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Mathematical Analysis. 
The growth of cell population is governed by a conservation law of mass or cell volume. 

The assumptions and analytical details on how to derive the conservation law have been 
discussed elsewhere [l], [2] and only a summary of results is given here. Following [2], we 
consider the growth of a cell culture in a small tube with a small constant cross sectional 
area, o, and the three interfacial heights 20(t), zs(t), zi(t) t o separate the cell culture from 
the ambient medium, dividing from nondividing cells, and living from dead cells respectively. 
The rate of cell proliferation S (volume created per unit volume of viable cells) is a function 
of the nutrient consumption u(z,r) and inhibitor production p(z, t) such that 

{ 

= s , a constant, for u > 0, , /3 < /3, 

S(u, P) = 
= 0, otherwise 

where u, is the critical nutrient concentration below which the cells die, and ,B, is the critical 
inhibitor concentration above which mitosis is inhibited. It is assumed that the column of 
necrotic debris loses cell volume by diffusion of waste material outward at a rate proportional 
to its volume with X the proportionality constant. The conservation of mass law is [2] 

Jk = s[zc(t) - max(z,(t), zi(t))] - ki(t) 
dt 

subject to initial conditions 

(1) 

20(O) = he, Z;(O) = Z,(O) = 0 a 

We need to find the relationships between zi(t), zg(t), and zo(t), and to accomplish this 
we must solve the diffusion equations for the uniform nutrient consumption u and inhibitor 
production P. (Since the time-scale for growth is large compared with a typical diffusion 
time, it is assumed that the culture is in a state of diffusive equilibrium at all times). 

This part of our model does not differ from that of [2] and so we merely note his results 
here. Thus we find from the nutrient diffusion equation for u 

that 

d2u C 
p=z ’ Zi 5 Z 5 ZO 

u=uoo, 

u = g(z2 - Zi) + gZi(ZO - Z) + Uoo , 
z 2 zo 
ZO 2 Z 2 Z; 

U = Ui , ZizZ>O I (2) 

and 

Typeset by A&-m 

27 



28 S.A. MAGGELAKIS, J.A. ADAM 
. 

20 - Zi = $(cm - q)] ’ = h, (3) 

with u, being the nutrient concentration in the ambient medium, C the constant rate of 
nutrient consumption, k the diffusivity constant of the nutrient and h, the critical height of 
the cell culture. When the culture reaches this critical height h,, the cells at the bottom of 
the vial (z = 0) start to die. 

In distinction to [2], it is assumed that the source of the chemical inhibitor is produced at 
a non-uniform rate throughout the necrotic region. The diffusion equation for the inhibitor 
concentration p is 

g ‘:(l-$), Z~.zi , OIb_<l =-- 

0, 
(4) 

= z 1 zi 

subject to the conditions that $$ = 0 at z = 0 (i.e. no inhibitor flux through the 
tube), p = 0 at z = ze (i.e. 

/3 and g are continuous at 

the contaminant is removed from the ambient fluid), and 

2 = zi. The parameter b used to measure the degree of 
nonuniformity of the inhibitor production rate, P is the inhibitor production rate, and K is 
the inhibitor diffusivity constant. The solution to this system is 

P=O, 

p = i*i(*O - Z)(l - f, y 
z 1 2.0 

Zi 5 t < 20 
1. (5) 

P 
P z* =-- [- - Zi(ZO - * 5 *i 
K 2 

9) - &(Z3 + Z?(PZi - 3Zc))], 
1 

When mitotic inhibition is effective the inhibitor concentration /3 is greater than ,B, in the 
layer ri ,< z 5 zo. This concentration is determined by 

Pt = izi(ZO - Zg)( 1 - -!) . (G> 

Note that inhibition is first evident when z. = ri and 

p, = F.Zi(ZO - Zi)(l - f, * (7) 

The growth of cell population occurs in three distinct stages: 
Stane 1: All cells are alive and proliferating so that a period of exponential growth exists 

until the onset of necrosis, and LO(~) satisfies the condition 

The conservation law (1) becomes 

d- -$L =0(t) 

with the initial condition 

Thus, 

a(O) = ho. 

q(t)-= hOeat, Zg(t) = Zi(t) = 0 

which is valid for times 0 5 t 5 11 up until ho = h, 

03) 

(9) 
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i.e. rc(ti) = h, = hceSt* 

Hence, the cell culture reaches the critical height h, at 

The growth will, therefore, be exponential for times in 

29 

(10) 

(11) 

Stage 2: (Onset of necrosis). The proliferation rate at the bottom of the vial (z = 0) 
begins to slow down and cells begin to die. During this stage, the culture has a two-layer 
structure. In the outer layer, the cells grow exponentially. Inside this region, a necrotic 
layer forms so that a period of growth retardation exists, due to cell death, which lasts 
from the onset of necrosis until p = p, at the necrotic interface z = zi. The volume of 
the necrotic debris begins to increase as does the concentration of the inhibitor /3. As the 
growth rate slows down, it can lead to a steady or dormant state in which the volume loss 
due to necrosis is balanced by the volume gained due to cell division. Hence, under certain 
conditions, inhibition is not necessary for the existence of a dormant state. If the steady 
state is not reached, however, a third stage is initiated. The conservation law (1) in this 
stage becomes 

!s = m)(t) - (s + x)&(t) 
lit (12) 

with ~0 - ri = h, and solution given by 

- = 1+ - - -_e-X(‘-‘l) Zo(f) 1 1 

h, 
I 

7 7 
t.g(t) = Zi(t) = 30(t) - he (13) 

A 
where 7 = ; . 

The inhibitor is produced non-uniformly in the necrotic region, and rg(t) > ri(t) after 
,l3 = p, at .2 = Zi. Thus, inhibition is first evident when z. = zi and from (7) and (13) we 
find that 

at the onset of necrosis, where the dimensionless parameter Q is given by 

(14) 

(15) 

Q2 is, therefore, a measure of the competing effects of nutrient consumption/diffusion and 
inhibitor production/diffusion. As mentioned earlier, under certain conditions a steady state 
or a third stage is initiated. These cutoff conditions depend critically on the parameters &, b 
and 7 (see below). 

AS zg (t) moves ahead of ri(t), 

Therefore, 

ML 3:1-c 

ti< Q2 
h,-2-b’ 
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(16) 

If necrosis balances growth in this stage then (12) becomes 

dzo - = 0 = (s + X)h, - h,(t) 
dt 

and 

Since ro(tl) = h,, the range of zo for this stage is 

1 < Q(t) 
-h, 

(17) 

(18) 

(19) 

Thus, if 

equilibrium has been reached at time t in f1 5 t < 00, and the development is completed in 

this stage. Otherwise 

1+& <l-t’ 
7’ 

and a further stage of growth ensues. 
To find the time tz, when the inhibitor ,f3 reaches the critical value fl,, consider equation 

(13) for t = t2, i.e. 

Q2 1 1 
1+2_b=l+r--ye -X(rz-tl) , 

or equivalently 

12 = t1 - tln(l-g). (20) 

Thus at time t2 given by (20) inhibition will start, and growth retardation due to cell death 
will last for times in the interval 

21 < t 5 t2 = 21 -$ln(l-2). (21) 

Stage 3: This is a period of retarded growth due to death of cells and chemical inhibition of 
mitosis which begins when p = /3, at th e necrotic interface ri(t) and lasts until the dormant 

steady state is achieved. During this stage, the cell culture has a three layer structure. In 
the outer layer, the growth of cells is normal as in Stage 1. Inside this layer, the rate of cell 
proliferation is below normal, due to inhibition of mitosis, and consists of viable cells only. 
In the innermost layer, there is accumulation of necrotic debris. 

The conservation law now is 

2 = s {zo(t) - zg(t)} - hi(t). (22) 

From equat,ions (3),(6) and (15) we obtain 
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= zi(t) + he - 
S’h: 

Zi(2 - b) . 

Thus (22) has solution 

31 

(23) 

-1+~r;_~) [1-(1-~)e-2~(t-ta)]*, for tz<t<ca (24) 4t) 
he 

As t + t2 and t -+ co in (24) we get the range of Zo(t) 

It is easily seen that 

lim zi = ( 
26% 112 

t-co Py(2-b)) = A 

lim .zp = X(1 - Y) + he 
t-00 

lim zo = X + hC 
t-w 

yielding the limiting asymptotic values for this model. The effect of non-uniform inhibitor 

production is apparent via the term A. 
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