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ABSTRACT The analysis of single-molecule fluorescence resonance energy transfer (FRET) trajectories has become one of
significant biophysical interest. In deducing the transition rates between various states of a system for time-binned data,
researchers have relied on simple, but often arbitrary methods of extracting rates from FRET trajectories. Although thesemethods
have proven satisfactory in cases of well-separated, low-noise, two- or three-state systems, they become less reliable when
applied to a system of greater complexity. We have developed an analysis scheme that casts single-molecule time-binned FRET
trajectories as hidden Markov processes, allowing one to determine, based on probability alone, the most likely FRET-value
distributions of states and their interconversion rateswhile simultaneously determining themost likely time sequence of underlying
states for each trajectory. Together with a transition density plot and Bayesian information criterion we can also determine the
number of different states present in a system in addition to the state-to-state transition probabilities. Herewe present the algorithm
and test its limitations with various simulated data and previously reported Holliday junction data. The algorithm is then applied to
the analysis of the binding and dissociation of three RecA monomers on a DNA construct.

INTRODUCTION

Fluorescence resonance energy transfer (FRET) is a power-

ful method for uncovering many mechanistic aspects of

biological macromolecules and complexes. Acting as a spec-

troscopic ruler, FRET provides information on the distance

between two points of a system to which a donor fluorophore

and an acceptor fluorophore are attached. If the biomolecules

under investigation are localized in space, for example through

tethering to a surface, FRET signals can be obtained even

from single molecules for an extended period. The data ob-

tained from such experiments, time traces, are composed of a

triplet at each time point: (donor signal and acceptor signal

versus time). Each trace is often converted to (FRET versus

time) pairs which we term FRET trajectories. In the case of

well-defined, stable conformational states a corresponding

series of well-defined stable FRET values can be observed.

The analysis of time-binned FRET trajectories should ideally

determine what conformational states exist in the system and

with what rates interconversion between the states occurs.

To accomplish this, historically one needed to determine,

based on the FRET values, which state the system was in at a

given time and for how long it remained there. Typically,

histograms were built out of the resulting dwell times and

then fit to an exponential decay (1–7). The method of de-

ciding when the molecule is in what state can vary from

simplistic ‘‘by eye’’ analysis to the slightly more sophisti-

cated thresholding algorithm. In the ‘‘by eye’’ case (6), one

determines, based on one’s own experience, what changes in

FRET are legitimate state-to-state transitions as opposed to

noise or photophysical effects. In this approach, shorter tran-

sitions are likely to be missed and the results may vary from

person to person. The other common approach is the

thresholding algorithm (8) that requires a user to set cutoffs

between FRET states. Still needed is a way of distinguishing

a noise-induced change in FRET from a legitimate short-

lived transition, and one needs to account for the fact that

different molecules, even from an entirely homogenous pop-

ulation, can show different state FRET values due to in-

strumental noise. In both cases, analysis is performed with a

preconceived number of states in mind and is subject to the

user’s prejudice for systems of great complexity. Likewise in

both cases the ability to reliably and reproducibly analyze

data becomes almost impossible when the number of states

being analyzed increases beyond three. To overcome the short-

comings of these approaches we have devised an algorithm

based on hidden Markov modeling that seeks to determine in

a probabilistic and less user-dependent way the number of

conformational states of a system and the rates of exchange

between them.

BASIS OF THE ALGORITHM

Hidden Markov modeling (HMM) was developed originally

to aid in speech recognition but has expanded to a variety of

different fields. For a concise review of the basic principles

of HMM, see Eddy (9). In the realm of biophysics, such

modeling has been used extensively in the analysis of ion-

channel data (10,11), and very recently for single-molecule

fluorescence data (12–15). Though these single-molecule

fluorescence algorithms have proven extremely powerful for

determining dynamics with high precision and on very short

timescales, they suffer from requiring photon arrival times

using a point detection apparatus such as a silicon avalanche

photodiode. Here we present an algorithm that utilizes the

time-binned data obtained from the higher throughput wide-

field apparatus, where single-molecule data are obtained for
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hundreds of molecules at the same time using a CCD camera

(16,17) though in fact it could be applied to any time-binned

data regardless of origin.

A Markov process consists of any combination of state-to-

state transitions with kinetics governed by single-exponential

decay. A Markov process becomes hidden when an obser-

ver’s ability to detect states is obscured by noise. Let us

consider a system that can adopt one of two conformational

states (A or B), where the probability of observing state A

transit to state B in one time step is governed by single

exponential decay and independent of how long the molecule

has been in state A. If a FRET pair has been placed on the

molecule such that the ideal, noiseless FRET values obtained

from each state are FRETA and FRETB (Fig. 1A), in principle,
one could obtain a molecule’s true A4B trajectory by

following the FRET value in time as it alternates between

FRETA and FRETB (Fig. 1 B). In reality, experimental noise

broadens the FRET distribution of each state (Fig. 1 C)
yielding significantly more complicated data (Fig. 1 D). This
makes the process a hiddenMarkov process as the underlying

reality (the sequence of trueA4Bexchanges) is hidden in the

data because of noise. To reconstruct the underlying reality

using HMM, first we need to define model parameters.

The transition probability matrix and emission
probability functions

Parameters of HMM analysis are described typically by

transition and emission probabilities. In the two-state system

described above transition probabilities represent the prob-

ability of a molecule currently in state f (either A or B)

transiting to state c (either A or B) in the next time step, in

general called tpf/c. Of the total of four transition proba-

bilities (tpA/B, tpA/A, tpB/A, and tpB/B) forming a tran-

sition probability matrix (Fig. 2 A), only two are independent
since by definition tpA/A 1 tpA/B ¼ 1 and tpB/B 1
tpB/A ¼ 1. It is important to note that in using a transition

probability matrix of this form one is implicitly assuming

that the underlying process is a Markov process. This means

that transitions are assumed to be governed by single expo-

nential decay kinetics.

Emission probabilities represent the relative likelihood of

observing a FRET value (FRETdata) when the system is in

conformation f (with idealized FRET value FRETf). We

have modeled the noise-induced FRET distribution using a

Gaussian function with a characteristic width d. Then, the
two emission probability functions (epA and epB) are given

as follows:

epfðFRETdataÞ} exp �23
FRETdata � FRETf

d

� �2
" #

: (1)

Although FRET distributions are in fact governed by b-dis-
tributions rather than simple Gaussians, it has been found that

such distributions are approximated well by Gaussians, an as-

sumption which leads to minimal discrepancies (18).

Deciding between different event sequences

Once we have a transition probability matrix and emission

probability functions for a systemwe can evaluate the relative

likelihood of any proposed sequence of A and B states given

FIGURE 1 Simple single-molecule FRET

hidden Markov process. (A) A molecule ex-

hibits two different FRET states: FRETA and

FRETB. For each time point, there is a prob-

ability (tp) that it will transit to the other state. A

noiseless system would generate simple two-

state FRET trajectories (B). But a distribution in

FRET values (C) masks the idealized sequence

of states, hiding the underlying Markov process

(D). In italics are the parameters one would not

know in a real experiment but would eventually

want to obtain, namely: the idealized FRET

states (FRETA and FRETB), the state-to-state

transition probabilities (tp), and the distribution

of observed data for the FRET states (width).

1942 McKinney et al.
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the observed data FRETdata(i) (where i represents time step).

We term the time-indexed proposed sequence of states a so

thata(i)¼A orB. To evaluate how likely a proposed sequence

a is we calculate, for each time point, the probability that the

proposed state yields our observed data (using the emission

probability function), and then determine the point’s transi-

tion probability to the next time step’s proposed state. Mul-

tiplying the two terms we obtain the probability of the

proposed state yielding the observed data at that time point:

probðiÞ ¼ epaðiÞðFRETdataðiÞÞ3tpðaðiÞ;aði1 1ÞÞ: (2)

The probability of the entire proposed trajectory is obtained

by multiplying the individual point probabilities:

total ¼
YN
i¼1

probðiÞ: (3)

As a specific example, we provide the seven-time point-

trajectory in Fig. 2. The system follows the parameters in

Fig. 1 but with a narrower width (d ¼ 0.16 instead of d ¼
0.35). Fig. 2, C and D, attempts to fit the same set of data

with two different proposed trajectories. In Fig. 2 C, the
proposed trajectory a1 has a transition from B to A in time

step 3 and the reverse in time step 4. In the trajectory a2

proposed in Fig. 2 D no transition takes place. To determine

which of the two is the most likely given the model

parameters in Fig. 2, A and B, we use Eqs. 2 and 3. Although
it is much more likely for a molecule in state B to remain in

state B as in the trajectory a2 than to transit from state B to

state A and then back again as in a1, it is even more likely

for a molecule in state A to emit a FRET value at 0.39 as in

a1 than a molecule in state B to as in a2. Thus, the more

likely trajectory among the two is a1.

To try every possible sequence of states and find the total

probability for a FRET trajectory of N time points would

require O(2N) computational power for a two-state system.

Fortunately this can be cut down to O(N) using the Viterbi

algorithm (19), which is guaranteed to find the most likely

sequence of underlying states given a set of data and cor-

responding transition probability matrix and emission prob-

ability functions.

FIGURE 2 Evaluating probabilities in a hidden Markov model. (A) The transition probability matrix gives the likelihood that a molecule in one state will

transit to another in a single time step. (B) Emission probability functions (epA, epB) define the probability of observing a FRET value FRETdata when in a given

conformation (A or B). The emission probability functions and the transition probability matrix shown are for a known two-state system with underlying FRET

values 0.3 and 0.7 (state A and state B, respectively) and a width in the distribution of 0.16, similar to the system depicted in Fig. 1. (C) Generated data

(squares) are plotted together with a proposed sequence of states (a1(i)). By using the parameters from A and B, we can evaluate the probability that the

proposed sequence could generate the observed data for each time point and then take their product to find the total. (D) The same is done for an alternative

proposed sequence of states (a2(i)) with differences highlighted in bold and underlining. By comparing the total probabilities of 1343 for a1(i) to that of 1193

for a2(i) we deduce that a transition likely took place at time step 3.

Hidden Markov Modeling of FRET Traces 1943
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Determining emission probability functions and
transition probability matrices

Thus far we have assumed that the emission probability

functions and transition probability matrix are known before-

hand. But in an experiment, one does not usually know the

idealized FRETA, FRETB values or their distributions. In

addition, the transition probabilities are what one is after in

the first place. As the Viterbi algorithm also provides the

total probability of the most likely sequence of states, we can

vary the model parameters (FRETA, FRETB, d, tpA/B and

tpB/A) until we achieve a maximized total probability. This

is a well known multi-dimensional optimization problem

which we solved using Brent’s algorithm (20). We have

found that as long as reasonable first guesses are made with

respect to the parameters the algorithm converges to the true

values rather than to a local maxima. As initial guesses, we

use uniform transition probabilities of 0.005 and uniformly

distributed FRET states between 0 and 1, or rough estimates

based on the data. Similar results could in principle be ob-

tained with other HMM algorithms such as the faster but

more complicated Baum-Welch forward-backward algorithm

(21). All algorithms were encoded in C11 and analysis

performed on the UIUC Turing CPU cluster.

Utilizing multiple trajectories

In the hopes of obtaining a more accurate tpA/B and tpB/A,

one would generally like to determine them for a number of

different molecules and then find some way to average them.

We have found that transition probabilities are distributed

asymmetrically as in Fig. 3 A. Therefore to obtain a repre-

sentative average value and corresponding uncertainty we first

take the transition probabilities returned from the HMM

algorithm and find their logarithm (as in Fig. 3 B). The

logarithm is chosen partially for because it yields symmetry,

but also because of the relationship between free energy and

kinetic rates: DGA/B
y } ln(kA/B). That is, if the free barrier

has heterogeneous broadening that is symmetric, the distribu-

tion of the logarithm of the transition rate would be symmetric.

Once the logarithm has been taken, a mean is determined

together with its standard error. These are then converted back

to transition probabilities by exponentiation. Explicitly, for a

collection of N transition probabilities labeled by i:

TPA/B ¼ exp

+
N

i¼1

lnðtpA/B;iÞ
N

2
664

3
775 (4)

DTPA/B ¼ TPA/B3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+
N

i¼1

ðlnðtpA/B;iÞ � lnðTPA/BÞÞ2

N � 1

vuuut
; (5)

where TPA/B and DTPA/B denote the representative mean

and the representative error, respectively.

Transition density plot for complicated systems

Note that in the algorithm outlined above, there is nothing to

restrict ourselves to two-state systems. For any FRET tra-

jectory with S underlying FRET states there are S 3 (S�1)

independent transition probabilities, S idealized FRET state

levels, and a width parameter d. We chose a single value of d
for all states to reduce computational time.

It is often the case that the value of S itself is unknown. In
such cases the solution is simple: assume some large number

of states (say M ¼ 10) and perform analysis. If there are in

reality only five states (S¼ 5), five legitimate (between 0 and

1) FRET values and their associated transition probabilities

will be returned together with five extraneous states. The ex-

traneous states are never populated.

Another potential difficulty in systems with a large num-

ber of states is one of how to categorize FRET states. Let us

consider an example of a five-state system (states labeled A,
B, C, D, and E). In some cases individual FRET trajectories

may not show all five states (for instance, if the trace is not

long enough). Or the FRET values found for each individual

statemay not agree completely between trajectories (onemole-

cule’s state A may have an apparent FRET ¼ 0.25, whereas

for another molecule it may have an apparent FRET ¼ 0.2

due to experimental variability). Occasionally one might even

see an additional state, C9, which was found by the algorithm
but differs only slightly from one of the existing states C.
To visualize the number of actual FRET states (S) in a way

that avoids these pitfalls, we developed a simple two-dimen-

sional pseudo-histogram we call the transition density plot

(TDP). For each FRET trajectory analyzed (where the algorithm

FIGURE 3 Compiling data from multiple FRET

trajectories. (A) Histograms built out of transition

probabilities found using the HMM algorithm for

experimental data show that the data are not distributed

symmetrically, bunching around 0.01 with some points

all the way out at 0.2. To determine the real value, we

first transform the transition probabilities into log or

DDG space (B) where the data is distributed symmet-

rically. From here, the mean and standard error is

calculated and converted back into transition probabil-

ities using Eqs. 4 and 5.

1944 McKinney et al.
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Hidden Markov Modeling of FRET Traces 1945

attempted to fit M different states), the algorithm finds M
idealized FRETm levels (m = 1, 2, ... , M), the transition
probability matrix, and the number of transitions found for
each ofthe FRETm ---+ FRETm * pairs ofFRET levels. A two
dimensional Gaussian function is constructed for each pair of
start and stop FRET values (startm, stop~, with an ampli
tude (am,m*) equal to the number of transitions found that
started at startm and ended at stoPm* and width (J (we chose
(J2 = 0.0005 empiricaHy to yield clear plots). Summing each
Gaussian over aH state combinations (startm, stoPm*) in aH
traces yields the TDP, with the horizontal axis corresponding
to the starting FRET values and the vertical axis correspond
ing to the final FRET values:

M M

z(x, y) = I I I am,m*
all traces m=l m*=l

m#m*

(6)

The advantage of this method can be seen in the example
of Fig. 4. The simulated FRET trajectory in Fig. 4 A shows
no peaks when a histogram is constructed out of its FRET
values (Fig. 4 B). But if there are distinct, reproducible FRET
values from trace to trace, then peaks should develop in the
TDP (Fig. 4 C). For a general S-state system with exchange
possible between every state, S X (S - 1) peaks should
appear.

Determining the number of underlying states

Although the TDP is a useful visual tool for making an initial
guess as to the number of underlying FRET states in a sys
tem, it is preferable to have sorne way of determining that
number in a fuHy probabilistic manner. For this we remove
the smoothing introduced by converting individual points
into Gaussians and revert to a simple scatter plot showing
the location of aH transition pairs found for each individual
molecule as in Fig. 5 A. Here each spike corresponds to a
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FIGURE 4 Simulated five-state system and its TDP. (A) A typical trace from a five-state system is fit with the modeliug algorithm. Nonphysical FRET values
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(startm,stoPm*) pair retumed from the HMM algorithm for a
single molecule. The z-amplitude of the spike reflects how
many such transitions were found for that molecule. Each
molecule has slightly different (startm,stoPm*) pairs so there
is no overlap. The task then is to determine sorne probability
landscape that gives rise to the coHection of points observed.
To do this we use a combination of two-dimensional Gaussians.
The number of Gaussians is determined by the number of
states we are attempting. Note that the distributions tend to
scatter more in a direction parallel to the bottom-left to upper
right (from here on dubbed the positive) diagonal. This is a
result of heterogeneous broadening which is discussed latero
Because of this asymmetric broadening we employ two
dimensional Gaussians which have orthogonal components
hetO and homO defined as foHows:

McKinney et al.

our proposed probs(x,y) function yields the observed transi
tions by finding the product of each transition's individual
probability.

M M

PROBs = II II II probs(startm, stoPm*tm,m*. (9)
all traces m=l m*=l

m#m*

The parameters of our probs function are: the Si (l :s i :s S)
FRET values of the S different states, the O"hetero peak width
in the positive diagonal direction, the O"homo peak width in the
negative diagonal direction, and ampi,j (l :s i :s S, 1 :s j:s S,
i el j), the normalized peak amplitudes of the S X (S - 1)
different peaks. Using Brent' s algorithm again we vary these
parameters until the probs is maximized for different choices
of S, the number of underlying states. To determine which

(7)

This defines a normalized two-dimensional Gaussian with
center (xc,Jc), positive diagonal width O"hetero and negative
diagonal width O"homo'

If we assume that there are S underlying states, then there
must be a total of S X (S - 1) two-dimensional Gaussians.
To find the probability of a transition being found at position
(x,y) given a series of FRET positions Si we define a prob
ability function probs(x,y):

s s
probs(x,y) = ¿ ¿ amp¡,j Xpeak(x, y, Si, Sj), (8)

i=lj=l
i#j

where ampi,j is a weighting factor for each peak normalized to
unity. We already know aH the transitions that were found
(startm, stoPm*, am,m*), so we simply find the likelihood that

S is best we use the Bayesian information criterion (BIe)
(22):

BIC(S) = -2 X In(PROBs) + (S2 + 1)

X In [llil~es %1 m~l am,m*] . (lO)
m;;im*

We can then determine BIeeS) for different S values until
a minimum is reached; at that point the value that minimizes
BIeeS) is the most likely number ofunderlying FRET states.
For the data in Fig. 5 A, such a minimum was reached with
the five-state probs(x,y) overlaid in Fig. 5 B. With probs(x,y)
known, one can easily determine which of the underlying
(Si,Sj) peaks each detected (startm, stoPm*) transition belongs

1.0

c: 0.8
.g
'éij
c: 0.6
~
(¡¡

.::= 0.4ro
t-
W
o:: 0.2u.

0.0
0.0 0.2 0.4 0.6 0.8

FRET before transition

1.0 0.0 0.2 0.4 0.6 0.8

FRET before transition

FIGURE 5 Deterrnining the most
likely number of states probabilisti
cally. (A) The data from Fig. 8's TDP
are plotted again but with infinitely
narrow widths so that each point ap
pears as a spike with amplitude equal to
the number of transitions found. By
using the Ble (Eq. 10), we find that the
most likely number of underlying states
for this data set is five. The optirnized

1.0 probs(x,y) function is overlaid in B.
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to (if any). Once this list is compiled, each (si,sj) peak’s mean

transition probability and associated error are determined

from Eqs. 4 and 5 above.

ROBUSTNESS OF THE ALGORITHM

To determine the robustness of the algorithm we tested its

response to changes in various parameters (Fig. 6). Simu-

lated data were generated by adding Gaussian white noise to

a series of idealized donor and acceptor trajectories, while

varying the transition probabilities, states’ FRET values, or

trace length.

Effect of FRET difference, noise, and data rate

We first considered traces of nearly infinite length (40,000

time steps); adding more time steps did not yield greater

precision. The standard parameters were as follows: FRETA¼
0.3 (state A) and FRETB ¼ 0.7 (state B) with a DFRET [
jFRETB � FRETAj ¼ 0.4, FRET noise width d of 0.144, a

typical value found in real data, and transition probabilities

of tpA/B ¼ 0.05 and tpB/A ¼ 0.02. Each parameter was

varied, whereas the others remained constant so as to deter-

mine the impact of that parameter, and 100 traces were

analyzed for each choice of parameters.

The success of the algorithm was measured in two ways.

First, we determined what fraction of the 100 traces returned

the true FRET values (0.3 (60.05) or 0.7 (60.05)) (solid
squares in Fig. 6). Second, the deduced transition probability
k* was compared to the true value k and jln(k/k*)j plotted
(open squares in Fig. 6).

Fig. 6 A shows the effect of changing DFRET, the spacing
between the two idealized FRET values. The algorithm

responds well with ,40% error in transition probability and

close to 100% yield of returning correct FRET values down

to a DFRET of 0.1. Fig. 6 B shows the effect of FRET noise,

parameterized by d. The algorithm responds well to in-

creased noise, breaking down only when d . 0.4. Fig. 6 C
shows the effect of data integration time relative to the state

lifetimes. Here we vary the transition probabilities tpA/B

and tpB/A to change their absolute values while preserving

their ratio. Since tpA/B . tpB/A, we plot the algorithm

response against the ratio of the data integration time and the

dwell time of state A. Adequate state detection and transition

probability determination (11% error) can be made even

when the data integration time is only 60% longer than the

state dwell time.

FIGURE 6 Algorithm response to changes in trace parameters with 400 traces. Open squares correspond to systematic error jln(k/k*)j; solid squares

correspond to the probability that FRET states obtained match the true values. Data taken based on 1000 frames/trace (identical to the nearly infinite 40,000

frames/trace) reflect changes in: (A) spacing between FRET states, (B) FRET peak width (d, or noise), and (C) FRET state lifetime, respectively. (D) The

algorithm response with respect to the length of traces. The results suggest that the algorithm will yield a system’s true FRET states and transition rates as long

as FRET spacing is greater than FRET noise width, data sampling occurs at twice the rate of typical transitions, and at least one transition occurs per trace.

Hidden Markov Modeling of FRET Traces 1947
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Effect of trace length

So far we have considered the cases wherein the observation

time window was practically infinite, but in real experiments,

the observation time is limited by photobleaching. Fig. 6 D
shows the algorithm performance versus the average number

of transitions per trace. For the standard transition probabil-

ities used here, ;100 data points are necessary to determine

their values within 20%, which corresponds to only 1.5 tran-

sitions per trace on average.

Number of traces needed

Up to this point all discussions of error have related to sys-

tematic error, i.e., unavoidable error that could not be re-

duced by analyzing more traces. We found that even with as

few as 20 traces, a number routinely obtained in single mol-

ecule experiments, the statistical contribution to error is min-

imal, at only 8% for the standard parameters (data not shown).

More complex systems

In moving from simple two- to three- or more-state systems,

results will follow those described for the three-state system

as long as (A), the FRET states are separated by at least the

same distance as the noise width of FRET states; (B), the

sampling rate is greater than the transition rate for all states;

and (C), the system transits between each of the states more

than once per trace. Of these criteria, by far the hardest to

satisfy as the system becomes more complex is the last one.

Since for every state added there are 2 (S � 1) new entries in

the transition probability matrix it becomes difficult to obtain

traces that show transitions from every state to every other

state. Fortunately in many systems not all transitions are pos-

sible or some transitions are very rare, allowing one to ne-

glect several entries in the transition probability matrix and

significantly reduce the requirements. For example, Fig. 4

shows the transition density plot (TDP) analysis of a sim-

ulated five-state data set of 400 traces, 500 data points/trace,

FRET noise width of 0.144, and FRET values of 0.18, 0.35,

0.48, 0.63, and 0.78. Transition probabilities ranged from

0.002 to 0.1 and were chosen to favor transitions between

neighboring states. The lowest peaks showing a small num-

ber of transitions have poor statistics and generate transition

probabilities that deviate significantly from the true values.

For the 10 highest peaks showing a significant number of

transitions, the calculated transition probabilities agreed with

the true values within 23%.

Heterogeneous broadening

In real single molecule FRET trajectories different molecules

often exhibit different FRET values, even when observed

over a sufficiently long time to remove statistical noise. This

is particularly noticeable in wide field measurements when

looking at trajectories obtained from different image files.

This heterogeneous broadening is usually due to instrumen-

tal sources such as imperfect alignment of the donor and ac-

ceptor detection channels, heterogeneous background on the

slide surface, and changes in microscope focusing, and is not

necessarily indicative of an underlying molecular heteroge-

neity. Since this broadening is usually uniform, the result is

to shift all FRET values by a nearly constant amount, largely

preserving spacing. To test if our algorithm works well even

in the presence of heterogeneous broadening, we modified

the five-state system described above to exhibit heteroge-

neous broadening in FRET with a width of 0.15 (typical

value obtained experimentally). The resulting TDP is found

in Fig. 7. Using the thresholds plotted, the transition rates

were calculated, and for the largest 10 peaks (those showing

an appreciable number of transitions) the calculated values

agreed with the underlying values with a typical error of

15%.

APPLICATION TO EXPERIMENTAL DATA

Holliday junctions

As a first test of the HMM algorithm on real data we studied

the well-characterized dynamics of the Holliday junction. In

this molecule two adjacent arms of the DNA four-way

junction are labeled with a donor and an acceptor and single-

molecule FRET time traces are taken as the junction flips

between two alternative folded forms (8). Interconversions

occurring on the millisecond timescale are detected as

FIGURE 7 Effect of heterogeneous broadening. The TDP is from exactly

the same system as Fig. 2 D, but this time with true FRET state values

varying slightly from trace to trace. The width of this distribution was 0.15,

a typical value obtained from single-molecule measurements. Despite the

smearing, FRET-state values are still discerned and transition rates

recovered.

1948 McKinney et al.

Biophysical Journal 91(5) 1941–1951



transitions between two FRET values. We have compared

the idealized trace generated by the HMM algorithm to what

we found using the thresholding algorithm as well as the

exchange rates deduced using both methods. The HMM

output trace fits well with that generated by the thresholding

algorithm save for one situation: short-lived transitions. The

HMM algorithm allows transitions of one or two time step

durations where the thresholding algorithm rarely did, as

such transitions were ascribed to noise. Consequently, the

HMM algorithm yields transition rates larger than those

obtained via the thresholding algorithms (a transition rate of

9 s�1 vs. 6 s�1). Although we cannot judge which one is

closer to the true value, we were satisfied that the HMM al-

gorithm returned values comparable to those deduced pre-

viously for experimental data.

RecA binding and dissociation

Finally we applied our algorithm to experimental data that

could not otherwise be analyzed reliably: the tracking of in-

dividual RecA protein binding and dissociation events on a

single DNA molecule. Detailed experimental procedures and

analysis are published elsewhere (23), but in brief a construct

was designed which would exhibit a change in FRET upon

binding of a RecA monomer (Fig. 8 A). As more RecA

proteins bind the FRET continues to decrease. There was

only an initial guess as to the maximum number of RecA

monomers that can bind to the DNA, and for that reason the

analysis made no assumption about the number of states.

Rather, the algorithm was asked to attempt to find a large

enough number of states, 10, in the data.

Typical data with fit can be seen in Fig. 8 B. The resulting
TDP (Fig. 8 C) constructed from raw, uncorrected intensity

data shows clearly resolved peaks at 0.15, 0.3, 0.45, 0.6, and

0.8 along each axis. The first, centered at approximately

FRET ¼ 0.15 is the result of acceptor blinking, and is not

indicative of a true physical state. The remaining four were

presumed to be different legitimate FRET states of the

system. The 0.8 peak coincides with the value obtained in the

absence of RecA and the 0.3 peak coincides with the value

FIGURE 8 Analysis of a RecA filament data at 250 nM RecA. (A) As more RecA monomers bind, the distance between dyes increases and the FRET

efficiency decreases. (B) First raw data (no leakage or cross talk correction) files were analyzed using the modeling algorithm. (C) Next the TDP was generated.

Peaks found below 0.2 in either axis are due to acceptor blinking, but the remaining peaks clearly show different binding modes. The highest FRET value

(;0.8 FRET) is bare DNA. Peaks at ;0.6, ;0.45, and ;0.3 indicate one, two, and three RecAs bound, respectively. FRET values are obtained by simply

taking the ratio of the acceptor intensity to the sum of the donor and acceptor and should not be used for distance determinations.
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obtained with RecA in the presence of ATPgS (where RecA

binds stably), leading to the conclusion that the two re-

maining peaks (0.45 and 0.6) are the result of an intermediate

number of RecA molecules bound. Since there are three

FRET peaks other than the DNA-only peak indicating that

up to three RecA monomers can bind, we label the FRET

peaks accordingly (0.8 / M0, 0.6 / M1, 0.45 / M2, and

0.3/M3). It is worth noting that the TDP shows transitions

occurring primarily between neighboring FRET values,

suggesting that RecA binds and dissociates as a monomer.

With states defined we proceeded to determine the state-

to-state transition rates at various RecA concentrations and

graphed the results in Fig. 9. Note that the transition prob-

ability of going from M0 to M1, thus for binding, increases

significantly as higher concentrations of RecA are added

(Fig. 9 A). No corresponding change was seen for dissoci-

ation for example for the transition probability of going from

M3 to M2 (Fig. 9 B). We conclude that our algorithm can an-

alyze a complex four-state system without any preconceived

model and can return nontrivial conclusions such as tran-

sitions being predominantly between nearest neighbors.

SUMMARY

The power of hidden Markov modeling has long been known

(24), but until recently had never been applied to single-

molecule fluorescence measurements (10,11,14,15), and then

only applied to data where individual photon arrival times

were known. We have applied modeling to a new and in-

creasingly important set of single-molecule data: FRET tra-

jectories. This enables unambiguous and unbiased separation

of noise from state-to-state transitions and reliable analysis

of noisy data, and enables examination and detection of sig-

nificantly more complicated systems, including systems with

up to six different states (23), limited only by signal to noise.

The molecule-by-molecule nature of the algorithm preserves

one’s ability to detect heterogeneities in dynamics between

molecules which has proven critical in single-molecule stud-

ies (7). Potentially the algorithm could also be used to dis-

cern states with the same FRET level but with different

lifetimes, as with ion channels.

Both the HMM software and the transition density plotting

software are publicly available and can be downloaded from

our website at http://bio.physics.uiuc.edu/HaMMy.html.
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