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Abstract

In this study, we prepared different shapes of gold nanoparticles by seed-mediated growth method and applied
them on the photoelectrodes of dye-sensitized solar cells (DSSCs) to study the surface plasma resonant (SPR) effect
of gold nanoparticles on the photoelectrodes of dye-sensitized solar cells. The analyses of field emission scanning
electron microscopy show that the average diameter of the spherical gold nanoparticles is 45 nm, the average
length and width of the short gold nanorods were 55 and 22 nm, respectively, and the average length and width
of the long gold nanorods were 55 and 14 nm, respectively. The aspect ratio of the short and long gold nanorods
was about 2.5 and 4, respectively. The results of ultraviolet–visible absorption spectra show that the absorption
wavelength is about 540 nm for spherical gold nanoparticles, and the absorption of the gold nanorods reveals two
peaks. One is about 510 to 520 nm, and the other is about 670 and 710 nm for the short and long gold nanorods,
respectively. The best conversion efficiency of the dye-sensitized solar cells with spherical gold nanoparticles and
short and long gold nanorods added in is 6.77%, 7.08%, and 7.29%, respectively, and is higher than that of the cells
without gold nanoparticles, which is 6.21%. This result indicates that the effect of gold nanoparticles on the
photoelectrodes can increase the conductivity and reduce the recombination of charges in the photoelectrodes,
resulting in the increase of conversion efficiency for DSSCs. In addition, the long gold nanorods have stronger SPR
effect than the spherical gold nanoparticles and short gold nanorods at long wavelength. This may be the reason
for the higher conversion efficiency of DSSCs with long gold nanorods than those of the cells with spherical gold
nanoparticles and short gold nanorods.
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Background
Recently, a new type of solar cell based on dye-sensitized
nanocrystalline titanium dioxide has been developed by
O'Regan and Grätzel [1]. The most attractive features of
this technology are reduced production costs and ease of
manufacture. Dye-sensitized solar cells (DSSCs) based
on nanocrystalline TiO2 electrodes are currently attract-
ing widespread attention as a low-cost alternative to re-
place conventional inorganic photo voltaic devices [2-6].
* Correspondence: thmeen@nfu.edu.tw; chien@nuk.edu.tw
1Department of Electronic Engineering, National Formosa University, Hu-Wei,
Yunlin 632, Taiwan
5Department of Applied Physics, National University of Kaohsiung,
Kaohsiung, 811, Taiwan
Full list of author information is available at the end of the article

© 2013 Meen et al.; licensee Springer. This is an
Attribution License (http://creativecommons.or
in any medium, provided the original work is p
The function of DSSCs is based upon the injection of
electrons of photoexcited state of the sensitizer dye into
the conduction band of the semiconductor. Constant re-
searches attempt to achieve four goals: to promote the
adsorption of dye, to harvest more solar light, to
smoothen the progress of transport of photoexcited elec-
trons, and to facilitate the diffusion of an electrolyte ion.
A record of the cell convertible efficiency of 11% was
achieved using N3 (RuL2(NCS)2, L = 2,2′-bipyridyl-4,4′-
dicarboxylic acid) dye and the electrolyte containing
guanidinium thiocyanate [7]. Grätzel et al. used DSSCs
sensitized by N3 dye using guanidinium thiocyanate as
self-assembly-facilitating agent, leading to improvement
in efficiency [8-11]. Some of the cheaper dyes have also
been used as sensitizers to improve the absorption in the
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visible region [12-14]. Gold nanoparticles cannot only
increase the conductivity, the different shapes will result
to different intensities of the surface plasma resonance
(SPR) [15]. Recent studies have shown that metal or
metal ion-doped semiconductor composites exhibit shift
in the Fermi level to more negative potentials. Such a
shift in the Fermi level improves the energetics of the
composite system and enhances the efficiency of inter-
facial charge-transfer process [16]. In addition, Chou
et al. prepared TiO2/nanometal composite particles by
dry particle coating technique. This study shows that
the power conversion efficiency η of the DSSCs with a
film of TiO2/Au (or TiO2/Ag) on the working elec-
trode always exceeds that of the conventional DSSCs
due to the presence of the Schottky barrier [17]. In
this study, we prepared different shapes of gold nano-
particles by seed-mediated growth method to apply on
the photoelectrodes of the DSSCs. The gold nanoparti-
cles and DSSCs were investigated by field emission
scanning electron microscopy (FE-SEM), ultraviolet–
visible (UV–vis) absorption spectra, current–voltage
characteristics, electrochemical impedance spectroscopy
(EIS), and incident photon conversion efficiency (IPCE)
analyses to study the SPR effect of the gold nanoparti-
cles on the photoelectrodes of the dye-sensitized
solar cells.
Figure 1 TEM images of gold nanoparticles with different shapes. (a,
(c, f) Long nanorods (AR 4).
Methods
Chemicals
Hydrogen tetrachloroaurate(III) trihydrate (HAuCl4‧3H2O,
99.9%), hexadecyltrimethylammonium bromide (CTAB),
silver nitrate (AgNO3, 99.8%), ascorbic acid (AA, 99.7%),
sodium borohydride (NaBH4, 99.9%) were used as reactants.
TiO2 powder and 4-tert-butylpyridine were used as prepar-
ation paste of the photoelectrodes. The deionized (DI) water
that was used throughout the experiments was purified using
a Milli-Q system (Millipore Co., Billerica, MA, USA).
Glassware was cleaned by soaking it in aqua regia and then
washing it with DI water.

Synthesis of gold nanoparticles
We used seed-mediated growth method to prepare the
gold nanoparticles. This method involves two main
steps: (1) preparation of seed solution, where the gold
seed solution was prepared by first combining (5 mL, 0.5
mM) and CTAB (5 mL, 0.2 M), followed by the addition
of freshly made NaBH4 (0.6 mL, 0.01 M) under vigorous
stirring. Then, the mixture was left undisturbed, aged for
2 h at 25°C for further use. (2) The other is the prepar-
ation of a growth solution that consists of HAuCl4‧
3H2O (5 mL, 1 mM), 0.2 mL AgNO3 (spherical and short
and long rods are 0.01 and 0.04 M, respectively), and
CTAB (5 mL, 0.2 M). AA (70 μL, 0.0788 M) was then
d) Spherical nanoparticles. (b, e) Short nanorods (aspect ratio (AR) 2.5).



Figure 2 The UV–vis absorption spectra of spherical gold
nanoparticles, short nanorods, and long nanorods.
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added and followed by brief stirring (approximately 1
min). Finally, the spherical gold nanoparticles were
synthesized, every 10 s, a drop for the short gold
nanorods (aspect ratio of about 2.5), and every 1 min,
a drop for the long gold nanorods (aspect ratio of
about 4). Lastly, 25 μL of the seed solution was added
to the growth solution. The mixture was allowed to
react at 30°C. Centrifugation of the gold nanoparticles
was carried out at 4,000 rpm for 20 min, and the
supernatant was removed and then suspended with the
same volume of deionized water. This process was re-
peated three times.
Figure 3 FE-SEM images of the photoelectrodes of dye-sensitized sol
nanoparticles added. (b) With spherical gold nanoparticles added. (c) With
Assembling the DSSC
We used the scraper method to prepare the photoelec-
trode on fluorine-doped tin oxide glass substrate. The
TiO2 coatings were prepared from commercial TiO2

particles (P25). The compositions of the TiO2 paste were
TiO2, 4-tert-butylpyridine, and deionized water. The
concentration of the TiO2 paste was 10 wt.%. The con-
centration of the gold nanoparticles added in the TiO2

paste is about 1.5 wt.%. With the addition of gold nano-
particles, the TiO2 film was scraped to the desired thick-
ness on the substrate by scratching. After drying, we
pressed the TiO2 film by suitable pressure and annealed
it at 450°C for 30 min to complete the photoelectrode.
The size of the TiO2 film electrodes used was 0.25 cm2

(0.5 cm × 0.5 cm). Finally, we kept the photoelectrode
immersed in a mixture containing a 3 × 10−4 M solution
of N3 dye and ethyl alcohol at 45°C for 1.5 h in the
oven. The electrode was assembled into a sandwich-
type open cell using platinum plate as a counter
electrode.

Characterization
The surface morphology of the samples was observed
using FE-SEM. The ultraviolet–visible absorption spectra
of the samples were observed using a UV–vis spectro-
photometer. The current–voltage characteristics and EIS
of the samples were measured using Keithley 2400 source
meter (Keithley Instruments Inc., Cleveland, OH, USA)
and were determined under simulated sunlight with white
light intensity, PL = 100 mW/cm2. In the IPCE
ar cells. (a), (b), (c) (d) Top view images. (a) Without gold
short gold nanorods added. (d) With long gold nanorods added.



Figure 4 Cross-section FE-SEM images of the photoelectrodes of dye-sensitized solar cells. (a) Without gold nanoparticles added. (b) With
spherical gold nanoparticles added. (c) With short gold nanorods added. (d) With long gold nanorods added.
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measurement, a xenon lamp (Oriel (Newport Corporation,
Jiangsu, China), model 66150, 75 W) was used as the light
source, and a chopper and lock-in amplifier were used for
phase-sensitive detection.

Results and discussion
Figure 1a,d shows the TEM images of the gold nanopar-
ticles, which are almost spherical and uniformly dis-
persed with a size of about 66 nm. Figure 1b,e shows
the TEM images of the short gold nanorods. It is re-
vealed that the short gold nanorods have an aspect ratio
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Figure 5 The UV–vis absorption spectrum of TiO2 films without
and with gold nanoparticles added.
of 2.5. Figure 1c,f shows the TEM images of the long
gold nanorods. It indicates that the long gold nanorods
have an aspect ratio of 4. The ultraviolet–visible absorp-
tion spectra of the gold nanoparticles are shown in
Figure 2. The standard absorption wavelength is about
540 nm for the spherical gold nanoparticles. The short
gold nanorods show the transverse SPR band at 510 nm
and the longitudinal SPR band at 670 nm. The long gold
nanorods show the transverse SPR band at 510 nm and
the longitudinal SPR band at 710 nm. Figure 3 shows
the FE-SEM images of the TiO2 films without and with
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Figure 6 The J-V curves of DSSCs without and with gold
nanoparticles added.



Table 1 The parameters of current–voltage characteristics
for DSSCs without and with different shapes of gold
nanoparticles

Type Jm Vm JSC VOC F.F. η

(mA/cm2) (V) (mA/cm2) (V) (%) (%)

Without 14.12 0.44 16.72 0.63 58.90 6.21

Nanosphere 15.41 0.44 18.20 0.64 58.37 6.77

Nanorod (AR 2.5) 15.72 0.45 18.24 0.65 59.99 7.08

Nanorod (AR 4.0) 16.19 0.45 18.30 0.65 61.23 7.29

Table 2 Characteristic parameters of the DSSCs without
and with gold nanoparticles

Type κeff τeff Rs Rpt Rk

(S-1) (S) (Ω) (Ω) (Ω)

Without 5.901 0.169 5.843 4.317 10.25

Nanosphere 5.258 0.190 6.602 3.325 9.80

Nanorod (AR 2.5) 5.1944 0.193 6.805 3.674 9.52

Nanorod (AR 4.0) 4.804 0.208 6.425 5.864 8.16
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gold nanoparticles added. The films are all smooth, as
shown in Figures 3 and 4. Figure 4 shows the cross-
section FE-SEM images of the TiO2 films without and
with gold nanoparticles added. The thickness of these
TiO2 films was about 22 μm.
Figure 5 shows the UV–vis absorption spectra of the

TiO2 films without and with gold nanoparticles added. It
is found that the absorption spectrum of the TiO2 film
with gold nanoparticles added is better than that of the
film without gold nanoparticles, and the film with gold
nanorods has stronger SPR intensity than that with
spherical gold nanoparticles at long wavelength. Figure 6
shows the current–voltage characteristics of the DSSCs
without and with nanoparticles added. The parameters
for the short-circuit current density (Jsc), the open circuit
potential (Voc), the fill factor (F.F.), and the overall con-
version efficiency (η) are listed in Table 1. It is noted
that the Voc of the cell with long gold nanorods is
higher than those cells with spherical gold nanoparticles
and short gold nanorods. This result provides an evi-
dence to prove the reports of Subramanian et al. [16]
and Chou et al. [17] and may be due to the shift in the
Fermi level to more negative potentials and the pres-
ence of the Schottky barrier. From the results of Table 1,
it is found that the best conversion efficiency of the dye-
Figure 7 The spectra of EIS for the dye-sensitized solar cells
without and with gold nanoparticles added.
sensitized solar cell with long gold nanorods added is
7.29%, which is the highest among the shapes. It is
noted that the conversion efficiency of the DSSCs with
long gold nanorods added is higher than that of the cells
with spherical gold nanoparticles. It may be because
long gold nanorods have stronger surface plasma reson-
ance effect on the TiO2 photoelectrodes than the spher-
ical gold nanoparticles.
Figure 7 shows the spectra of EIS for the dye-sensitized

solar cells without and with gold nanoparticles added. The
simulation of the equivalent circuit is discussed in to the
previous reports [18-20]. The parameter Rk, which is the
charge transfer resistance related to the recombination of
electrons, is also listed in Table 2. The value of Rk de-
creases from 10.25 to 8.16 Ω when the long gold nanorods
are added. It indicates that the effect of the long gold
nanorods added in TiO2 film can improve the transport
properties of TiO2 photoelectrodes, resulting in the in-
crease of conversion efficiency of DSSCs. From the results
of the current–voltage characterization and EIS, the effect
of the gold nanoparticles on the TiO2 photoelectrodes can
increase the conductivity and reduce the recombination of
charges in the photoelectrodes, resulting in the increase of
the conversion efficiency of the DSSCs. Furthermore, the
long gold nanorods have stronger surface plasma reson-
ance intensity than the spherical gold nanoparticles at long
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Figure 8 The IPCE spectra of DSSCs without and with gold
nanoparticles added.
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wavelength. This may be the reason why the conversion
efficiency of the dye-sensitized solar cells with long gold
nanorods is higher than those of the cells with spherical
gold nanoparticles and short gold nanorods. Figure 8
shows the IPCE spectra of the DSSCs without and with
gold nanoparticles added. The results of IPCE analysis in-
dicate the number of incident photons inside the cells and
their contribution to the efficiency. It is noted that all the
IPCE spectra are similar in shape, and the IPCE value of
the long gold nanorods is higher than those of the spher-
ical gold nanoparticles and short gold nanorods in all
wavelengths. It also provides an evidence that the conver-
sion efficiency of DSSCs with long gold nanorods is higher
than those of the cells with spherical gold nanoparticles
and short gold nanorods.

Conclusions
In this study, we prepared different shapes of gold nano-
particles by the seed-mediated growth method to apply
on the photoelectrodes of dye-sensitized solar cells. The
diameter of the spherical gold nanoparticles is 45 nm,
the length and width of the short gold nanorods are 55
and 22 nm, respectively, and the length and width of the
long gold nanorods are 55 and 14 nm, respectively. The
absorption spectrum of the TiO2 film with gold nano-
particles added is better than that of the film without
gold nanoparticles, and the film with gold nanorods has
stronger SPR intensity than that with spherical gold
nanoparticles at long wavelength. This SPR effect results
in higher conversion efficiency of the dye-sensitized
solar cells with long gold nanorods those with spherical
gold nanoparticles and short gold nanorods.
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