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A polydimethylsiloxane (PDMS)-based optical system has been demonstrated. To suppress intense
background radiation due to multiple internal scatting in a transparent material, a composite structure of
a carbon–PDMS compound and PDMS was proposed. The index matching of the real part of the refractive
index can suppress internal scattering, and an absorption of 99–99.7% was attained by using carbon
micro particles and carbon nano tubes. The black-PDMS light channel functions as a light filter for
straight pass, and an optical density of 5 was obtained by bending the filter.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Traditionally, an optical system configures optical components
in a space [1,2]. It means that the optical path through the com-
ponents as robust path and the spaces as flexible path. This robust/
flexible combination was very useful to attain the tunability and
stability of the system simultaneously. The tunability was guar-
anteed by the flexible path and tuning mechanisms of the com-
ponents, and the stability was guaranteed by the robustness of the
components and a fundamental base. Therefore, the fundamental
bases with black optical covers generally render optical systems
heavy, hard, and expensive. Since robust material is preferred for
optical component, the robust path is generally the path filled
with transparent and solid-state medium. We term it “filled path”
in this paper as an opposite word of empty traditional path such as
a space.

Some of advanced and integrated optical systems (TIRF, SPR, lab
on a chip and so on) reported the replacement of the spaces with
transparent solids partially in its optical path [3–5]. This replace-
ment increased stability and decreased tunability. Furthermore, it
became the system more compact due to the reducing funda-
mental base. On this view point, an optical fiber based system [6]
proposes an important conceptual advancement. Though an op-
tical fiber is filled path, it can simultaneously provide longitudinal
robustness and transverse flexibility due to its small cross section.
r B.V. This is an open access article
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Thus, waveguide technology such as WDM has been studied [7].
Recently, many research groups have studied optical detection

in the “lab on a chip” concept [8]. A very simple optical system
such as an absorption cell was integrated in the flow-injection
system consisting of glass, and a severe internally scattered
background was observed in the filled optical path of glass. Thus,
external components such as optical filters must be included for
sensitive measurement. If a complicated optical system is designed
with the filled optical path, multiple internal scattering causes
severe background noise in optical detection. However, the use of
the filled optical path provides the possibility of constructing an
optical system using soft materials such as polydimethylsiloxane
(PDMS), if internal stray light can be reduced. In this study, we
propose a novel concept for a compact optical system using the
soft and flexible material, PDMS, as the optical system based on
filled path scheme. To suppress intense background radiation due
to multiple internal scatting in a transparent material, a core/clad
structure of a carbon–PDMS compound (clad) and a PDMS (core)
was proposed. The refractive index matching of the core and the
clad can suppress internal scattering, and an absorption of 99–
99.7% was attained by using carbon micro particles and carbon
nano tubes.
2. PDMS-based optical system

PDMS has suitable optical properties, which are listed as
follows:
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

.doi.org/10.1016/j.talanta.2015.11.066i

www.sciencedirect.com/science/journal/00399140
www.elsevier.com/locate/talanta
http://dx.doi.org/10.1016/j.talanta.2015.11.066
http://dx.doi.org/10.1016/j.talanta.2015.11.066
http://dx.doi.org/10.1016/j.talanta.2015.11.066
mailto:oki@ed.kyushu-u.ac.jp
http://dx.doi.org/10.1016/j.talanta.2015.11.066
http://dx.doi.org/10.1016/j.talanta.2015.11.066
http://dx.doi.org/10.1016/j.talanta.2015.11.066
http://dx.doi.org/10.1016/j.talanta.2015.11.066


Dye:PDMS 
Wavelength filter 

Laser Light 
Source 

PDMS Sample 
Chamber 

Holes For  
Critical Reflection 

Photo Detector Transparent 
PDMS 

Light Channel 

Fig. 1. Schematic of PDMS/Carbon–PDMS module for laser induced fluorescence detection. All optical component is covered black-PDMS molding. Right bottom image is the
photo image of the assembled components for the pumping at 532 nm and measuring at 600 nm without covering black-PDMS.
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Fig. 2. An example of calibration curve of the Resorufin fluorescence detection
using the PDMS module.
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� Low fluorescence
� High chemical stability
� Transparency in the UV region.

Fig. 1 shows a schematic of an example of the proposed laser-
induced fluorescence (LIF) system for a small sampling tube (such
as a PCR: polymerase chain reaction tube) [9,10]. The filled optical
path was constructed with transparent PDMS, and it was covered
with a similar PDMS material in which absorption particles are
diffused. The PDMS material with absorption particles diffused is
termed black-PDMS in this article. A mixture of a carbon-particle
Please cite this article as: H. Nomada, et al., Talanta (2015), http://dx
compound (Shinetsu, KE-COLOR-BL) and room temperature cur-
able PDMS (Shinetsu, SIM-360) was adopted.

A pumping laser was coupled with a PCR chamber consisting of
black-PDMS with PDMS windows. LIF was collected 90° relative to
the laser-beam axis and propagated in the PDMS light channel.
The light channel was folded four times by critical reflection with
rectangular parallelepiped holes. Furthermore, two holes with
spherical surfaces were used to construct a spatial filter. The PDMS
channel was also covered with black-PDMS to reduce unexpected
light propagation. The scattered laser beam was trapped by a
black-PDMS chamber, laser-blocking filter, and absorbing PDMS
channel containing dye and an integrated spatial filter. Finally, the
filtered LIF was observed using a photodetector. As a first de-
monstration, module for pumping at 532 nm and observing at
600 nm was developed. A battery driven diode pumped solid state
green laser (DPSS green laser, Lightvision, JSM-6-M, Nd:YVO4,
532 nm, 1 mW) was used as the pumping laser unit. The mixture
of carbon particle compound and PDMS was used as the black-
PDMS, and Sudan-II dye was adopted for absorbing dye:PDMS
part. The laser blocking filter (Edmund #86-120, OD6@532 nm)
was also adopted. The photodetector was a photomultiplier-tube
module (Hamamatsu, H10721).

Fig. 2 shows an example for fluorescence detection in a water
solution of 7-hydroxy-3H-phenoxazin-3-one (Resorufin) dye in a
50-μL PCR tube. The three data samples were averaged without re-
entry. The blank signal corresponds to 150–300 a.u., and the de-
tection limit can be approximated as 2–3 nM. A dynamic range
over 1–100 nM was also confirmed.
3. Evaluation of scattering trap performance

The low blank signal level seemed to be due to the trapping
effect of scattered light at the boundary between black-PDMS and
.doi.org/10.1016/j.talanta.2015.11.066i
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Fig. 3. Schematics of a PDMS/black-PDMS light channel and light propagation between the boundary structures (top) and schematics of bent light channels without covering
black-PDMS for the trapping investigation (bottom).

Fig. 4. Experimental transmittance of the flexible black-PDMS/PDMS light channel
as a function of the bending angle. Blue indicates air channel (hole) in CB:PDMS
cover, red indicates PDMS channel covered with CB:PDMS, and green indicates
PDMS channel covered with CNT:PDMS. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

H. Nomada et al. / Talanta ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 3
PDMS. With the light channel shown Fig. 3, the light that is not
propagating along the transparency channel can be absorbed at
the scattering point of the diffused black particles in the black-
PDMS region. As no Fresnel reflection occurred, the PDMS-filled
light channel can work as a particular spatial filter that can pass
Please cite this article as: H. Nomada, et al., Talanta (2015), http://dx
only the light propagating along the channel's axis. It can also
prevent the unexpected off-axis pass through a dielectric filter
such as the notch filter. In the module described in Fig. 1, the light
path has 4 reflections to reduce the unexpected stray light from
the photodetector. Furthermore, the external light was also
blocked by the black-PDMS coating over the module. The flexible
PDMS can remove the air gap from the boundary between the
DPSS laser, the hard optics, and the photodetector. Consequently,
the gap-free interface can block the intrusion of the external light.

To evaluate the trap performance of the spatial filter, straight
light guides (cross section of 1�2 mm2, length of 50 mm) were
prepared. The light propagation channel was filled with PDMS or
air, and it was covered with a PDMS compound diffused with
carbon black (CB) particles (concentration of 10 wt%) or with
multiwall carbon nano tubes (CNTs, Cnano Flotube9000, 0.83 wt-
%). The cladding thickness was greater than 5 mm. The light guide
can be expected to function as a straight filter that can pass only
the light propagating along its axis. A laser beam propagating in an
optical fiber (1 mmφ, 532 nm) was coupled to an end of the
channel, and the output from the other end was measured. The
filters were bent according a curved flame to emulate the multiple
scattering to trap the incident light. The transmittance was cal-
culated from normalization by using the output of the straight air-
channel filter, and it is plotted as a function of the bending cur-
vature in Fig. 4. Although the transmittance was approximately
10% even with 90° bending for the air-channel filter, the filled
channel in CB showed an optical density (OD)45.3 at 75°. Fur-
thermore, the filled channel in CNTs showed OD44.3 at 30°. As
the minimum number of reflections m to pass the light channel
.doi.org/10.1016/j.talanta.2015.11.066i
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Fig. 5. Polar-plotted scattering intensity from the boundary of PDMS/black-PDMS.
Black line indicates CB:PDMS of carbon black concentration of 10 wt%, magenta,
blue and red lines indicate CNT:PDMS of carbon nano tube concentration of 1.7,
0.83 and 0.17 wt%, respectively. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

CNT flux

Fig. 6. Scanning Electronic Microscope image of the cut-surface of the black-PDMS.
Above image is from CB:PDMS of carbon black concentration of 10 wt%, and below
image is from CNT:PDMS of carbon nano tube concentration of 0.19 wt%. Red circles
indicate the aggregated black particle due to the high concentration diffusing. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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can be given by θ θ= ( (( − ) ( + ))
θ

−m w L w/ 2 cos /2 / / /2L1 , where θ is
bending angle and L and w are the length and width of the
channel, respectively. Therefore, m42 and m43 correspond to
θ440° and480°, respectively. Consequently, an OD of approxi-
mately 5 can be attained with more than 3 (for CB) and 2 (for CNT)
reflections. The absorption coefficient of the CB:PDMS film was
also measured. An absorption coefficient of × −7. 2 10 cm2 1 was
obtained at a wavelength of 532 nm. This number corresponds to
an OD of 6 with a 0.19-mm-thick film; therefore, the external
background was well reduced by coating the 10 wt% CB:PDMS. On
the other hand, as the CNT:PDMS concentration was limited to
o2 wt%, the thickness of CNT:PDMS should be 10–20 times the
above value.

To analyze the trapping principle, single scattering at the black-
PDMS/PDMS interface was investigated. We prepared cylindrical
PDMS samples by dispersing the black particles in the half region
divided by the diameter. A DPSS green laser beam was incident at
an angle of 45° relative to the interface, and the angular intensity
distribution of the scattered light was measured. Fig. 5 shows the
angular distributions for 10 wt% CB:PDMS and 0.17, 0.83, and
1.7 wt% CNT:PDMS. Firstly, CB:PDMS shows intense scattering and
a complicated angular distribution. The scattering intensity in
CNT:PDMS is 1/2–1/3 times that in CB:PDMS. The reason why a
relatively complicated angular distribution was observed for
10 wt% CB seems to be the blockage of the incident light by the
dense CB blocks just on the surface of the back-PDMS region, be-
cause of which the scattering profile seems to be close to the Mie
scattering profile. In comparison with the Mie scattering model for
a sphere, the experimental profile seems close to the scattering
profile that superimposed Mie profile of spherical diameter 0.5–
2 μm. The scattering in 10 wt% CB was predominantly caused by
the single Mie scattering of a CB particle at the interface. On the
other hand, lower concentrations such as 0.83 and 0.17 wt% CNT
show homogeneous scattering profiles, which imply that multiple
Mie scattering had become dominant owing to the penetration of
light. The intensity of scattering is decreased to 1/3 times on
changing the black particle from CB to CNT. For 0.83 wt% CNT, the
scattering intensity was minimum, total reflection was as low as
0.3% of the irradiated beam, and absorption was as high as 99.7%.
This result can explain the very low transmittance in Fig. 4.

Finally, Fig. 6 shows scanning electron microscope images of
10 wt% CB:PDMS and 0.19 wt% CNT:PDMS. The cut surface of the
PDMS is not smooth, but we could confirm the particle size of the
diffused CB, which ranged from 0.5 to 3 μm. We also confirmed
that the aggregation size increased when the concentration ex-
ceeded 10 wt%. On the other hand, even with 0.19 wt% CNT, some
aggregated particles were observed. Although the aggregated
Please cite this article as: H. Nomada, et al., Talanta (2015), http://dx
particle size is large as 10 μm, the CNT flux structure was also
confirmed.
4. Summary

We proposed a novel integrated optical system based on a
polydimethylsiloxane composite with diffused black particles. A
laser fluorescence detection module was demonstrated with a
folded optical path containing a spatial filter. The PDMS/black-
PDMS interface results in absorption greater than 99% per scat-
tering at 532 nm. CNT of concentration 0.83 wt% showed an ab-
sorption of 99.7%. The black-PDMS light channel functions as a
light filter for straight pass, and an optical density of 5 was ob-
tained by bending the filter.
.doi.org/10.1016/j.talanta.2015.11.066i

http://dx.doi.org/10.1016/j.talanta.2015.11.066
http://dx.doi.org/10.1016/j.talanta.2015.11.066
http://dx.doi.org/10.1016/j.talanta.2015.11.066


H. Nomada et al. / Talanta ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 5
References

[1] A.R.H. Cole, A.A. Green, G.A. Osborne, G.D. Reece, Vacuum grating spectro-
meter for the mid and far infrared, Appl. Opt. 9 (1970) 23–29.

[2] F.J. Fortes, J.J. Laserna, The development of fieldable laser-induced breakdown
spectrometer: no limits on the horizon, Spectrochim. Acta Part B 65 (2010)
975–990.

[3] N.J. Herrick, Internal Reflection Spectroscopy, Wiely Intersc., Net Work, 1967.
[4] N.J. Herrick, G.I. Loeb, Multiple internal reflection fluorescence spectrometry,

Anal. Chem. 45 (1973) 687–691.
[5] E. Katz, Surface plasmon resonance – a method to analyze interfacial optical

properties and to develop biosensors, The Hebrew University of Jerusalem,
(available on (〈http://chem.ch.huji.ac.il/�eugeniik/spr.htm〉), last accessed
Sep. 2015).

[6] U. Utzinger, R.R. Richards-Kortum, Fiber optic probes for biomedical optical
spectroscopy, J. Biomed. Opt. 8 (2003) 121–147.
Please cite this article as: H. Nomada, et al., Talanta (2015), http://dx
[7] R.T. Chen, WDM and photonic switching devices for network applications, Soc.
Photo Opt. 2000/06, SPIE proceedings series, SPIE-International Society for
Optical Engine (June 2000), English, 284 p. ISBN-10: 081943566X; ISBN-13:
978-0819435668.

[8] R.H. Byrne, W.S. Yao, E. Kaltenbacher, R.D. Waterbury, Construction of a
compact spectrofluorometer/spectrophotometer system using a flexible liquid
core waveguide, Talanta 50 (2000) 1307–1312.

[9] H. Nomada, F. Yang, H. Yoshioka, K. Morita, Y. Oki, “Labo-on-Tablet” Abstract of
Pittcon (March, 2015) 1450–1451, (available on (〈https://ca.pittcon.org/Techni
cal+Program/tpabstra15.nsf/Agenda+Time+Slots+Web/
C9D299DAAA4A58F485257D2D00560956〉), laset accessed Sep. 2015).

[10] K. Morita, H. Nomada, H. Yoshioka, Y. Oki, Platform of optical analysis device
based carbon-polydimethylsiloxane compound for spectroscopic chamber
integration on information terminal”, Proceedings of Flow. Anal. XIII con-
ference (2015) P25 , July, p. 104.
.doi.org/10.1016/j.talanta.2015.11.066i

http://refhub.elsevier.com/S0039-9140(15)30520-8/sbref1
http://refhub.elsevier.com/S0039-9140(15)30520-8/sbref1
http://refhub.elsevier.com/S0039-9140(15)30520-8/sbref1
http://refhub.elsevier.com/S0039-9140(15)30520-8/sbref2
http://refhub.elsevier.com/S0039-9140(15)30520-8/sbref2
http://refhub.elsevier.com/S0039-9140(15)30520-8/sbref2
http://refhub.elsevier.com/S0039-9140(15)30520-8/sbref2
http://refhub.elsevier.com/S0039-9140(15)30520-8/sbref3
http://refhub.elsevier.com/S0039-9140(15)30520-8/sbref4
http://refhub.elsevier.com/S0039-9140(15)30520-8/sbref4
http://refhub.elsevier.com/S0039-9140(15)30520-8/sbref4
http://chem.ch.huji.ac.il/~eugeniik/spr.htm
http://chem.ch.huji.ac.il/~eugeniik/spr.htm
http://refhub.elsevier.com/S0039-9140(15)30520-8/sbref5
http://refhub.elsevier.com/S0039-9140(15)30520-8/sbref5
http://refhub.elsevier.com/S0039-9140(15)30520-8/sbref5
http://refhub.elsevier.com/S0039-9140(15)30520-8/sbref7
http://refhub.elsevier.com/S0039-9140(15)30520-8/sbref7
http://refhub.elsevier.com/S0039-9140(15)30520-8/sbref7
http://refhub.elsevier.com/S0039-9140(15)30520-8/sbref7
https://ca.pittcon.org/Technical+Program/tpabstra15.nsf/Agenda+Time+Slots+Web/C9D299DAAA4A58F485257D2D00560956
https://ca.pittcon.org/Technical+Program/tpabstra15.nsf/Agenda+Time+Slots+Web/C9D299DAAA4A58F485257D2D00560956
https://ca.pittcon.org/Technical+Program/tpabstra15.nsf/Agenda+Time+Slots+Web/C9D299DAAA4A58F485257D2D00560956
http://refhub.elsevier.com/S0039-9140(15)30520-8/sbref8
http://refhub.elsevier.com/S0039-9140(15)30520-8/sbref8
http://refhub.elsevier.com/S0039-9140(15)30520-8/sbref8
http://refhub.elsevier.com/S0039-9140(15)30520-8/sbref8
http://dx.doi.org/10.1016/j.talanta.2015.11.066
http://dx.doi.org/10.1016/j.talanta.2015.11.066
http://dx.doi.org/10.1016/j.talanta.2015.11.066

	Carbon–polydimethylsiloxane-based integratable optical technology for spectroscopic analysis
	Introduction
	PDMS-based optical system
	Evaluation of scattering trap performance
	Summary
	References




