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Abstract 

In this paper, we study tight criteria of c5,dlfig Hilbert valued processes and prove the tightness 
of Hilbert valued square integrable martingales and Hilbert valued semimartingales by using their 
characteristics. These extend appropriate results of Jacod and Shiryaev (1987). We also discuss 
the property of Hilbert valued martingale measure and introduce the concept of convergence 
of martingale measures in distribution. The sufficient and necessary conditions are provided lbr 
strongly orthogonal martingale measures with independent increments. The conditions are given 
for convergence of martingale measures. 

Key~ords: Hilbert valued semimartingale;  Limit theorem; Martingale measures;  The Skorokhod 
topology; Tightness  

O. Introduction 

The tight criteria of  c~dlfig Hilbert valued processes has been discussed by Joffe and 

M6tivier (1986) and M6tivier and Nakao (1987). But it is difficult to apply this tight 

criteria to prove the tightness o f  c~dlag Hilbert valued semimartingales by using their 

characteristics as Jacod and Shiryaev (1987). This problem will be solved in this paper. 

Another purpose of  this paper is to study the weak convergence of  integrable Hilbert 

valued martingale measures in distribution which is a sort o f  organic combination of  

weak convergence o f  vector random measures (Thang, 1991) and weak convergence 
of  Hilbert valued martingales in distribution. 

In Section 1, we will review the property of  Hilbert valued semimartingale and de- 
fine characteristics o f  Hilbert valued semimartingale and study the principal property 

of  Hilbert valued semimartingales. In Section 2, we will study martingale measures 
and the relationship of  martingale measure with independent increments and its char- 

acteristics. In Section 3, we will discuss the property of  Skorokhod space D(H) which 
is the space o f  all c~dl~g function: R+ -~ H,  where H is a real separable Hilbert 
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space. We obtain the sufficient and necessary conditions for subsets of D(H)  being 
relatively compact (Theorem 3.2). It extends Theorem VI-3.21 of  Jocad and Shiryaev 
to infinite dimension space. As Jocad and Shiryaev (1987), we will give tightness of  
sequences of  cfidl~g Hilbert valued locally square integrable martingales (Theorem 3.6). 
In Theorem 3.7, we will give the sufficient and necessary conditions for tightness of 
cfidl/lg Hilbert valued semimartingales which is the extension of  Theorem VI-4.18 of 
Jacod and Shiryaev on Hilbert space. In Section 4, we will discuss the convergence 
of Hilbert valued semimartingales as Jacod and Shiryaev: (i) convergence of semi- 
martingales with independent increments; (ii) convergence to a semimartingale with 
independent increments. These extend the appropriate results of Jacod and Shiryaev. In 
the end, we will define and study the convergence of integrable Hilbert valued mar- 
tingale measures in distribution. The general theorems are given for convergence of  
martingale measures in distribution. As the discussion in convergence of semimartin- 
gales, we also study the following cases: (i) convergence of martingale measures with 
independent increments; (ii) convergence to a martingale measure with independent 
increments. 

1. Preliminaries 

Let H be a real separable Hilbert space with scalar product x- y and norm [1 • I1. In 
this paper, stochastic processes with values in H are studied. 

Let {en},>~j be an orthonormal basis of H.  Put H + I H  = {y : y = ~i.j2ijei ® 
ej,[[y[[l = ~i , i  [2ij [< oo}, then H + I H  is a Banach space with the norm [1-[IJ. It 
is said to be the nuclear space of  H,  which is included in the Hilbert-Schmidt tensor 
product H ~ 2 H  = {y " Y = Ei,j  Aijei®ej , "  ~-~w,j Zij'2 < OC}. The space H@zH is a Hilbert 

space with {el ®ej}i,j>~l as an orthonormal basis and norm [[Y[12 - - (~ i , j ; t~ )  1/2. The 

injection from H 6 1 H  into H 6 2 H  is continuous. We assume once and for all the 
stochastic basis ( f2 ,~ ,o~t ,P)  is given and o~o~ = Vt~>0o~t. 

Let M be a H-valued square integrable martingale, then [[M[[ 2 is a non-negative 
submartingale. By Doob-Meyer  decomposition theorem, there exists a predictable, in- 
creasing process, denoted by (M)((M)o = 0) such that [[M[[ 2 -  (M) is a real martingale. 
Also there exists a finite variation process, denoted by [M], which is uniquely defined 
up to P-equality with the following properties: 

(i) [[M[[ 2 - [M] is a martingale; 
(ii) (M) is the dual predictable projection of [M]; 

(iii) [M]t = (MC)t + Y~s~t [JAMs[[ 2, for all t>~0, where M c is the continuous mar- 
tingale part of M. 

Let M be a H-valued square integrable martingale. For every pair stopping times 
S, T(S <~ T), put 

COg (]S, T]) = E (l[Mr[I 2 - Ilgsll 2) = E (IIMr - Ms[[2), 

( ] s ,  r l )  = e ( M ?  - M 2  = e - 
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we have aM = Trltm. As Theorem 15.8 o f  M6tivier (1982), we may use Radon-  

Nikodym theorem for H 6 3 H - v a l u e d  measure to obtain the existence o f  a H+~H- 
valued predictable process QM, for every predictable G 

I~M(G) = f c  QMdctM. 

Moreover, QM takes values in the set o f  positive symmetric elements of  H@IH and 

TrQM(~,s) = I[QM(~o,s)ll , = 1, ~M-a.s. 

The process {(M))t = Jo QMd{M) is predictable with finite variation, admits PM as 
its Doleans measure, and M ®2 - {(M}) is a H + l H - v a l u e d  martingale. 

Also there exists a H@lH-va lued  chdlfig process, which is uniquely defined up to 

P-equality, denoted by ~M 1 and called the tensor quadratic variation o f  M with the 
following properties: 

(i) M @2 -~M 1 is a H + l H - v a l u e d  martingale, 
(ii) IM~ = {{MC}) + ~ < . ( A M s )  ®~" = IMCl + ~ . ( A M ~ )  ®~- P-a.s., 

the series on the right hand side are absolutely convergent in H@l H for all t~>0. 

Lemma 1.1. l f  a semimartingale X satisfies []AX[I ~<a, it is a special semimartingale 
and its canonical decomposition X = Xo + M + A satisfies IIAAII<~a and 

[IAmll <.2a. 

Definition 1.2. A map h : H  -~ H is called truncation if it is bounded, continuous, 

and that exist b > 0 and c > 0 such that h(x) = x when [[xl] ~<b and h(x) = 0 when 

IIx[[ > c. We denote by cg the class o f  all truncation functions. 

Let X be a H-valued semimartingale on ( ~ , J ~ , ~ , P ) .  For h E ~, A X -  h(AX) ~ 0 
only if [IAXI[ > b for some b > 0 and the following formulae 

£(h)  = ~ [ A X s  - h(~X~)], X(h) = X  - £ ( h )  (1.1) 

define a H-valued right continuous process )((h)  with finite variation and a H-valued 

semimartingale X(h). Since AX(h) = h(AX) is bounded, by Lemma 1.1, X(h) is a 

special and we consider its canonical decomposition 

X(h)  = Xo + M(h) + B(h). 

where M(h) is a local martingale and B(h) is a locally integrable, predictable process 

with finite variation. 

Definition 1.3. Let h E cg be fixed. We call characteristics o f  X (or characteristics 
associated with h if there is an ambiguity on h) the triplet (B,C, v) consisting of: 

(i) B is a H-valued predictably finite variation process B = B(h); 
(ii) C is a H@lH-va lued  continuous process and Ct - Cs takes values in the set 

o f  positive symmetric element o f  H 6 1 H  for every s < t, namely C - ({XC)), where 
X c is the continuous martingale part o f  X; 
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(iii) v is a predictable random measure on ,~+ x M ( H ) ,  namely the compensator of  
the random measure px  associated to the jumps of  X: 

pX(dt, dx) = Z l{~x~#0} e(s,~X,)(dt, dx) 
s > 0  

where e~(dx) is Dirac measure. 

We see that C and v do not depend on the choice o f  the function h, while B = B(h) 
does. 

Since AX(h) is bounded and so does AM(h), M(h) is a locally square integrable 
martingale. This implies that ({M(h))} exists. We denote by ~" = ((M(h))) ,  which is 

called modified second characteristics o f  X (associated to h). 

Theorem 1.4. Let X be a H-valued semimartingale with Xo = O. Then it is a pro- 
cess with independent increments i f  and only i f  there is a version (B, C, v) of  its 
characteristics that is deterministic. 

A H-va lued  semimartingale X is called locally square integrable if  it is a special 
semimartingale whose canonical decomposition X = X0 + N + A satisfies that N is a 
locally square integrable martingale. 

As the proof  of  Proposition I1-2.29 in Jacod and Shiryaev (1987), we have the 
following: 

Proposition 1.5. Let X be a semimartingale with characteristics (B, C, v) relative to 
the truncation h. 

(a) X is a special semimartingale i f  and only i f  ([]x[[ 2 A Ilx[[ ).v is locally integrable. 
In this case, the canonical decomposition X =- Xo + N + A satisfies 

A = B + ( x - h ( x ) ) . v ,  A A t : f H X V ( { t }  xdx). (1.2) 

(b) X is a locally square integrable semimartingale if  and only if IIx[[ 2 • v is locally 
integrable. In this case, the canonical decomposition X = X0 + N + A  satisfies (1.2) 
and 

( (N}}  = C + x®2 . v -  Z xv({s} × dx) 
s<~" 

= C + x  ®2 - v - :~-~(AAs) ®~'. (1.3) 

2. Definition and basic properties of Hilbert valued martingale measures 

Let E be a Lusin space, M ( E )  be the Borel a-field on E and J / / (E)  be the linear 
space formed by all H-va lued  measures with finite variation on ~ ' (E) .  We consider 
a H-va lued  set function U(ro, A) defined on f2 x ~1, where ~ '  is a subring of  .~ (E)  
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which satisfies: 

IIU(A)I[ 2 = E[IIU(A)II z] < oo, VA C ~¢, 

A N B = O  ~ U ( A ) + U ( B ) = U ( A U B )  a.s. VA,BG,~/ .  

We will say that the map U is a-finite when there exists an increasing sequence 

{E,},,>~I of  E such that: 

(1) U.E,, E, 

(31) sup{llU(A)ll2 :A E ~ . }  < oo. 
The set function U will be said countable additive if for each n, for each sequence 

{Ai}i~>l o f  4', decreasing to O, JlU(Aj)II2 tends to 0. Then it is easy to extend U by 
U ( A ) =  lira,, U(A N E,)  on every set of  ~ such that the limit exists in L2(EL,~,P) .  A 
set function which satisfies all these properties is called a a-finite L2-valued measure. 

Definition 2.1. Let (E2,,~-,,~-~,P) be a filtered probability space satisfying the "usual 

conditions", 

(1) {Mt(A),t ~>0,A C ~4} is said to be a H-valued ,~-martingale measure if: 

(i) Mo(A) = 0 for all A E ,~, 

(ii) {M~(A)},~>0 is a ~t-martingale for all A C ,4,  
(iii) M~( . ) :~ / - -*  L~ is a H-valued a-finite measure for all t > 0. 

(2) A H-valued martingale measure M is said to be orthogonal if, for any two disjoint 

sets A,B E ,~1, ( (M(A),M(B)))  = O. 
(3) A H-valued martingale measure M is said to be strongly orthogonal if, for any 

two disjoint sets A,B C ~¢, IM(A),M(B)I  = O. 

Definition 2.2. If  M is a H-valued martingale measure and if, for all A E ,~', the map 

t ~ M~(A) is continuous, we will say that M is continuous. If  the map t -~ Mr(A) is 
c~dl~g, we will say that M is c~dl~g. 

Definition 2.3. Let M and N be two H-valued :~t-martingale measures on Lusin spaces 
E and E ' ,  respectively. If  they satisfy: for all A ~ ,~/ and B E .~/',M(A) @ N(B) is a 

H@I H-valued ,~-martingale, then we will say that M and N are orthogonal. 

It is clear that we can associate each set A C ~ / w i t h  a predictable process QA which 
takes values in the set of  positive symmetric elements o f  H@IH and the increasing 

proc, ess (M(A)), such that ((M(A))) = Jo QAd(M(A)}. The processes can be regularized 
to be a H + l H - v a l u e d  measure on ~ +  x ,~  in the following case. 

Theorem 2.4. (a) I f  M is an orthogonal ~t  martingale measure, there exist ,~ pre- 
dictable, a-finite positive random measure v(ds, dx) on R+ x E and positive symmetric 
H~lH-va lued  process Q(s,x), ,~ × ,r/-measurable, such that for all A C ,;J, the pro- 

eesses (v([0, t] x A))t~>0 and fo fE Q(s,x)v(ds, dx) are predictable, and satisfy 

/o'L v([0, t] x A) = (M(A)},, Q(s,x)v(ds, dx) {(M(A)))t, P-a.s. 
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for all t > 0 and A E d ,  where ~ is the predictable a-field We denote (M) by v 
and ( (M) ) by ~. It is clear that v = TrY. 

(b) I f  M is a strongly orthooonal o~t-martingale measure, there exist random a- 
finite positive measure p(ds, dx) and a-finite positive symmetric H~lH-valued mea- 
sure fl(ds, dx), ~-optional, such that for all A E ~1, the processes (p([0, t ]  × A))t~> 0 

and (fl([0, t] × A ))~ ~ o are optional, and satisfy 

p([0, t] × A) = [M(A)] , ,  fl([0, t] × A) = IM(A)I,, P-a.s. 

for all t > 0 and A E ~1. Moreover, we have that v and ~ are predictable dual 
projection of It and -fi, respectively. We denote by [M] by p and IMI by -ft. 

Proof .  It is the same as the proof  of  Theorem 2.5 of  Walsh (1986). [] 

Definition 2.5. Let M be an orthogonal martingale measure with (M) -- v. M is said 

to be integrable if  Ev(R+ x E) < oo. M is said to be locally integrable if  there exist a 
sequence of  stopping times Tn Too  and a sequence of  compact  subsets {Kn}~> I which 
exhausts E such that Ev([O, Tn] x K, )  < ~ for all n~>l. 

In this paper, we only consider the following martingale measure M: for all t > 0, 
M({t}  × dx) is a random H-va lued  measure on ~ ( E ) .  Put M({t}  x A) -- MI(A) - 
Mt_(A), for all A E ~3(E). M({t}  x dx) is called the jump of  M at time t. Put 

cffdt, d y )  = Z l{M({s} ×ax)~O}e(s,M((s} ×dx))(dt, dy) .  
s > 0  

We will say that ~ is the random measure associated to the jumps of  M. In the 
following, we will assume that ~ is an integer-valued random measure and has dual 

predictable projection, denoted by ft. It is easy to compute for all f E Cb(R+ × E), g E 
Cf(H) (which is the set o f  g which is continuous on H and there exists a > 0 such 
that g(x )  = 0) ,  

fo fHg(x)'(ds, dx) = f L~e )g  ( f e f ( s , x ) y (dx ) )  ~(ds, dy), 

f fHO(x)2(ds, dx) = fo  ~ ( e ) g  ( J ;  f (s ,x)y(dx))  ~(ds, dy), (2.1) 

where 7 is the jump measure of  X ---- fo fe f(s,x)M(ds, dx) and 2 is the dual predictable 
projection of  7. 

We will say that (7, fl) is the characteristics o f  martingale measure M. 
In the following, we will study the properties o f  martingale measures with indepen- 

dent increments. 

Definition 2.6. Let M be an Yt-mart ingale  measure. 
(a) M is said to be with independent increments (in short MMII) ,  i f  for all O<~s<~t, 

the random measure Mt -Ms  is independent from a-field ~ s .  
(b) A time t>~0 is called a fixed time of  discontinuity for M ifP(M({t}  x dx) ~ O) 

> 0 .  
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Theorem 2.7. Let M be an orthogonal martingale measure. Then M is M M H  if" and 
only i f  there is" a version (~,[3) of  its characteristics that is deterministic. 

Proof.  (Necessity) Let M be an orthogonal martingale measure with independent in- 

crements. For every f E Cb(R+ × E), X = fo fE f ( s ,x )M(ds ,  dx) is a square integrable 
H-valued martingale with independent increments. Hence, by Theorem 1.4, we have 

(IXI) : fo ~ fZ(s,x)Q(s,x)v(ds, dx ), (2.2) 

is positive symmetric H + l H - v a l u e d  processes and deterministic. Under the basis (e, 

ej)i,j>~l, we obtain that the real processes fo fE  f2(s,x)Qij(s,x)v(ds'dx)i,J >~1 are de- 
terministic. The arbitrariness o f  f yields that Qii(s,x)v(ds, dx) is deterministic. Hence 

Q(s,x)v(ds, dx) is deterministic. By (2.1), we deduce that /~ is deterministic. 
(Sufficiency) Suppose that ((M)) and /J are deterministic. From (2.1) and (2.2), 

we have the characteristics of  X = fo f e f  (s,x)M(ds,dx) are deterministic for all 
f E Ch(R+ × E). Hence X is H-valued martingale with independent increments. This 

implies that M is a martingale measure with independent increments. 

Corollary 2.8. Let M be an orthogonal, continuous martingale measure. Then M is 

M M I I  i f  and only i f  ((M)) is" deterministic. 

Corollary 2.9. Let E = {al . . . . .  an} and let m I . . . . .  m n be n orthogonal square 01- 
tegrable, continuous H-valued martingales. Put Mr(A) = ~i"-i mi6a,(A)" Then M 
is M M H  if  and only i f  (m 1 . . . . .  m n) is a H"-valued martingale with independent 
increments. 

3. Tightness of a sequence of Hilbert valued semimartingales 

In this section, we will lay down the last cornerstone that is needed to derive func- 

tional limit theorem for Hilbert valued processes and study tight conditions of  Hilbert 

valued semimartingales. These extend appropriate results of  Jacod and Shiryaev (1987) 

and Joffe and M6tivier (1986) and Thang (1991). 

Let {en}n>~l be an orthonormal basis o f  H .  For any x ~ H ,  put x = ~k=txkek, if 
H~ maps H onto the finite dimensional space R" o f  vectors (xl . . . . .  x,)  

x , , (xl . . . .  ,x,) ,  (3.1) 

then there is a continuous mapping Vn of  R" into H ,  where 

n 

V~(xl . . . . .  x , )  = Z x k e k  (3.2) 
k = l  

and clearly I[x - V, o II,x[] ~ 0 when n -~ cxD, for all x E H.  

Definition 3.1. (a) We denote by D(H)  the space o f  all c~dlhg function ~ : R+ --~ H 
(it is called the Skorokhod space). 
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(b) If  ~ E D ( H ) ,  we denote by ~(t) the value o f  a at time t and by ~ ( t - )  its left- 

hand limit at time t (with 7 ( 0 - )  = 7(0) by convention), and Aa(t)  = a(t)  - ~ ( t - ) .  

For every a E D ( H ) ,  we define 

w(~;1) = sup l[7(s) - c¢(t)[[ 
s, tEl  

where I is an interval o f  R+; 

wu(7, O)---- sup{w(~ ; [ t , t  + 0]) : O<~t<~t + O<.N} ,  0 > 0 ,  N > 0 ,  

WIu(~,O) = inf{  m a x w ( ~ ; [ t i - , , t i ) )  : O = to < tl < . . .  < tr = N, 
i <~r 

!nf(ti - t i - ,  ) >10}. 

It is easy to prove the following theorem. 

Theorem 3.2. (a) There is a metrizable topology on D ( H ) ,  called the Skorokhod  

topology, f o r  which this space is Polish, and which is characterized as follows: a se- 

quence {a.}n~>l converges to ~ i f  and only i f  there is a sequence {2.}n~> l C A such that 

- II1  -- sup ] 2(s) - s ]---+ 0 n --+ oo, 
s 

s u p  II~° o , ~ . ( s )  - ,~(s) l l  ~ 0 n ~ oo ,  V N  > 0. 
s<~N 

(b) A subset A o f  D ( H )  is relatively compact under the Skorokhod  topology i f  

and only i f  the fol lowing conditions hold: 

(i) sup~cA SUPs~< N [l~(S)[[ < OO f o r  a / / N  > 0; 

(ii) limo-~o sup~e A w~v(~, 0) = 0 f o r  all N > 0; 
(iii) For every e > 0 ,N > 0, there exists  n E ~ ,  such that 

s u p  s u p  I [~ ( s )  - v .  o n . ~ ( s ) l l  ~<~. 
~EA s<~N 

Where A is the set o f  all continuous funct ion 2 : R +  --~ R+ that are strictly increasing, 
with 2(0) = 0 and 2(t) ~ eo as t ~ oo. 

Let X be a H-valued c~dlfig process, defined on a triple ( f2 , f f ,  P).  Then it may be 
considered as a random variable taking its values in the Polish space D ( H )  equipped 
with Skorokhod topology. 

Theorem 3.3. Let  X n be H-va lued  c/tdl3g process which is defined on some 

space (f2n, Y " , P " )  f o r  n>~ 1. The sequence {X"}n>~j is tight i f  and only i f  

(i) f o r  all N > 0,~ > O, there exist  no E t~ and K > 0 such that 

/> no ==~ P~ ( s u p  I[X~ n 11 > K'] n 
\ s~<N / 

(ii) f o r  all N > 0,~ > O,q > O, there are no C ~ and 0 > 0 such that 

n>~no ~ P"(WPN(X",O)>~q)<~e; 
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(iii) Jor all N > 0,~; > 0, q > 0, there are no, m E ~ such that 

, ,  no I>" ( s u p  fiX: - V., o n . X :  II 
\s<~N 

Proof.  It is the same as the proof  of  Theorem VI-3.21 of  Jacod and Shiryaev. F i 

X n Definition 3.4. A sequence { },>~l of  processes is called C-tight if it is tight and if 
all limit points o f  the sequence {Lf(X' )} , ,~  I are law of  continuous processes. 

L e m m a  3.5. Suppose that f o r  all n, q E ~ ,  we have a decomposition 

X" = U "q + V "q + W "q 

with (i) the sequences {u'q},>~ I are tight; 

(it) the sequences {v~q}n>~l are tight and there is a sequence {aq}q~ I o f  real 

numbers with limq~ooaq = 0 ,  lim,-~o~ P" (SUPs~< u IIAV~n, qI[ > aq) = 0  f o r  all N > 0; 
(iii) Jor all U > 0, ~ > 0, limq~o~ lim sup,_o~ P" (sup.~:~. I]w~qH > ~:) = O. 

Proof.  That {X '}  satisfies condition 3.3(i) is trivial. By inequality 

I I x "  - vm o n m x " l l  <~ I l u  °" - v,,, o n.,u"qll 
+ H v  nq - Vm o HmV"q]] + 2 Hw"ql l  

and the conditions ( i ) - ( i i i ) ,  we know that {X~},>~L satisfies condition 3.3(iii). As in 

.rX,, the proof  of  Lemma VI-3.32 of  Jacod and Shiryaev, we get that t ~,~>~ meets the 
condition 3.3(iii). [] 

Let X and Y be two increasing processes defined on the same stochastic basis. We 
say that X strongly majorizes Y, and we write Y ~< X, if  the process X - Y is itself 
increasing. 

The following theorem is the extension of  theorem VI-4.13 of  Jacod and Shiryaev 
on Hilbert space. 

Theorem 3.6. We suppose that X '~ - X ~ '  is a locally square integrable martingale on 

, ~n  ~n  ) f o r  each n. Then f o r  the sequence {X"},z>~l to be tight, it is ,~" = (~2, ,~- , ,~ t, P" 
sufficient that: 

(i) the sequence {X0~}~>~l is tight (in H ) ;  
(it) the sequence {((X'))},~> 1 is C-tight (in D ( H • , H ) ) .  

Proof. Put U nq = Vq o H u ( X ' ) ,  v 'q  = 0 and W "q = X - U "u. We have X = U"q + 

V Èq + W "q. By the Lenglart 's  inequality and the hypotheses, we get Lemma 3.5(iii) 
by using Theorem 3.3 for ((wnq)) .  Lemma VI-3.32 of  Jacod and Shiryaev implies the 
tightness of  {unq},,>.l. Hence, {X~},,>~l is tight by Lemma 3.5. 
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Theorem 3.7. Let {X"},>~ I be a sequence of  H-valued semimart&gales. For the se- 
quence {Xn},>~ to be tight it suffices that 

(i) the sequence {X0"},>~ t is tight (in H); 
(ii) for all N > 0,~ > 0, 

lim limsup P'(v ' ([O,N] x {llxll > a}) > e) = 0. (3.3) 
t/----+ o ~  n ~ o o  

(iii) for all N > 0,~ > 0, q > 0 and p E ~, there exist no, m E ~ with 

n>no ~ pn ( g p O ( i _  VmolIm)'vnN>jq) ~8. (3.4) 

(iv) each one of  the following sequences of  processes is C-tight: 
(1) {B"}.>,, 
(2) {dn}n>~, ' 

(3) {9p " v'},~>l for all p E ~. where 9p(X) = (p  I[x[[- 1)+A 1,I is the identical 
transformation on H. 

Moreover, (i)x(iii) are also necessary for tightness of  {Xn},>~t. 

Proof. (a) Let U nq, V nq and W "q be the same as in the proof of Theorem 3.6. From 
(1.l), we get X = X ( h ) + f ~ ( h )  for some truncation h. By using Theorem VI-4.8 of 
Jacod and Shiryaev, we deduce that {unq}n>.l is tight for all q>~ l. 

From Theorem 3.3 and Lenglart's inequality, the hypotheses imply, for any 6 > 0 
and N > 0, 

limsup pn (sup [iX(h) ' _ Vq oI-]qX(h)t[[ > 5~ lim ~ 0 (3.5) 
q ~ o o  n---~oo t t < ~ N  ) 

and by the definition and (3.4), we obtain 

lim limsup P" ~sup l lX(h ) t -  VqoHqX(h)t[I > 6}  
q--.--~oo n ~ o o  I . t<~N 

~< lim limsup P~ ~sup IIA(X, - VqotlqX, ll~a~ (3.6) 
q---* oo  n --* oo k t <~ N ) 

~< lim limsup P" {vn([0,N] × {llx - Vq o nqxl[ >~a}) > e} = 0 
q----* O~ t/----* (X3 

for all e > 0 and some a > 0. (3.5) and (3.6) yield that {w"q},>~l satisfies the 
condition 3.5(iii). Hence {X"},~>l is tight by Lemma 3.5. 

(b) Conversely, the proof of the conditions (i) and (ii) is the same as in the proof 
of Theorem V1-4.18 of Jacod and Shiryaev. 

Let 

At = Z 1{ IIAX:_ F,,,on,,(AX:)II >11/p}, 
s<~t 

~n 
A t = v n ([0,N] × { x -  I'm o IlmX : [IX-- Vn o Ilmx[[ >~ l /p}) .  
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Then ~]" is the compensator of  A n on .~n. So A n is L-dominated by ,4". Since 

and 

_ n ~ n  
gpO(1 V , . o H " ) . # ~  = Z ( p [ [ A X ~  - V"orlm(AX,n)ll- l)+A1 -< 

s<~l 

sup IIAX,5' - Vm o 1 7m (a X ~ , ) l l  ~<2 sup IIX~ - Vm o I/mXUII, 
s ~ t  s<~t 

the tightness of  {Xn},,>_l implies that 

287 

(3.7) 

lim limsup pn (,~ > e ) = 0  (3.8) 

for all ~ > 0 by 3.3(iii). From (3.7) and (3.8), we obtain 

lim limsup (gp o (1 - Vm o 17,.). I~'/ > e) = 0 
m ~ o ~ ,  n ~ o o  

for all +; > 0. Hence g p ( l - V m o l l m ) . V "  meets the condition (iii) 
it is L-dominated by gp o ( I -  Vm o 17m)'#~. [] 

because 

4. Convergence to semimartingale with independent increments 

In this section and Section 5, the setting is as follows: for every n ~> l, we consider a 
n ~ n  O ~ - n  n stochastic basis ~n = (f2 , ~  , ~ t , P  ) , E  n denotes the expectation with respect to pn. 

All sets, variables, processes, martingale measures, with the superscript n are defined 
on ~n ,  and the limit process, martingale measure are defined on stochastic basis ~ = 
(f2, J ,  +~,,, P) ,  usually without mentioning. 

As the proof  of  Lemma VII-3.20 of  Jacod and Shiryaev, we have the following 
lemma. 

Lemma 4.1. Let  X n and X be locally square integrable H-valued semimartingale.g 

with independent increments and suppose X has no f i xed  time o f  discontinuity. Sup- 

pose that X n = N n + A n and X = N + A are canonical decomposition. I f  X n ~ X .  

we have g • vn --+ g • v under Skorokhod  topology in D ( R )  for  all .q being continuous. 

bounded.['unction on H which is 0 around 0 and has a limit at infinity. 

Lemma 4.2. Assume that X n S>X and that fo r  each t > O, the sequence oJ 

random variables {SUps<,tllY~ll}n> , is uniformlyintegrable.  Then i f  f ln ( t )=  EnXF 

and [3(t) = EXt, we have fin ---+ 1~ under Skorokhod  topology in D ( H ) .  

Proof .  Put /7~(t) = E"(FlkXt"),flk(t) = E(FlkXt),k>>- 1, n~> 1. For all k~> l , X  n ' J ' ,X 
implies /~ ---+//k in D ( R  k) by Lemma VII-3.8 of  Jacod and Shiryaev. Hence /~ is the 
only possible limit point o f  the sequence {//n}n>l in D ( H ) .  Therefore it remains to 
prove that the sequence {fln}n>~l is relatively compact. In view of  Theorem 3.2(b), it 
is enough to prove that the set A = {/~n}n>l meets the conditions 3.2(b) ( i ) - ( i i i ) .  
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For any N > 0, e > 0 and 6 > 0, by Theorem 3.3, X" ~ , X  yields that there exist 
no, m E ~ such that 

P" ( s u p  I[X; - V m o l l m X : l  I > ~) < ~, F/~//O. (4.1) 
\ s ~ N  

Since 

sup sup [[fln(s)[[ ~< sup E" ( sup [IX/[[) < oe (4.2) 
n>~ls<~N n>~l s<~N 

and 

sup I[X~" - Vm o HmX[I 142 sup IIX:II, 
s<~N s<~N 

(4.3) 

we have that {fl.}.~>l meets the condition 3.2(b)(i) by (4.2) and 
{SUPs~N I IX:  - Vm 0 r/.,X:ll}.~ is uniformly integrable from {SUps~> N IIX:[I}.~ uni- 
formly integrable. Hence 

sup sup [ [ f t . ( s )  - Vm o l I m f l . ( s ) [ [  ~ sup E"(sup IIX: - vm o/~mY:[[) 
n~l s~N n~l s~N 

implies {fl.}.>~I meets the condition 3.2(b)(iii). 
Finally, by tim ~ fl,, (n ~ cxD) in D(R m) and {fl,},~>l meeting the condition 

Y2(b)(iii), we easily deduce that {fl,},>~l meets the condition 3.2(b)(ii). [] 

Theorem 4.3. Let X n and X be the same as in Lemma 4.1. I f  X n Y>X, [[ANn][ <~a 

for  all n>~ 1, and sup,(N"}t < cxz for  all t > 0, then we have the following: 
(i) A n ~ A under Skorokhod topoloyy in D(H);  

(ii) ((N")) ~ ((N)) under Skorokhod topology in D ( H + i H ) ;  
(iii) 9" v~ , y .  vt for  all t > O, 9 E C~(H) ,  where C+(H)  is the set o f  all 

continuous, bounded function 9 >~ 0 on H satisfyin9 that there are a > O, b > 0 (a < b) 

such that g(x) = 0 for  IIx[I ~a. Ilxll > b. 

Proof. We suppose that X" ,X. By Lemma 4.1, we have the condition (iii). Since 
sup, Var(((N")))t < ~ for all t > 0, by using Lemma VII-3.34 of  Jacod and Shiryaev, 
we obtain 

SUPn f \s<.t(suPllN'nll4) ~ sup]fgla2n - [E( (g : )2 ) ] l / 2"~ -g2E( (gn )2 t ) )  ~ oQ, 

where Ki, 1<2 are constants, and the sequence {SUps~< t IIN~'IIP).~ is uniformly inte- 
grable if p < 4. As in the proof of  Theorem VII-3.13 of Jacod and Shiryaev, we 
deduce that the sequence {sups~< , IlXs"ll}.>, is uniformly integrable. 

Note A~' = EnXtn,At = EXt ,X n >X, and X" and X are H-valued semimartingales 
with independent increments, Lemma 4.2 yields that A" ---+ A under the Skorokhod 
topology in D(H) ,  that is, {X"} meets (i). 

Finally, since X has no fixed time of discontinuity and A is continuous, X" ~e >X and 

AnS~+A yield N" Y,N. This implies (Nn) ®2 5°,N®2. Hence we have ((Nn)) ~ ((N)) 
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under Skorokhod topology in D ( H @ I H )  by Lemma 4.2. That is, {X n} meets the 

condition (ii). [] 

Theorem 4.4. Let X ~ and X be locally square integrable H-valued semimartingales 

and let X be with independent increments and without f i xed  time o f  discontinuity. 

Suppose that {X n } satisfies 

lim limsup pn ([Ixll2i{llxll>~}. v7 > q) = o, vt>~o, r/ > 0. (4.4) 

Then we have X n - ~ X  i f  the following conditions hold. 

(i) sups~< t HAs n -As.I] P ,O for  all t>~0; 

(ii) sups~t ll((Nn)).~ - ( ( N ) ) s H l ~ O  Jbr all t~>0; 

,n e , g  v t f o r  a l l t  > O, g ~ C ~ ( H ) .  (iii) .q'~t 

Proof.  Since X has no fixed time of  discontinuity, A and ((N)) are continuous by (1.2) 
and (1.3). The hypotheses (i) and (ii) yield that {A n} and {((Nn))}n>~ are C-tight. 
g. v is increasing, continuous function on R+ for every g ~ C ~ ( H ) ,  the hypothesis (iii) 

implies g .  v n ~g. v. Hence {g" vn}n>~l is C-tight. So {Xn}n~>l meets the condition 
3.7(iv). Because ofX~ ~ = 0, it is clear that 3.7(i) is met. For all N > 0, e > 0, there 
is a E Q+ such that ga" VN<<-v([O,N] × {]lxll > l /a})  ~<c,, we have by the condition 
(iii) 

pn(vn([O,N] x {llxl[ > 2/a})  > 2e) <~P"(ll,q, "~,,~'- ga" v?vl] > s) -~ o. 

That is, 3.7(ii) is met. For every g E C ~ ( H ) ,  there are a > 0, b > 0 such that 
,q(x) = 0 for llxll<~a and g<.b, then 

g o ( l - -  Vrn o fflm). YN 

~bv([O,N]  x {x - Vm o Flmx " Ilx - Vm o Flmxll >~a}) ---+ 0. m -~ oo. 

Hence 

P"(g o (I - V~ o Ilm)" V~v > 2e) 

~<Pn(llg o ( I  - V~.oF/~) vnu - y o ( 1 -  V~o n~)  . v,¥11 > ~) 

+pn(g o (I - Vm o F/m)" v,v > s) 

X" implies that the condition 3.7(iii) is met by the condition (iii). Therefore { },,~>~ is 
tight by Theorem 3.7. 

From Theorem VIII-2.18 of  Jacod and Shiryaev, we obtain that l lmX n ' l lmX on 
[0, T] for all m ~> 1 and T > 0. Hence X is the only possible limit for the sequence 

{X"}. This means X n ~ , X .  [] 

Corollary 4.5. Let X n and X be the same as in Lemma 4.1. Assume that 

lira limsupllxl[2I(llxll>a} • v7 = O, vt  > 0 
a ~ ° °  n ~ o o  

Then we have the conditions 4.3(i)-(iii). 

(4.5) 
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5. Convergence of integrable H-valued martingale measures 

In this section, we only study integrable H-valued martingale measures. For sim- 
plicity, we still call them martingale measures. 

Definition 5.1. Let M" and M be martingale measures. We say that M n converges to 
L 

M in distribution and write M" ~M if for every f E Cb(R+ × E), 

Theorem 5.2. Let M" and M be ortho#onal martingale measures, (M ~) = v" and (M) 
V, 

(i) Suppose 

lim limsup Pn(vn([O,N] × E)  > a) = 0, VN > 0, (5.1) 
a ----~ o o  n _.._~ o o 

for all sequence {Al ..... Ak } o f  v-continuous disjoint sets. 

Then we have M ~ L ,M. 

(ii) Let M ~ L , M and 

lira limsup P'(v'(Am) > e ) =  O, V~ > 0 (5.3) 
m ~ ° °  n---*  o o  

for all sequence {Am}m~l o f  closed v-continuous set's such that l i m m ~  v(Am) = O, 
we have 

for all v-continuous set A C R+ × E. 

Proof. It is the same as the proof of  Theorem 2.4 of  Xie (1994). [] 

Remark. This theorem is an extension of  Theorem 3.2 of  Thang. 

Corollary 5.3. Let M n and M be strongly orthogonal martingale measures with in- 
dependent increments and M be continuous. I f  (5.2) is replaced by the condition that 
for all v-continuous set A 

/o; Z; iA(s,x)M,(ds, dx) z 1A(s,x)M(ds, dx), (5.4) 
J E  J E  

the conclusion o f  Theorem 5.2(i) remains true. 
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Proof .  Let {Ai}~k be a sequence of  v-continuous disjoint sets. From (5.4) we have 

.X ni = IAMn(ds, dx) ~ IAM(ds, dx) = X i, 1 <~i<~k. (5.5) 

Since M is continuous martingale measures with independent increments, we know 
that X i (i<.k) are continuous square integrable independent H-va lued  martingales. 
(5.5) implies that {X~},~>~ is C-tight for all i<~k. Hence, {X" = (X "~, x " k ~  

" ' ' '  J l n > ~ l  

is C-tight. Suppose Y is limit point o f  {X~}. By Skorokhod's  theorem, there ex- 
ists a subsequence {X nj} of  {X ~} such that X "~ ~ Y, a.s. under Skorokhod topol- 

ogy on D(Hk). Since M ~ and M are strongly orthogonal martingale measures with 
independent increments, we have that X",1,...,X ",k and X I .... ,X  k are independent, 
respectively. X 'hi ---+ X i, a.s. implies ~ ( Y )  = ,of(X). This implies that (5.2) 

holds. 

Let v", v E , .# (E)  be random measures on ,~(E) ,  we say that v" converges to v in 

distribution and write v" ~v if for any f ~ CK(E), fE f (  x)v~(dx) ~+ fE f(x)v(dx).  

Theorem 5.4. Let M" and M be H-valued orthogonal martingale measures. ( (M~) ) = 
V", ((M)) = ~, and let fl" and fl be the dual predictable projections of random 
measures associated to the jumps of M" and M, respectively. Suppose that M is 
strongly orthogonal and has no fixed time of  discontinuity and MMII, and fi, r all 
t > 0, 3 > 0, f E Cb(R+ x E) ,  

a---* o c  n ~ o ~  ( E )  

l{llLl,s,x)v~a~,ll>a}ll"(ds, dy) > •} =0. (5.6) 

Then we have M ' ~ M  if  the following conditions hold: 

(i) V " ~ V ;  

(ii) for all f E Cb(~+ x E),g C C~(H) , t  > 0, 

fo' f~,~e g (~ f(s,x)y(dx)) l~(ds, dy) 

P~ f' fj/(E)g(~ f(s,x)y(dx)) ~(ds, dy). 

Proof .  Since M is MMII,  we know that ~ and fi are deterministic by Theorem 2.7. 
For f E Cb(R+ x E) ,  we put 

Then X" and X are H-va lued  square integrable martingales, and X has no fixed time 
of  discontinuity and with independent increments. Let 2n and 2 be the dual predictable 
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projections of  the random measures associated to the jumps of  X" and X, respectively. 

For all g • C+(H),  we have g'2~' e , g . 2 t  for all t > 0 by the condition (ii) and 
(2.1). The condition (i) yields 

/0/ ((Xn)) -= f2(s,x)~n(ds, dx) ~-~ f2(s,x)~(ds, dx) = ((X)). 
d E  

(5.6) implies that X n satisfies (4.4). Hence X n f , X  by using Theorem 4.4. The arbi- 
L 

trariness of f implies M n )M. D 

Corollary 5.5. Let M ~ and M be strongly orthogonal MMH and let M have no fixed 
time of  discontinuity. Let ~n, ~, fin and fi be the same as in Theorem 5.4. Suppose 

t 2 

lim limsup fl / / /  f e f ( s , x )y (dx )  
a---* oc n---~ oo dO ( E ) 

I{ i}L.f(s.~)y(a~,ll >.} fln( ds, dy) = O, 

(5.8) 

~M if the following conditions hold, L for all t > O, f C Cb(~+ x E). we have M" 
(i) ~" ~,~; 

(ii) for all t > O,g E C+(H) , f  • Cb(R+ × E), 

fo' ///(E) g ( f e f ( s , x ) y (dx ) )  fln(ds, dy) 

' f '  L(E)a (fef(s,x)y(ax)) ~(ds, d~). 
Proof. The proof is exactly as in Theorem 5.4, one has only to replace Theorem 4.4 
by Corollary 4.5. [] 

Theorem 5.6. Let M" and M be the same as in above theorem. Suppose I M~({ s} x 

E) [ <~b,s>>.O,n>~ 1,b is a constant. Then M ~ L )M if and only if  the condition 5.5(i) 
and (ii) hold. 

Proof. We only prove necessity. Suppose M"c--~M. For any f C Cb(R+ x E), let 
X ~ and X be the same as in the proof of Theorem 5.4. Then X" and X are square 
integrable H-valued martingales with independent increments and X has no fixed time 
of discontinuity. From the hypotheses, there is a > 0 such that ]]AX"II <~a for n>~l 
and sup,(Xn)~ < oc for all t > 0, By Theorem 4.3, we have 

(a) ((X~)) , ((X)) for Skorokhod topology in D ( H ~ j H ) ;  
(b) 9 . , t ,  , 9 -  2t for all t > 0, g E Cff(H). 
This means that fofE f2(s,x)v~(ds, dx) s-~ fo fe f2(s,x)v(ds,dx) and 

~ot L ( e ) g  ( f e f ( s ' x ) y ( d x ) )  fl "(ds,dy) 

' f '  f~,(E)g (~ f(s,x)y(dx)) /3(ds, dy). 
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By f and  ,q b e i n g  arbi t rary ,  we  d e d u c e  tha t  5 .5 ( i )  and  ( i i )  hold.  (3 
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