. Note
is taken that if in (4.1) any of the Aj = 0, then the J -matrix splits into (at least) two square blocks
and this corresponds to the truncation of the associated continued fraction. Hence we have only a
rational fraction and convergence questions do not arise. (It may happen that the truncated continued
fraction is not equivalent to the power series. This case corresponds to a non-normal Pad7e table and
is not suitable for the present formalism. I will not discuss it here.)

First let us consider the case where J is a compact operator, that is to say, for every sequence of
elements cm with the property ‖cm‖ ≡ (cm; cm)1=26C, then the sequence of elements Jcm contains
a convergent subsequence gm which converges in the sense ‖gj − gk‖ → 0 as j and k go to in8nity.
From the general theory [25] of (4.3) for a compact operator, we know that there are only a 8nite, or
denumerably in8nite number of singular values of z for which (4.3) fails to have a unique, bounded
solution. These singular values have no limit point in the 8nite z plane.

It is clear that neither of the counter-examples have compact J -matrices, but if |q|¡ 1 in Lubin-
sky’s example, we would have such an example. The convergence in this case is, of course, covered
by a known theorem [18, Theorem 4.55] as in form (3.1) the limn→∞ cn = 0. However, there are
cases where such is not the case. For example, suppose the sequence of the ci, i = 1; 2; 3; : : :, is
1, 1, 1, −1, 1

4 , − 1
4 , 2, −2, 1

9 , − 1
9 , 3, −3, : : : . This sequence leads to the associated continued

fraction,

z
1 + z −

z2

1 +

z2=4
1 +

z2=2
1 +

2z2=9
1 +

z2=3
1 +

· · · ; (4.8)

For this continued fraction, lim supn→∞ cn = ∞, however the limit as n→ ∞ of the An of (4.1) is
zero and all the Bn for n¿ 1 are also zero. From these results, it is straightforward to show that in
this case that the J -matrix is a compact operator. Thus the case where limn→∞ cn = 0 is a special
case of the following theorem for a compact J -matrix.

Theorem 4.1. If the J -matrix (4.2) is a compact operator, then the [N=N ] Pad;e approximants
converge to F(z) (4.4), provided z is not a singular point of the equation (4.3).

Proof. Subtract (4.5) from (4.3) and rearrange the result.

f − fN = −zJ(f − fN ) − z(I − PN )Jf N − zPNJ(I − PN )fN : (4.9)

The last term on the right hand side is identically zero. If ‖ fN‖ is uniformly bounded for all N ,
then the next to the last term on the right hand side tends to zero as N → ∞ because J is compact.
To see this result, consider the sequence cm = em. Then gm = Jcm = −Am−1em−1 + Bmem − Amem+1.
If one assumes that there is a subsequence for which the A’s and B’s do not tend to zero, then the
de8nition of a compact operator implies there exists a sub-subsequence which converges. However
the convergence of the gm’s and perpendicularity of the em’s imply that those A’s and B’s tend to
zero, which is a contradiction. Thus as J is a tri-diagonal, compact operator, the An’s and Bn’s tend
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to zero as n → ∞. Therefore limN→∞ ‖(I − PN )J‖ = 0. Since z is assumed not to be a singular
point of (4.3), by the uniqueness of the solution of the equation

d = 0 − zJd ; (4.10)

we can conclude that

lim
N→∞ ‖ f − fN‖ = 0 ⇒ lim

N→∞ (e1; fN ) = (e1; f )

⇒ lim
N→∞ [N=N ]F(z) = F(z) (4.11)

by (4.6).
Suppose there is a subsequence of the N ’s for which ‖ fN‖ is not uniformly bounded. Then for

this sequence de8ne dN = fN =‖ fN‖. Then ‖dN‖ ≡ 1. Eq. (4.5) becomes

dN =
e1

‖ fN‖ − zJdN + z(I − PN )JdN : (4.12)

As ‖ fN‖ goes to in8nity, the 8rst term on the right-hand side of (4.12) goes to zero. Since J
is compact, the last term on the right-hand side also goes to zero and hence the equation re-
duces to (4.10) in the limit as N → ∞. This situation implies limN→∞ dN = 0 which is a con-
tradiction as ‖dN‖ = 1. Therefore there do not exist in8nite subsequences of divergent norm when
z is not a singular point of (4.3) and the conclusion of the theorem follows by the preceding
arguments.

Another case is the one where although J is bounded but not compact, and there is a subse-
quence of the An of (4.1) which tends to zero as n→ ∞. I summarize the results in the following
theorem.

Theorem 4.2. Let the J -matrix (4.2) be bounded and let there be a subsequence T of N ’s such
that limN→∞

N∈T
AN = 0. Then there is at least a subsequence of [N=N ] Pad;e approximants which

converges to F(z) (4.4) provided z is not a singular point of Eq. (4.3).

Proof. The proof of this theorem is very similar to that of Theorem 4.1. First assume that the
sequence of fN is uniformly bounded. I now need to estimate the size of the middle term on the
right-hand side in (4.9). We may compute it directly as

− z(I − PN )Jf N = zANeN+1(eN ; fN ): (4.13)

Since ‖ fN‖ is uniformly bounded, the same is true of |(eN ; fN )|. As AN , N ∈T goes to zero, Eq.
(4.9) again reduces to (4.10). Thus as z is not a singular point of (4.3), by the uniqueness of the
solution of that equation, we can again conclude convergence in this case.
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To establish the boundedness just used, I note that in this case, Eq. (4.12) becomes

dN =
e1 − zANeN+1(eN ; fN )

‖ fN‖ − zJdN (4.14)

which again reduces to (4.10) for N ∈T and leads to a contradiction to the existence of an in8nite
sequence with a divergent norm. Hence we conclude that the sequence [N=N ] of Pad7e approximants
where N ∈T converges to F(z) provided that z is not a singular point of Eq. (4.3).

The alternative case to Theorem 4.2 is the case where there is no subsequence for which |AN | tends
to zero as N → ∞. The following results focus on the observations that in the two counter-examples,
there are a 8nite number of defects (spurious pole-zero pairs) and as they move around, we can patch
two subsequences together to obtain uniform convergence. Nuttall’s conjecture is also a motivating
factor for these results, as it also pertains to limiting the number of defects as well.

Lemma 4.3. Let the J -matrix (4.2) be bounded and further assume that |An|¿ b¿ 0, ∀n. It cannot
be that if zM;j is a pole of the [M=M ] to F(z) of (4.1), that it is also a pole of the [M + 1=M + 1].
Likewise, it cannot be that if ẑM; j is a zero of the [M=M ] that it is also a zero of the [M+1=M+1].

Proof. Let us re-express (3.22) in terms of the coeOcients of the associated continued fraction.
It is

Q(0)
M (z)P(0)

M+1(z) − Q(0)
M+1(z)P(0)

M (z) = z2M+1a1

M∏
j=1

A2
j ; (4.15)

Since the right-hand side of (4.15) is just z2M+1a1
∏M

j=1 A
2
j with a magnitude¿ z2M+1b2M �= 0, the

movement of the poles and zeros follows directly.

In assessing the magnitudes of the polynomials in (4.15) it is worthwhile to note the following
recursion relation,(

S(0)
N+2(z)

S(0)
N+1(z)

)

=

(
(1 + BN+1z)(1 + BN+2z) − A2

N+1z
2 −(1 + BN+2z)A2

N z
2

1 + BN+1z −A2
N z

2

)(
S(0)
N (z)

S(0)
N−1(z)

)
; (4.16)

which can be derived in a straightforward manner from the standard recursion relations for the
approximants to continued fractions. The notation is as in (4.1) and S(0)

N (z)= rQ(0)
N (z)+ sP(0)

N (z) with
r and s arbitrary. The equation for the eigenvalues of the transfer matrix in (4.16) is

32 − [(1 + BN+1z)(1 + BN+2z) − z2(A2
N + A2

N+1)]3+ A2
nA

2
N+1z

4 = 0: (4.17)

Note that the absolute value of the geometric mean of the solutions of (4.17) is just |ANAN+1z2| so
that a characteristic size for SN (z) might be taken to be something like zN

∏N
j=1 Aj, which if used
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in the left-hand side of (4.15) gives a result which is not dissimilar in size to the right-hand side.
As an example, when z is small, 3+ = 1 + O(z) and 3− = O(z4).

Although not mentioned explicitly in the GonNcar’s Theorem 2.2, it is evident from his proof that
the exceptional set of possible non-convergence is associated with neighborhoods of the poles of
the diagonal approximants. By applying his theorem to the reciprocal function (remember that the
diagonal Pad7e approximant to the reciprocal function is the reciprocal of the Pad7e approximant) we
obtain convergence on the sphere at the actual poles of the function. Since the Hausdorf measure
of the exceptional set is zero, there must be a zero which tends to each spurious pole and so the
intersection of the exceptional set for the function and for its reciprocal will contain (shrinking in
size as N → ∞) neighborhoods of all the spurious poles, and nothing else. Thus given a compact
set K there will be at most only a 8nite number �(K) of spurious poles under the assumptions
of GonNcar’s Theorem 2.2. In spite of Lemma 4.3, in the case of a real pole the motion of the
corresponding pole in successive approximants is very small and the poles of the approximants tend
to limit points.

This situation however is diIerent in the case of the spurious poles in the counter-examples. They
move signi8cantly from one diagonal approximant to the next. This feature has been commonly
observed in a wide variety of other cases as well. Suppose we have an isolated, spurious pole. If
we evaluate (4.15) at zM;j, a spurious zero of Q(0)

M (z), we get

Q(0)
M+1(zM;j)P

(0)
M (zM;j) = −z2M+1

M;j

M∏
j=1

A2
j : (4.18)

Its magnitude is ¿ z2M+1
M;j b2M �= 0. Now as we have just seen, since P(0)

M (z) must have a zero near

by, both P(0)
M (zM;j) and the residue at a spurious pole are very small. Eq. (4.18) thus implies that

Q(0)
M+1(zM;j) is not at all small, as the right-hand side is bounded from below, and hence Q(0)

M+1(z)
does not have a nearby zero. The comparison “very small” is relative to its size for a real pole. In
the case of a real pole, the zero of Q(0)

M+1(z) does not move much. It is this ratio of sizes which is
what forces the zero of Q(0)

M+1(z) away from zM;j.
The above argument indicates the plausibility of the idea that for the entire sequence of diagonal

Pad7e approximants isolated, spurious poles do not have a single limit point, but is not yet a proof.

Theorem 4.4. Let the J -matrix (4.2) be bounded and further assume that |An|¿b¿0, ∀n. Let Nz
be any point in an open, simply connected region R of the extended complex plane which is
bounded by a simple closed curve. Let R contain the origin and be in the domain of meromorphy
of F(z) (4.4). Further let Nz not be a limit point of spurious poles of the entire sequence of the
[k=k] Pad;e approximants. Let the number of poles and zeros nk(d) of [k=k] more distant on the
sphere than any d¿ 0 from the boundary of R satisfy

lim
k→∞

nk(d)=k = 0: (4.19)

Then there exists at least a subsequence of [k=k]( Nz) Pad;e approximants which converge on the
sphere to F( Nz).

Note, condition (4.19) insures that R avoids the branch cuts, natural boundariers and essential
singularities of F(z). One of the other consequences of condition (4.19) is to allow the construction
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of a path in order to prove analytic continuation from the origin to Nz so as to insure that the
convergence is in fact to F( Nz) and not, for example, to F( Nz) on a diIerent Riemann sheet.

Proof. As the J -matrix is in8nite and bounded, all the [k=k] Pad7e approximants exist. If R is not
already that size we may enlarge it to include all |z|¡ 1=B. Select T, a closed set, consisting of
|z|6 0¡ 1=B and the point Nz. In this set there are no poles nor limit points of poles as the J -matrix
is bounded by B and by hypothesis Nz is not a limit point of poles of the entire [k=k] sequence. Select
d so that no point in T is closer than d to the boundary of R. If, as k → ∞ the neighborhood
of Nz is free of spurious poles, then by Baker’s theorem [2, Theorem 12.5]; [4] the entire sequence
converges uniformly on the sphere in T. If on the other hand there are spurious poles in some of
the diagonal Pad7e approximants at or near Nz, we are guaranteed by the assumptions of the theorem
that there exists a subsequence for which there is a neighborhood of Nz which is free from spurious
poles and again by Baker’s theorem we get uniform convergence on the sphere in T.

Theorem 4.5. Let the J -matrix (4.2) be bounded and further assume that |An|¿ b¿ 0; ∀n. Let K
be any simply connected, compact set containing the origin as an element but not containing any
element of a set E of capacity zero. Let the number of poles of [n=n] in K be bounded uniformly
in n by �(K)¡∞. Further assume that, for the entire sequence of [n=n] Pad;e approximants,
none of the spurious poles have only a single limit point in K. Then by use of at most �(K) + 1
subsequences, we can obtain uniform convergence in K.

Note that the restriction on the number of poles means that the set K avoids branch cuts and
natural boundariers of F(z). Essential singularities can be incorporated in the set E as was done by
Pommerenke [23].

Proof. First, by GonNcar’s theorem 2.2, there is convergence everywhere in K except for a set of
Hausdorf measure 0 in the neighborhoods of the spurious poles. If there are no spurious poles, the
entire sequence of [n=n] Pad7e approximants converges in K by Theorem 2.2. I con8ne the rest of
the proof to the case where there are spurious poles. More precisely, it is the union of �(K), '=n5

neighborhoods for all n¿N0 for appropriately chosen '; 5, and N0 as detailed in GonNcar’s proof.
Since the number of poles in K is bounded, the number of spurious poles is bounded a fortiori.
Suppose the number is unity. Since K is compact, there exists a subsequence for which this spurious
pole tends to a limit. By the assumption on the lack of a limit point for the whole sequence, there
must exist another subsequence which converges in the neighborhood of that limit point. Thus by
patching together the two subsequences, we may obtain uniform convergence in K. Since we are
dealing with a bounded J -matrix, any in8nite subsequence converges in |z|¡ 1=B. Suppose that
there are two spurious poles. First we 8nd a subsequence which has a limit point of one of the
spurious poles. From this in8nite subsequence we may choose a sub-subsequence for which the
second pole also converges to a limit point. We may now choose another subsequence for which
the value converges in a neighborhood of at the 8rst limit point of spurious poles. It may happen
(plausibly does) that it also converges at the second limit point of poles. If not we may select a
third subsequence which does converge there. Thus by patching the three subsequences together,
we obtain uniform convergence in K. By continuing the argument in the same way we obtain by
induction that there exist at most �(K) + 1 subsequences which can be patched together to provide
uniform convergence in K.
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I remark that both Buslaev’s and Lubinsky’s counter-examples satisfy the conditions of this
theorem.

The above results point to two open questions:

(1) Can it be proven for the class of functions which correspond to bounded J -matrices with
|AN |¿ b¿ 0 ∀N , that there are only a 8nite number of spurious poles in any compact set
inside the domain of meromorphy, excluding branch cuts, natural boundariers and essential
singularities?

(2) Can it be shown for the same class of functions that in the [n+ 1=n+ 1] approximants there are
no spurious poles in the neighborhoods of the isolated, spurious poles of the [n=n] approximants?

One of the referees has brought to my attention that there is an alternate approach to the material
of this section [1,7,12], which is reviewed in [8]. This approach applies spectral analysis to the issues.
Some of the fundamental ideas are: (i) To use in the resolvent set of the matrix the exponential decay,
with the distance away from the principal diagonal, of the matrix elements of the inverse of a tridiag-
onal matrix to bound the product of the Pad7e denominator polynomials times the residues of the linear
Pad7e equations. (ii) To analyze the behavior of Q(0)

M (z)=Q(0)
M+1(z) = (eM+1; (I + zPM+1JPM+1)−1eM+1)

by means of its chordal derivative with respect to z. The results of this section and the answers to
the open questions have been partly obtain by that approach.

The author is happy to acknowledge helpful correspondence with Professors D.S. Lubinsky, V.I.
Buslaev, and J.L. Gammel.
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