Local Cohomology of Stanley–Reisner Rings with Supports in General Monomial Ideals

Victor Reiner, Volkmar Welker, and Kohji Yanagawa

School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455
E-mail: reiner@math.umn.edu

Fachbereich Mathematik und Informatik, Philipps-Universität Marburg, 35032 Marburg, Germany
E-mail: welker@mathematik.uni-marburg.de

Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560, Japan
E-mail: yanagawa@math.sci.osaka-u.ac.jp

Communicated by Craig Huneke
Received January 2, 2001

We study the local cohomology modules $H^i_k(I[\Delta])$ of the Stanley–Reisner ring $k[\Delta]$ of a simplicial complex Δ with support in the ideal $I_2 \subset k[\Delta]$ corresponding to a subcomplex $\Sigma \subset \Delta$. We give a combinatorial topological formula for the multigraded Hilbert series, and in the case where the ambient complex is Gorenstein, compare this with a second combinatorial formula that generalizes results of Mustata and Terai. The agreement between these two formulae is seen to be a disguised form of Alexander duality. Other results include a comparison of the local cohomology with certain Ext modules, results about when it is concentrated in a single homological degree, and combinatorial topological interpretations of some vanishing theorems.

Key Words: Stanley–Reisner rings; local cohomology modules; Alexander duality; Lichtenbaum–Hartshorne vanishing theorem; Gorenstein complex.

1. INTRODUCTION

The local cohomology module $H^i_k(I) := \lim_{\rightarrow} \Ext^i_k(R/I, R)$ of a Noetherian commutative ring R with support in a (nonmaximal) ideal I is still a very mysterious object. Recently there have been several instances where more explicit information on local cohomology modules was ob-
Local cohomology of Stanley–Reisner rings

707

tained in special cases. One such case is a combinatorial approach to the
local cohomology of affine semigroup rings (e.g., polynomial rings) and at
their monomial ideals (see [12, 14, 16, 18, 20, 21]). In this paper we
construct an analogous theory for a Stanley–Reisner ring \(k[\Delta] \) using
combinatorial topology.

Let \(S = k[x_1, \ldots, x_n] \) be a polynomial ring over a field \(k \). Let \(\Delta \subseteq 2^{(1, \ldots, n)} \) be a simplicial complex and let \(\Sigma \) be a subcomplex of \(\Delta \). Then the
Stanley–Reisner ideal \(I_\Delta \) of \(\Delta \) is contained in the Stanley–Reisner ideal
\(I_\Sigma \) of \(\Sigma \). We denote the image of \(I_\Sigma \) in \(k[\Delta] = S/I_\Delta \) by \(J \). We study the
local cohomology module \(H_j(k[\Delta]) \), making use of its natural \(\mathbb{Z}^n \)-grading.
Hochster gave a famous formula for the \(\mathbb{Z}^n \)-graded Hilbert function of
\(H_0^i(k[\Delta]) \), and Terai [18] and Mustaţă [16] gave a similar formula for \(H_1^i(S) \). Our result, Theorem 3.2, is a generalization of both formulas.

Most results of Mustaţă [16] for \(H_1^i(S) \) remain true for Gorenstein \(k[\Delta] \).
In Theorem 4.9, we prove that

\[
\text{Ext}^i_{k[\Delta]}(k[\Delta]/J, k[\Delta]) \subseteq \text{Ext}^i_{k[\Delta]}(k[\Delta]/J^{[2]}, k[\Delta]) \subseteq \cdots \subseteq H_j(k[\Delta]),
\]

and these inclusions are well regulated if we consider the \(\mathbb{Z}^n \)-grading, where \(J^{[2]} \) is the \(j \)th “Frobenius power” of \(J \). (If \(k[\Delta] \) is not Gorenstein, a somewhat weaker result holds.) A general commutative ring \(R \) and an
ideal \(I \) usually do not have such a simple property.

There is one big difference between [16] and our case. In [16], it is
proved that \(\text{Ext}^i_j(S/J, S) \) “determines” \(H_j(S) \). In our case, \(\text{Ext}^i_{k[\Delta]}(k[\Delta]/J^{[2]}, k[\Delta]) \) determines \(H_j(k[\Delta]) \), but \(\text{Ext}^i_{k[\Delta]}(k[\Delta]/J, k[\Delta]) \)
cannot. The reason is that \(H_j(S) \) is a straight module (after suitable
degree shifting), but \(H_j(k[\Delta]) \) is only quasi-straight; see Section 2.

The paper is structured as follows. In Section 2 we prove some basic
properties of \(H_j^i(k[\Delta]) \). In Section 3 we give a topological formula (Theorem 3.2) for the \(\mathbb{Z}^n \)-graded Hilbert function of \(H_j(k[\Delta]) \). As an application,
we give a topological proof and interpretation of the Lichtenbaum–
Hartshorne vanishing theorem for Stanley–Reisner rings (Theorem 3.5). In
Section 4 we assume that \(k[\Delta] \) is Cohen–Macaulay and study \(H_j^i(\omega_{k[\Delta]}) \)
for the canonical module \(\omega_{k[\Delta]} \) of \(k[\Delta] \), which is in some sense much
easier to treat than \(H_j^i(k[\Delta]) \). In Section 5 we use some of the results from
Section 4 to give a topological formula (Theorem 5.1) for \(H_j^i(\omega_{k[\Delta]}) \). Of
course, when \(k[\Delta] \) is Gorenstein, so that \(k[\Delta] \) and \(\omega_{k[\Delta]} \) are isomorphic up
to a shift in grading, this formula is equivalent to that of Section 3. But the
equivalence is not trivial and is derived from a variant of Alexander duality
(Lemma 6.8). The final section is an appendix in which we collect the tools
and the terminology from combinatorial topology used in Sections 3 and 5.

We hope that our results will motivate further study on \(H_j^i(k[\Delta]) \) and
provide good examples for the general theory of local cohomology
modules.
2. BASIC PROPERTIES

Let \(S = k[x_1, \ldots, x_n] \) be a polynomial ring over a field \(k \). Consider an \(\mathbb{N}^n \)-grading \(S = \bigoplus_{a \in \mathbb{N}^n} S_a = \bigoplus_{a \in \mathbb{N}^n} k x^a \), where \(x^a = \prod_{i=1}^n x_i^{a_i} \) is the monomial with exponent vector \(a = (a_1, \ldots, a_n) \). We denote the graded maximal ideal \((x_1, \ldots, x_n) \) by \(\mathfrak{m} \).

Let \(M \) be a \(\mathbb{Z}^n \)-graded \(S \)-module; that is, \(M = \bigoplus_{a \in \mathbb{Z}^n} M_a \) as a \(k \)-vector space and \(S_b M_a \subseteq M_{a+b} \) for all \(a \in \mathbb{Z}^n \) and \(b \in \mathbb{N}^n \). Then \(M(\mathfrak{a}) \) denotes the shifted module with \(M(\mathfrak{a})_b = M_{a+b} \). We denote the category of \(\mathbb{Z}^n \)-graded \(S \)-modules and their \(\mathbb{Z}^n \)-graded \(S \)-homomorphisms by \(\text{Mod} \). Here we say that \(f: M \to N \) is \(\mathbb{Z}^n \)-graded if \(f(M_a) \subseteq N_{\mathfrak{a}} \) for all \(\mathfrak{a} \in \mathbb{Z}^n \). We denote the category of (usual) \(S \)-modules and their \(S \)-homomorphisms by \(\text{Mod} \).

In this paper, \(\text{Hom}_S(M, N) \) always means \(\text{Hom}_\text{Mod}(M, N) \), even if \(M \) and \(N \) belong to a subcategory of \(\text{Mod} \). If \(M, N \in \text{Mod} \) and \(M \) is finitely generated, then \(\text{Hom}_S(M, N) \) (more generally, \(\text{Ext}_S^i(M, N) \)) has a natural \(\mathbb{Z}^n \)-grading with \(\text{Hom}_S(M, N)_a = \text{Hom}_\text{Mod}(M, N(\mathfrak{a})) \) (see [8]). Similarly, if \(J \) is a monomial ideal, then a local cohomology module \(H^j(J)(M) \) for \(M \) in \(\text{Mod} \) is also \(\mathbb{Z}^n \)-graded.

For \(\mathfrak{a} \in \mathbb{Z}^n \), define the following support subsets of \([n] := \{1, 2, \ldots, n\} \):
\[
\begin{align*}
supp_+ (\mathfrak{a}) &:= \{i \mid a_i > 0\} \\
\supp_- (\mathfrak{a}) &:= \{i \mid a_i < 0\} \\
\supp (\mathfrak{a}) &:= \{i \mid a_i \neq 0\}.
\end{align*}
\]

We extend this terminology to Laurent monomials \(x^\mathfrak{a} \) in the obvious way; that is, \(\supp(x^\mathfrak{a}) := \supp(\mathfrak{a}) \), and similarly for \(\supp_+ \), \(\supp_- \). We use \(\mathfrak{a} + \{i\} \) to denote \(\mathfrak{a} + e_i \) for the \(i \)th unit vector \(e_i \in \mathbb{Z}^n \). When \(\mathfrak{a} \in \mathbb{Z}^n \) satisfies \(a_i = 0, 1 \) for all \(i \), we sometimes identify \(\mathfrak{a} \) with \(F = \supp(\mathfrak{a}) \). For example, we write \(M_F \) for \(M_\mathfrak{a} \).

DEFINITION 2.1 ([19]). A \(\mathbb{Z}^n \)-graded \(S \)-module \(M = \bigoplus_{a \in \mathbb{Z}^n} M_a \) is called **square-free** if the following conditions are satisfied:

(a) \(M \) is finitely generated and \(\mathbb{N}^n \)-graded (i.e., \(M_\mathfrak{a} = 0 \) if \(\mathfrak{a} \neq \mathbb{N}^n \)).

(b) The multiplication map \(M_a \ni y \mapsto x_i y \in M_{a+\{i\}} \) is bijective for all \(i \in [n] \) and all \(\mathfrak{a} = (a_1, \ldots, a_n) \in \mathbb{N}^n \) with \(a_i \neq 0 \).

EXAMPLE 2.2. A free module \(S(-F) \) is square-free for all \(F \subseteq [n] \). In particular, \(S \) itself and the \(\mathbb{Z}^n \)-graded canonical module \(\omega_S = S(-1) \) are square-free. Here \(-1 = (-1, \ldots, -1) \).

Let \(\Delta \subseteq 2^{[n]} \) be a simplicial complex (i.e., if \(F \in \Delta \) and \(G \subseteq F \), then \(G \in \Delta \)). The **Stanley–Reisner ideal** of \(\Delta \) is the square-free monomial ideal...
Let $\Sigma \subseteq \Delta \subseteq 2^n$ be two simplicial complexes. Then we have Stanley–Reisner ideals $I_\Sigma \subseteq I_\Delta$. We always assume that Σ is not the void simplicial complex \emptyset; that is, we assume that $I_\Sigma \neq S$, while we allow the case $\Sigma = \{\emptyset\}$ (i.e., $I_\Sigma = \mathfrak{m}$). Throughout this paper, we denote the image of I_Σ in $k[\Delta]$ by J. Sometimes we also denote I_Σ itself by J. For a $k[\Delta]$-module M, the ideal I_Σ lies in the kernel of the action of S on the local cohomology module $H^i_J(M)$ of M regarded as an S-module. Thus $H^i_J(M)$ can be regarded as a $k[\Delta]$-module, which is known to be isomorphic to the local cohomology module $H^i_J(M)$ of M as a $k[\Delta]$-module. Therefore, the convention that we have chosen is harmless.

Definition 2.3. A \mathbb{Z}^n-graded S-module $M = \bigoplus_{a \in \mathbb{Z}^n} M_a$ is called **straight** if the following two conditions are satisfied:

1. $\dim_k M_a < \infty$ for all $a \in \mathbb{Z}^n$.
2. The multiplication map $M_a \ni y \mapsto x_i y \in M_{a+(i)}$ is bijective for all $i \in [n]$ and all $a \in \mathbb{Z}^n$ with $a_i \neq 0$.

Example 2.4. For a subset $F \subseteq [n]$, let P_F denote the monomial prime ideal $(x_i \mid i \notin F)$ of S. The injective hull $E(S/P_F)$ of S/P_F in the category *Mod is a straight module. In fact,

\[(E(S/P_F))_a = \begin{cases} k & \text{if } \text{supp}_a(a) \subseteq F \\ 0 & \text{otherwise} \end{cases},\]

and the multiplication map $E(S/P_F)_a \ni y \mapsto x^by \in E(S/P_F)_{a+b}$ is always surjective (see [14, Example 1.1]). Note, that $E(S/P_F)$ is not injective in Mod unless $P_F = \mathfrak{m}$. Nevertheless, (2.1) is still useful. For example, if E^* is an injective resolution of a \mathbb{Z}^n-graded module M in *Mod, then $H^i_J(M)$ for a monomial ideal J is isomorphic to $H^i((\Gamma_J(E^*))$, where Γ_J is the endofunctor on *Mod defined by $\Gamma_J(M) = \{x \in M \mid J^m x = 0 \text{ for } m \gg 0\}$.

In [20], Yanagawa proved that a local cohomology module $H^i_J(\omega_S) = H^i_J(S)^i - 1$ is a straight module for any monomial ideal J. But in general, $H^i_J(k[\Delta])$ is not straight even after a degree shift. Thus we must introduce a new concept.

Definition 2.5. A \mathbb{Z}^n-graded S-module $M = \bigoplus_{a \in \mathbb{Z}^n} M_a$ is called **quasi-straight** if the following two conditions are satisfied:

1. $\dim_k M_a < \infty$ for all $a \in \mathbb{Z}^n$.
(b) The multiplication map \(M_a \ni y \mapsto x_i y \in M_{a+\{i\}} \) is bijective for all \(i \in [n] \) and all \(a \in \mathbb{Z}^n \) with \(a_i \neq 0, -1 \).

Example 2.6. Square-free modules and straight modules are always quasi-straight. The injective module \(E(S/P_F(a)) \) is quasi-straight if and only if \(a_i = 1, 0 \) for all \(i \notin F \). If \(E(S/P_F(a)) \) is quasi-straight, then it can be written as \(E(S/P_F(G)) \) for some \(G \subseteq [n] \) with \(F \cap G = \emptyset \). Note that \([E(S/P_F(G))]_a = k \) if \(\text{supp}_+ a \subseteq F \) and \(\text{supp}_- a \supseteq G \), and \([E(S/P_F(G))]_a = 0 \) otherwise.

Let \(M \) be a quasi-straight module. Then we have \(\dim_k M_a = \dim_k M_{\hat{a}} \) for all \(a \in \mathbb{Z}^n \), where the \(i \)th component \(\hat{a}_i \) of \(\hat{a} \in \mathbb{Z}^n \) is defined by

\[
\hat{a}_i = \begin{cases}
1 & \text{if } a_i \geq 1 \\
0 & \text{if } a_i = 0 \\
-1 & \text{if } a_i \leq -1.
\end{cases}
\]

Hence, to know the Hilbert function of a quasi-straight module \(M \), it is enough to know the dimensions \(\dim_k M_a \) for \(a \in \mathbb{Z}^n \) with \(a_i \in \{-1, 0, 1\} \).

A quasi-straight module \(M \) is finitely generated as an \(S \)-module if and only if it is \(\mathbb{N}^n \)-graded. Of course, \(M \) is square-free in this case.

We denote the full subcategory of \(\text{Mod}^* \) consisting of quasi-straight modules by \(q\text{Str} \). One can easily check that this is an abelian subcategory of \(\text{Mod}^* \) closed under extensions and direct summands.

For further study of \(q\text{Str} \), the concept of the incidence algebra of a finite poset is very useful. For the reader’s convenience, here we recall the basic properties of the incidence algebra.

Let \(P \) be a finite poset. The incidence algebra \(A = I(P, k) \) of \(P \) over \(k \) is the \(k \)-vector space with basis \(\{ e_{x,y} \mid x, y \in P, x \leq y \} \) and multiplication defined \(k \)-linearly by \(e_{x,z}e_{z,w} = \delta_{x,z}e_{x,w} \). We write \(e_x \) for \(e_{x,x} \). Then \(A \) is a finite-dimensional associative \(k \)-algebra with \(1 = \sum_x e_x \). Note that \(e_x e_y = \delta_{x,y} e_y \).

If \(M \) is a right \(A \)-module, then \(M = \bigoplus_{x \in P} Me_x \) as a \(k \)-vector space. We write \(M_x \) for \(Me_x \). If \(f : M \to N \) is an \(A \)-linear map of right \(A \)-modules, then \(f(M_x) \subseteq N_x \). Note that \(M_x e_{x,y} \subseteq M_y \) and \(M_y e_{x,z} = 0 \) for \(y \neq x \).

For each \(x \in P \), we can construct an injective object \(\tilde{E}(x) \) in the category \(\text{mod}_A \) of finitely generated right \(A \)-modules. Let \(\tilde{E}(x) \) be a \(k \)-vector space with basis \(\{ \tilde{e}_y \mid y \leq x \} \). Then we can regard \(\tilde{E}(x) \) as a right \(A \)-module by

\[
\tilde{e}_y \cdot e_{z,w} = \begin{cases}
\tilde{e}_w & \text{if } y = z \text{ and } w \leq x \\
0 & \text{otherwise}.
\end{cases}
\]

Note that \([\tilde{E}(x)]_y = k\tilde{e}_y \) if \(y \leq x \), and \([\tilde{E}(x)]_y = 0 \) otherwise.
Proposition 2.7. The category \(\text{mod}_A \) has enough projectives and enough injectives. An indecomposable injective object is isomorphic to \(E(x) \) for some \(x \in P \), and any injective object is a finite direct sum of the copies of \(E(x) \) for various \(x \).

Proof. Since \(A \) can be regarded as an algebra associated with a **quiver with relation** (see [1]), the assertions follows from [1, Proposition 1.8] and the arguments in [1, pp. 61–62].

We partially order \(\mathbb{Z}^n \) by setting \((a_1, \ldots, a_n) \preceq (b_1, \ldots, b_n) \) if \(a_i \leq b_i \) for all \(1 \leq i \leq n \). Denote by \(3^{[n]} : = \{ a \in \mathbb{Z}^n \mid -1 \leq a_i \leq 1 \text{ for all } i \} \).

Lemma 2.8. Let \(A := I(3^{[n]}, k) \) be the incidence algebra of the poset \(3^{[n]} \) over \(k \). Then there is an equivalence of categories \(\text{mod}_A \cong \text{qStr} \).

Proof. For \(N \in \text{mod}_A \), let \(M = \bigoplus_{a \in \mathbb{Z}^n} M_a \) be a \(k \)-vector with \(M_a \cong N_a \) for each \(a \in \mathbb{Z}^n \). Then \(M \) has an \(S \)-module structure such that the multiplication map \(M_a \ni y \mapsto x^b y \in M_{a+b} \) is induced by \(N_a \ni y \mapsto e_{a+b}(x \cdot y) \in N_{a+b} \). By an argument similar to the proof of [21, Theorem 3.2], we can see that \(M \) is quasi-straight and the correspondence \(\text{mod}_A \ni N \mapsto M \in \text{qStr} \) gives a category equivalence \(\text{mod}_A \cong \text{qStr} \).

Note that in [21], the author used the term “sheaf on a poset” instead of the equivalent concept of “module over the incidence algebra of the poset.”

Proposition 2.9. The category \(\text{qStr} \) has enough projectives and enough injectives. An indecomposable injective object in \(\text{qStr} \) is isomorphic to \(E(S/P_F)(G) \) for some \(F, G \subseteq [n] \) with \(F \cap G = \emptyset \).

Proof. Let \(A = I(3^{[n]}, k) \) be the incidence algebra of \(3^{[n]} \) over \(k \). By the functor \(\text{mod}_A \rightarrow \text{qStr} \) constructed in Lemma 2.8, the injective object \(E(a), a \in 3^{[n]} \), in \(\text{mod}_A \) is sent to \(E(S/P_F)(G) \), where \(F = \text{supp}_+(a) \) and \(G = \text{supp}_-(a) \).

Because of the explicit description of the indecomposable injectives in \(\text{qStr} \), we know that an injective object in \(\text{qStr} \) is also injective in \(\text{Mod} \). Hence we deduce the following.

Proposition 2.10. Let \(M \) be a quasi-straight module and let \(E^* \) be a minimal injective resolution of \(M \) in \(\text{Mod} \). Then each \(E^i \) is quasi-straight.

Proof. Take a minimal injective resolution of \(M \) in \(\text{qStr} \). Then this is isomorphic to \(E^* \).

Theorem 2.11. Let \(J \) be a monomial ideal of \(S \). If \(M \) is quasi-straight, then so is the local cohomology module \(H^i_I(M) \) for all \(i \geq 0 \).
Proof. Let E^* be a minimal injective resolution of M in ^*Mod. By Proposition 2.10, each $E^i, i \geq 0$, is a direct sum of finitely many copies of quasi-straight modules $E(S/P_F)(G)$ for $F, G \subseteq [n]$ with $F \cap G = \emptyset$. Note that

$$\Gamma_j(E(S/P_F)(G)) = \begin{cases} E(S/P_F)(G) & \text{if } P_F \supseteq J \text{ (equivalently, } F \in \Sigma) \\ 0 & \text{otherwise.} \end{cases}$$

Thus, for each $i \geq 0$, $\Gamma_j(E^i)$ is a direct sum of finitely many copies of $E(S/P_F)(G)$ with $F \in \Sigma$. In particular, $\Gamma_j(E^i)$ is quasi-straight again. Since qStr is an abelian category, $H^j_j(M) = H^i(\Gamma_j(E^*))$ is quasi-straight.

Remark 2.12. If M is quasi-straight, then so is $\Gamma_j(M) = H^j_0(M)$. Hence $\Gamma_j(-)$ is an endofunctor on qStr, and $H^j_j(-)$ is its right-derived functor on qStr.

Since a Stanley–Reisner ring is square-free, and hence also quasi-straight, we have the following.

Corollary 2.13. Let $k[\Delta]$ be a Stanley–Reisner ring, and let $J \supseteq I_\Delta$ be another monomial ideal of S. Then $H^j_j(k[\Delta])$ is quasi-straight. In particular,

$$H^j_j(k[\Delta])_J \cong H^j_j(k[\Delta])_J.$$

The following is a generalization of the well-known fact that if $H^j_j(k[\Delta])$ is finitely generated (or, equivalently, if it is of finite length), then $mH^j_j(k[\Delta]) = 0$.

Corollary 2.14. In the situation of Theorem 2.11, if $H^j_j(M)$ is finitely generated as an S-module, then $JH^j_j(M) = 0$.

Proof. Since $H^j_j(M)$ is quasi-straight and finitely generated, it is square-free. On the other hand, $J'K^j_j(M) = 0$ for some $s \gg 0$, since $H^j_j(M)$ is finitely generated. Since $H^j_j(M)$ is square-free, we have $JH^j_j(M) = 0$.

Moreover, by Theorem 4.5 in Section 4, if $H^j_j(k[\Delta])$ is finitely generated as an S-module, then $H^j_j(k[\Delta])$ is isomorphic to a submodule of $\text{Ext}^i_{k[\Delta]}(k[\Delta]/J, k[\Delta]).$

Remark 2.15. What we have called a quasi-straight module is essentially the same as a 2-determined module in Miller [14], where 2 = (2, ... , 2) $\in \mathbb{N}^n$. More precisely, $M \in \text{^*Mod}$ is quasi-straight if and only if $M(1)$ is 2-determined. Miller [14] also defined a-determined modules for each $a \in \mathbb{N}^n$. For readers familiar with [14], it is not hard to check that our methods can be used to show that the category of a-determined modules has enough injectives, and that injectives in this category are also injective.
in **Mod**. Thus, for any monomial ideal \(J \), the local cohomology module of \(H^j_\mathfrak{a}(M) \) of an \(\mathfrak{a} \)-determined module \(M \) is \(\mathfrak{a} \)-determined again.

In [14], Miller also defined positively \(\mathfrak{a} \)-determined modules for each \(\mathfrak{a} \in \mathbb{N}^n \). A positively \(\mathfrak{a} \)-determined module is always finitely generated, and a positively 1-determined module is the same thing as what we call a square-free module. If \(M \) is positively \(\mathfrak{a} \)-determined, then the shifted module \(M(-1) \) is \((\mathfrak{a} + 1) \)-determined. Thus \(H^j_\mathfrak{a}(M) \) of a positively \(\mathfrak{a} \)-determined module \(M \) is \((\mathfrak{a} + 1) \)-determined (after degree shifting by \(-1\)).

3. A TOPOLOGICAL FORMULA FOR THE HILBERT FUNCTION

In this section we give a combinatorial topological formula for the \(\mathbb{Z}^n \)-graded Hilbert function of the local cohomology module \(H^j_\mathfrak{a}(k[\Delta]) \). Following Hochster, we use the fact that it may be computed via a Čech complex of localizations of \(k[\Delta] \) whose boundary map is similar to the simplicial boundary map.

As before, \(\Delta \subseteq [n] \) is a simplicial complex, \(\Sigma \) a subcomplex, and \(I_\Delta \subseteq I_\Sigma \) are their associated Stanley–Reisner ideals, with the image of \(I_\Sigma \) in \(k[\Delta] \) denoted by \(J \). Let \(m_1, m_2, \ldots, m_\mu \) denote the images within \(k[\Delta] \) of the square-free monomials corresponding to the faces of \(\Delta - \Sigma \) which are minimal with respect to inclusion, so that \(J \) is generated by \(m_1, m_2, \ldots, m_\mu \).

For \(\mathfrak{a} \in k[\Delta] \), let \(k[\Delta]_f \) denote the localization of \(k[\Delta] \) at the multiplicative set \(\{f^n\}_{n \geq 0} \).

The Čech complex \(\hat{\mathcal{C}}^\bullet \) computing \(H^j_\mathfrak{a}(k[\Delta]) \) is the complex

\[
0 \to k[\Delta] \to \bigoplus_{1 \leq t_1 \leq \mu} k[\Delta]_{m_{t_1}} \to \bigoplus_{1 \leq t_1 < t_2 \leq \mu} k[\Delta]_{m_{t_1} m_{t_2}} \to \cdots \to k[\Delta]_{m_1 \cdots m_\mu} \to 0,
\]

where for

\[
\hat{\mathcal{C}}^i = \bigoplus_{T \subseteq [\mu], |T| = i} k[\Delta]_{\prod_{\ell \in T} m_{\ell}},
\]

the coboundary map \(\hat{\mathcal{C}}^i \to \hat{\mathcal{C}}^{i+1} \) has as its \((T, T')\)-entry the following map: If \(T \not\subseteq T' \), then it is 0, and otherwise if \(T' = T \cup \{t'\} \), where \(t' \) is the \(j \)th smallest element of \(T' \), then it is \((-1)^j\) times the localization map

\[
k[\Delta]_{\prod_{\ell \in T} m_{\ell}} \to (k[\Delta]_{\prod_{\ell \in T} m_{\ell}})_{m_{t'}} = k[\Delta]_{\prod_{\ell \in T \cup \{t'\}} m_{t'}}.
\]

We wish to compute the cohomology of this cochain complex by restricting to each multidegree \(\mathfrak{a} \in \mathbb{Z}^n \). The next proposition is straightforward (see [4, Lemma 5.3.6]).
PROPOSITION 3.1. \([k[\Delta]]_{\prod_{i \in T} m_i, a} \) is at most one-dimensional as a \(k\)-vector space and is nonvanishing exactly when both

(i) \(\text{supp}_-(a) \subseteq \text{supp} \left(\prod_{i \in T} m_i \right)\) and

(ii) \(\text{supp} \left(\prod_{i \in T} m_i \right) \cup \text{supp}_+(a) \in \Delta\).

The nonvanishing condition in the proposition has a nice rephrasing, once we have introduced a little terminology. Regard the map

\[2^{[\mu]} \to 2^{[n]} \]

\[T \mapsto \text{supp} \left(\prod_{i \in T} m_i \right) \]

as an order-preserving map of Boolean algebras. Then if we regard any simplicial complex on vertex set \([n]\), such as \(\Delta\), as an order ideal in \(2^{[n]}\), its inverse image \(s^{-1}(\Delta)\) is an order ideal in \(2^{[\mu]}\) and hence a simplicial complex on \([\mu]\).

We also use the notions of stars, deletions, and links of faces in a simplicial complex; see (6.1). Setting \(F_+ := \text{supp}_+(a)\), \(F_- := \text{supp}_-(a)\), Proposition 3.1 may be rephrased as saying that \(k[\Delta]_{\prod_{i \in T} m_i, a}\) is one-dimensional exactly when \(T\) is a face of \(s^{-1}(\text{star}_a(F_+))\) which does not lie in the subcomplex \(s^{-1}(\text{del}_a(F_+, F_-))\). Consequently, one can check that there is an isomorphism of cochain complexes of finite-dimensional \(k\)-vector spaces, up to a shift by \(-1\), between the Čech complex \(\tilde{\mathcal{C}}^*_a\) and the (augmented) simplicial relative cochain complex with coefficients in \(k\) for the pair

\[\left(s^{-1}(\text{star}_a(F_+)), s^{-1}(\text{del}_a(F_+, F_-)) \right). \]

This yields the following theorem.

THEOREM 3.2. Let \(\Sigma \subseteq \Delta\) be simplicial complexes and let \(a \in \mathbb{Z}\), \(F_+ := \text{supp}_+(a)\) and \(F_- := \text{supp}_-(a)\). Then

\[H^i_j(k[\Delta])_a \cong \tilde{H}^{-i-1}(s^{-1}(\text{star}_a(F_+)), s^{-1}(\text{del}_a(F_+, F_-)); k), \]

where \(\tilde{H}^\bullet(-, -; k)\) denotes simplicial relative reduced cohomology.

Equivalently,

\[H^i_j(k[\Delta])_- \cong \tilde{H}^{-i-1}(\|\text{star}_a(F_+)) - \|\Sigma\|, \]

\[\|\text{del}_a(F_+, F_-)\| - \|\Sigma\|; k), \]

where \(\tilde{H}^\bullet(-, -; k)\) denotes singular relative reduced cohomology and \(\|\Delta\|\) denotes the geometric realization of a simplicial complex \(\Delta\).
Proposition 6.3: The following equivalent formulation in terms of simplicial cohomology see Proposition 6.5.

Readers concerned with effective computation might be slight disturbed by the use of singular cohomology in Eq. (3.2). However, one has also the following equivalent formulation in terms of simplicial cohomology (see Proposition 6.3):

\[(3.3) \quad H^j(k[\Delta])_a \cong \check{\mathcal{H}}^{i-1}(\text{Sd}(\text{star}_a(F_+)) - \Sigma),\]

where \(\text{Sd}(\Delta - \Sigma)\) means the subcomplex of the barycentric subdivision \(\text{Sd}\Delta\) induced on the vertices which are barycenters of faces not in \(\Sigma\). Equivalently, it is the order complex of the poset of faces in \(\Delta - \Sigma\). (The order complex of the face poset of \(\Delta\) itself is the cone over \(\text{Sd}(\Delta)\) with the vertex \(\emptyset\). But since we assume that \(\Sigma \neq \emptyset\), the poset \(\Delta - \Sigma\) does not contain \(\emptyset\).

If \(\|\text{star}_a(F_+)\| - \|\Sigma\| = \emptyset\) and \(i = 0\), then the right side of Eq. (3.2) is a little bit confusing, but its “correct” meaning is given by Eq. (3.3). Regardless, it is clear that \(H^j(k[\Delta]) \neq 0\) if and only if \(J = 0\) (i.e., \(\Delta = \Sigma\)). In this case, \(H^j(k[\Delta]) = k[\Delta]\).

Corollary 3.3. With the foregoing notation, if \([H^j(k[\Delta])]_a \neq 0\), then \(F_+ \in \Sigma\) and \(F_+ \cup F_- \in \Delta\).

Proof. If \(F_+ \notin \Sigma\), then both \(\text{Sd}(\text{star}_a(F_+)) - \Sigma\) and \(\text{Sd}(\text{del}_a(F_+))(F_-) - \Sigma\) are cones over the barycenter of \(F_+\). Thus the assertion follows from Eq. (3.3). If \(F_+ \cap F_- \notin \Delta\), then \(\text{del}_a(F_-) = \text{star}_a(F_+)\). Hence the assertion follows from Eq. (3.1).

The relation between Theorem 3.2 and the results of Mustata [16] and Terai [18] on \(H^j_*(S)\) is also interesting. We discuss it in Section 5 in a more general setting (see Example 5.5).

We next discuss some consequences of Theorem 3.2. Let \(d = \dim \Delta + 1 = \dim k[\Delta]\). The fact that we can express the local cohomology \(H^j(k[\Delta])\)
either in terms of relative simplicial cohomology of complexes on \(\mu \) vertices (in Eq. (3.1)), or complexes of dimension at most \(d - 1 \) (in Eq. (3.3)) suggests comparison with vanishing theorems (see [9]) and other results.

For example, the trivial fact that \(H_{\mu}(k[\Delta]) \) vanishes for \(i > \mu \) (which follows from the computation via \(\tilde{\mu} \) complexes) corresponds to the fact that a complex on \(\mu \) vertices can only have homology in dimensions \(\mu - 1 \) and below. Somewhat less obvious is the following corollary.

Corollary 3.4. Assume that there are at most \(f_i \) minimal faces of \(\Delta \) not lying in \(\Sigma \), that is, \(\mu \leq 5 \). Then the dimensions of the graded components \(H_{\mu}^\ast(k[\Delta]) \) are independent of the field \(k \).

Proof. Pairs of simplicial complexes on at most five vertices have torsion-free cohomology; one does not obtain torsion until one reaches the minimal triangulation of the real projective plane on six vertices. The statement then follows from Eq. (3.1) and the universal coefficient theorem in relative cohomology.

The fact that \(H_{\mu}(k[\Delta]) \) vanishes for \(i > d = \dim k[\Delta] \) corresponds to the fact that Eq. (3.3) expresses each component \(H_{\mu}^\ast(k[\Delta]) \) in terms of relative cohomology for simplicial complexes of dimension at most \(d - 1 \). On the other hand, it is interesting to see what further information the Lichtenbaum–Hartshorne vanishing theorem (LHVT) in [10, Theorem 3.1] for \(k[\Delta] \) tells us about the topology of simplicial complexes.

Theorem 3.5 (LHVT for Stanley–Reisner rings). Let \(\Sigma \subseteq \Delta \) be simplicial complexes, with \(d = \dim k[\Delta] \) and \(J = I_\Sigma \). Then \(H_{\mu}^\ast(k[\Delta]) = 0 \) if and only if every \((d - 1)\)-face of \(\Delta \) contains a vertex of \(\Sigma \).

Although short proofs of the LHVT are known even in the general case, we give a proof of this special case to better understand its topological meaning.

Proof. For the forward implication, we show the contrapositive. Assume that some \((d - 1)\)-face \(F \) contains no vertex of \(\Sigma \). Then we claim that the multidegree \(\mathbf{a} \) having \(F_+ := \text{supp}_+ \mathbf{a} = \emptyset, F_- := \text{supp}_- \mathbf{a} = F \) satisfies \(H_{\mu}^\ast(k[\Delta])_{\mathbf{a}} \cong k \), and consequently \(H_{\mu}^\ast(k[\Delta]) \) does not vanish:

\[
H_{\mu}^\ast(k[\Delta])_{\mathbf{a}} \cong \tilde{H}_{d - 1}^\ast(\|\Delta\| - \|\Sigma\|, ||\text{del}_\Delta(F)|| - \|\Sigma\|; k) \\
\cong \tilde{H}_{d - 1}^\ast(\|F\|, \|\partial F\|; k) \\
\cong \tilde{H}_{d - 1}^\ast(\|F\|/\|\partial F\|; k) \\
\cong \tilde{H}_{d - 1}^\ast(\mathbb{S}^{d - 1}; k) \\
\cong k,
\]
where the first isomorphism is Theorem 3.2, the second isomorphism is excision (we excise away \(||\Delta|| - ||\Sigma|| - ||F|| \) and use the fact that \(F \) contains no vertex of \(\Sigma \)), and the third isomorphism is Proposition 6.1.

For the reverse implication, assume that every \((d - 1)\)-face of the \((d - 1)\)-dimensional complex \(\Delta \) contains a vertex of the subcomplex \(\Sigma \). We must show that this implies the combinatorial topological assertion that

\[
\tilde{H}^{d-1}(\|\star_\Delta(F_+)\| - ||\Sigma||, \| \text{del}_{\star_\Delta(F_+)}(F_-)\| - ||\Sigma||; k) = 0
\]

for every pair of disjoint faces \(F_+, F_- \) of \(\Delta \) with \(F_+ \cup F_- \in \Delta \). However, since \(\star_\Delta(F_+) \) is again a complex of dimension at most \(d - 1 \), just as \(\Delta \) was, we can replace \(\star_\Delta(F_+) \) by \(\Delta \) (or, equivalently, we may assume that \(F_+ = \emptyset \)). Setting \(D := d - 1 \), we can then rephrase the combinatorial topological assertion that we must prove as follows:

Let \(\Delta \) be a simplicial complex of dimension at most \(D \) and let \(\Sigma \) be a subcomplex containing at least one vertex from each \(D \)-face of \(\Delta \). Then for any face \(F \) of \(\Delta \),

\[
\tilde{H}^{D}(||\Delta|| - ||\Sigma||, ||\text{del}_{\Delta}(F)|| - ||\Sigma||; k) = 0.
\]

We actually show that these hypotheses imply that the pair

\[
(\|\Delta\| - \|\Sigma\|, \| \text{del}_{\Delta}(F)\| - \|\Sigma\|)
\]

is relatively homotopy equivalent to a pair of subcomplexes of \(S_d \Delta \) of dimension at most \(D - 1 \).

To do this, we start with the fact from Proposition 6.3 that the foregoing pair is relatively homotopy equivalent to

\[
(S_d(\Delta - \Sigma), S_d(\text{del}_{\Delta}(F) - \Sigma)).
\]

The latter is a pair of simplicial complexes of dimension at most \(D \), which we denote by \((X, A)\) for short. We proceed to remove all \(D \)-faces of \(X \) (or of both \(X \) and \(A \)) by repeating the following procedure: Whenever we find a \(D \)-face \(\sigma \) of \(X \) (or both \(X \) and \(A \)) that has some \((D - 1)\)-face \(\tau \) contained in no other \(D \)-face of \(X \) (and hence also in no other \(D \)-face of \(A \)), we remove both \(\sigma \) and \(\tau \) from \(X \) (or from both \(X \) and \(A \)). Each such removal is either an elementary collapse (see [2, (11.1)]) on \(X \) which affects no simplices of \(A \), or a simultaneous elementary collapse on \(X \) and \(A \). In either case, it does not change the relative homotopy type of the pair \((X, A)\).

To see that this process will remove all of the \(D \)-faces in \(X \) (and \(A \)), assume the contrary. That is, assume that at some stage after performing
some of these collapses, we are left with a pair \((X', A')\) having some \(D\)-faces in \(X'\), but that every such \(D\)-face has all of its \((D - 1)\)-faces lying in some other \(D\)-face, so that no further collapses are possible. Let \(\sigma\) be one of the remaining \(D\)-faces in \(X'\), and let \(G\) be the unique \(D\)-face of \(\Delta\) in which it lies, so that the barycenter \(b_G\) of \(G\) is one of the vertices of \(\sigma\). Then \(\text{lk}_{X}(b_G)\) is a subcomplex of the simplicial \((D - 1)\)-sphere

\[
\text{lk}_{\text{sd}_D}(b_G) \equiv \partial(Sd G),
\]

having these two properties:

(i) It is \((D - 1)\)-dimensional, by virtue of the existence of \(\sigma\).

(ii) A \((D - 2)\)-face \(\tau\) always lies in exactly two \((D - 1)\)-faces. (To see this, consider the \((D - 1)\)-face \(\tau \cup b_G\) of \(X'\) and use the assumption on \(X'\)).

These two properties force \(\text{lk}_{X}(b_G) = \text{lk}_{\text{sd}_G}(b_G)\). But this contradicts our assumption that \(G\) contains at least one vertex of \(\Sigma\), so that \(X' \subseteq X\) is missing at least some of the \(D\)-faces of \(Sd G\).

For the remainder of this section, we regard \(J\), not \(S\), as an ideal of \(k[\Delta]\). Recall that grade \(J\) is defined as the length of the longest \(k[\Delta]\)-sequence contained in \(J\) (see [4, Section 1.2]). It is well known [4, Proposition 1.2.14] that

\[
\text{grade } J \leq \text{ht } J
\]

with equality whenever \(k[\Delta]\) is Cohen–Macaulay (see [4, Corollary 2.1.4]). It is also known [9, Theorem 3.8] that

\[
\text{grade } J = \min\{i \mid H^i_j(k[\Delta]) \neq 0\}.
\]

We are interested in the following problem.

Problem 3.6. Characterize pairs \((\Delta, \Sigma)\) such that \(H^i_j(k[\Delta]) = 0\) for all \(i \neq \text{grade } J\).

If \(\Delta = 2^{\{1, \ldots, n\}}\) (i.e., \(k[\Delta] = S\)), then a pair \((\Delta, \Sigma)\) satisfies the condition of Problem 3.6 if and only if \(k[\Sigma]\) is Cohen–Macaulay. Similarly, if \(\Sigma = \{\emptyset\}\) (i.e., \(J = m\)), then the condition of the problem is satisfied if and only if \(k[\Delta]\) is Cohen–Macaulay. But in the general case, the situation is more delicate.

Set \(\dim k[\Delta] = d\). If \(\Sigma \neq \{\emptyset\}\) (i.e., \(J \neq m\) or, equivalently, \(d > \text{ht } J \geq \text{grade } J\)), then all \((d - 1)\)-faces of \(\Delta\) must contain a vertex of \(\Sigma\) to satisfy the condition of Problem 3.6, by Theorem 3.5. Assume that \(k[\Delta]\) is Cohen–Macaulay and that \(\dim \Sigma = 0\) (i.e., \(\dim(k[\Delta]/J) = 1\)). Then
grade $J = d - 1$, and hence $H^j(k[\Delta]) = 0$ for all $i < d - 1$. So in this case, the condition of Problem 3.6 is satisfied if and only if every facet of Δ contains a vertex of Σ. We return to this problem in Section 5.

4. LOCAL COHOMOLOGY MODULES OF THE CANONICAL MODULE

The goal of this section is to understand, in the case where $k[\Delta]$ is Cohen–Macaulay, how the local cohomology $H^j(\omega_{k[\Delta]})$ is filtered by the modules

$$\Ext^i_{k[\Delta]}(k[\Delta]/J^{[j]}, \omega_{k[\Delta]}) \text{ for } j \geq 1,$$

where $J^{[j]}$ denotes the jth Frobenius power of the ideal J (see Definition 4.4). The main result is Theorem 4.9, which shows in particular (Corollary 4.10) that $H^j(\omega_{k[\Delta]})$ is determined by $\Ext^i_{k[\Delta]}(k[\Delta]/J^{[j]}, \omega_{k[\Delta]})$.

Denote the category of \mathbb{Z}^n-graded $k[\Delta]$-modules by $* \Mod_{k[\Delta]}$, so that $* \Mod_{k[\Delta]}$ is a full subcategory of $* \Mod = * \Mod_k$. We review some facts about this category which may be found in [8, Chapters 1 and 2].

If $F \in \Delta$, then $P_F \supseteq I_\Delta$. In this case we regard P_F as a (prime) ideal of $k[\Delta] = S/I_\Delta$. The category $* \Mod_{k[\Delta]}$ has enough injectives, and an indecomposable injective object in $* \Mod_{k[\Delta]}$ is of the form $E(k[\Delta]/P_F)(a)$ for some $F \in \Delta$ and $a \in \mathbb{Z}^n$, where

$$E(k[\Delta]/P_F) = \Hom_S(k[\Delta], E(S/P_F)) = \{ y \in E(S/P_F) \mid zy = 0 \text{ for all } z \in I_\Delta \}$$

is the injective envelope of $k[\Delta]/P_F = S/P_F$ in $* \Mod_{k[\Delta]}$. (Throughout this paper, we use the convention that $E(k[\Delta]/P_F)$ means the injective envelope of $k[\Delta]/P_F$ not in $* \Mod_S$."

We can easily compute the structure of $E(k[\Delta]/P_F)$.

Lemma 4.1. We have

$$[E(k[\Delta]/P_F)]_a = \begin{cases} k & \text{if } \supp_+(a) \subseteq F \text{ and } \supp_-(a) \cup F \in \Delta, \\ 0 & \text{otherwise}, \end{cases}$$

and the multiplication map $E(k[\Delta]/P_F) \ni y \mapsto x^b y \in E(k[\Delta]/P_F)_{a+b}$ is always surjective.

Proof. Since I_Δ is square-free,

$$E(k[\Delta]/P_F) = \{ y \in E(S/P_F) \mid x^G y = 0 \text{ for all } G \notin \Delta \}.$$
For $0 \neq y \in [E(S/P_F)]_a$ and $G \subseteq [n]$, $x^G y \neq 0$ if and only if supp$_* (a + G) \subseteq F$. These conditions are also equivalent to $G \subseteq$ supp$_* (a) \cup F$. Thus supp$_* (a) \cup F$ is the largest subset of $[n]$ whose monomial does not annihilate y. Now the assertion follows from an easy computation.

Let M be a \mathbb{Z}^n-graded S-module. For any multidegree $a \in \mathbb{Z}^n$, define

$$M_{\leq a} := \bigoplus_{b \leq a} M_b,$$

a graded submodule of M. When $a = (-j, \ldots, -j)$, we simply denote $M_{\leq a}$ by $M_{\geq -j}$. In particular, we say that $M_{x,0} = \bigoplus_{a \in \mathbb{N}^n} M_a$ is the \mathbb{N}^n-graded part of M. If M is quasi-straight, then its \mathbb{N}^n-graded part is square-free.

Lemma 4.2. If M is quasi-straight, then it is a *essential extension (see [4, Section 3.6]) of any of its submodules $M_{\geq -j}$ for $j \geq 1$; that is, for any homogeneous element $0 \neq y \in M$, there is some $z \in S$ such that $0 \neq zy \in M_{\geq -j}$.

Proof. For a homogeneous element $0 \neq y \in M_a$, set $T = \{i \mid a_i < -1\}$ and $z := \prod_{i \in T} x_i^{-1-a_i} \in S$. Since M is quasi-straight, we have $0 \neq zy \in M_{\geq -1} \subseteq M_{\geq -j}$.

Lemma 4.3. Let $j \geq 1$ be an integer. If M is a quasi-straight module, then $N := M_{\geq -j}$ satisfies the following conditions:

(a) dim$_a N_a < \infty$ for all $a \in \mathbb{Z}^n$.

(b) The multiplication map $N_a \ni y \mapsto x_i y \in N_{a+\langle i \rangle}$ is bijective for all $i \in [n]$ and all $a \geq -j$ with $a_0 \neq 0, -1$.

Conversely, if a \mathbb{Z}^n-graded S-module N with $N = N_{\geq -j}$ satisfies conditions (a) and (b), then there is a quasi-straight module M with $M_{\geq -j} \equiv N$. Such an M is unique up to isomorphism.

Proof. Straightforward.

Definition 4.4. As in the previous sections, J is the image of a monomial ideal $I_\Sigma (\supseteq I_\Delta)$ of S in $k[\Delta]$. We denote the ideal $\langle (x^G y) \mid G \notin \Sigma \rangle$ of $k[\Delta]$ by $J^{[i]}$. More precisely, $J^{[i]}$ is the natural image $\langle (x^G y) \mid G \notin \Sigma \rangle + I_\Delta$ of $k[\Delta]$. We call $J^{[i]}$ the ith Frobenius power of J. Note that $J^{[1]} = J$.

Theorem 4.5. Suppose that the \mathbb{Z}^n-graded $k[\Delta]$-module M is quasi-straight as an S-module. For all $i, j \geq 0$ and $-j = (-j, \ldots, -j)$, we have

$$[H^j_i (M)]_{\geq -j} = [\Ext^j_{k[\Delta]} (k[\Delta]/J^{[j+1]}, M)]_{\geq -j}.$$
In particular,

$$\left[H^j_i(k[\Delta]) \right]_{> -j} = \left[\text{Ext}^i_{k[\Delta]}(k[\Delta]/J^{i+1}, k[\Delta]) \right]_{> -j}.$$

To prove the theorem, we need the following lemma.

Lemma 4.1. If J is a prime ideal P, then J is a direct sum of the copies of E-

injective envelope of $\text{Ext}^i_{k[\Delta]}(k[\Delta]/P, E(k[\Delta]/P))$.

In other words,

$$\left[\text{Hom}_{k[\Delta]}(k[\Delta]/J^{i+1}, E(k[\Delta]/P)) \right]_{> a} = \left[\Gamma_j(E(k[\Delta]/P)) \right]_{> a}.$$

Proof. For all $0 \neq y \in E(k[\Delta]/P)$, we have $\operatorname{ann}(y) \subseteq P$. If $J \not\subseteq P$, then $J^{i+1} \not\subseteq P$. Thus $\text{Hom}_{k[\Delta]}(k[\Delta]/J^{i+1}, E(k[\Delta]/P)) = 0$ in this case. On the other hand, for all $y \in [E(k[\Delta]/P)]_a$, we have $\operatorname{ann}(y) \supseteq P^{i+1}$ by Lemma 4.1. If $J \subseteq P$, then we have $J^{i+1} \subseteq P^{i+1}$. Hence $J^{i+1}y = 0$ and $y \in [\text{Hom}_{k[\Delta]}(k[\Delta]/J^{i+1}, E(k[\Delta]/P))]_a$.

Lemma 4.7. Let M be a \mathbb{Z}^n-graded $k[\Delta]$-module whose \mathbb{N}^n-graded part is square-free as an S-module, and let E^* be a minimal injective resolution of M in $\text{Mod}_{k[\Delta]}$. Then each E^i, $i \geq 0$, is a direct sum of the copies of $E(k[\Delta]/P F)$ for some $F \in \Delta$ and $a \in \mathbb{N}^n$.

Proof. Let M' be the \mathbb{N}^n-graded part of M. Since M' is square-free, the injective envelope $E_\Delta(M')$ of M' in $\text{Mod}_{k[\Delta]}$ is a direct sum of the copies of unshifted $E(S/P F)$ by an argument in Section 3 of [21]. Since the injective envelope $E_{k[\Delta]}(M')$ of M' in $\text{Mod}_{k[\Delta]}$ is $\text{Hom}_{\Delta}(k[\Delta], E_\Delta(M'))$, it is a direct sum of unshifted $E(k[\Delta]/P F)$. By the injectivity of $E_{k[\Delta]}(M')$, we have a \mathbb{Z}^n-graded map $f: M \to E_{k[\Delta]}(M')$ extending $M' \to E_{k[\Delta]}(M')$. By definition, the \mathbb{N}^n-graded part of $M'' := \ker(f)$ is 0. Hence the \mathbb{N}^n-graded part of the injective envelope $E_{k[\Delta]}(M'')$ is 0, and $E_{k[\Delta]}(M'')$ is a direct sum of the copies of $E(S/P F)(a)$ for $a \in \mathbb{N}^n \setminus \{0\}$. There is a \mathbb{Z}^n-graded map $M \to E_{k[\Delta]}(M'')$ which extends $M'' \to E_{k[\Delta]}(M'')$. Since $E^0 = E_{k[\Delta]}(M)$ is a direct summand of $E_{k[\Delta]}(M') \oplus E_{k[\Delta]}(M'')$, it is a direct sum of the copies of $E(S/P F)(a)$ for $a \in \mathbb{N}^n$.

The next term E^1 of E^* is the injective envelope of $E_{k[\Delta]}(M)/M$. Since the \mathbb{N}^n-graded parts of M and $E_{k[\Delta]}(M)$ are square-free, that of $E_{k[\Delta]}(M)/M$ is also square-free. Hence we can apply the foregoing argu-
ment to \(E_{\Delta}(M)/M \). Similarly, we can prove the assertion for \(E^i, i \geq 2 \), by induction on \(i \).

Proof of Theorem 4.5. Let \(E^* \) be a minimal injective resolution of \(M \) in \(\text{mod}_{\Delta} \). Then \(E^* \) consists of \(E(k[\Delta]/P_{ij}(a)) \) for \(a \in \mathbb{N}^n \) by Lemma 4.7. For a \(\mathbb{Z}^n \)-graded module \(N \), we have \(N(a)_{-j} = N_{-a-j}(a) \). Hence

\[
\left[\text{Hom}_{\Delta}(k[\Delta]/J, E^*) \right]_{-j} = \left[\Gamma_j(E^*) \right]_{-j}
\]

by Lemma 4.6. The \(j \)th cohomology of the complex of the left side is isomorphic to \(\text{Ext}_{\Delta}^j(k[\Delta]/J, M) \), and that of the right side is isomorphic to \(H_j(M) \).

Remark 4.8. (1) In the situation of Theorem 4.5, \(\text{Ext}_{\Delta}^j(k[\Delta]/J, M) \) determines \(H_j(M) \) for each \(j \geq 1 \), since \(H_j(M) \) is quasi-straight. \(H_j(M) \) is a *essential extension of \(\text{Ext}_{\Delta}^j(k[\Delta]/J, M) \) \(\forall j \geq 1 \) for all \(j \geq 1 \). Of course, \(\text{Ext}_{\Delta}^j(k[\Delta]/J, M) \) is the smallest of these modules. In Example 4.13, we see that \(\text{Ext}_{\Delta}^j(k[\Delta]/J, M) \) is not sufficient to recover \(H_j(M) \).

(2) In general, we have

\[
\text{Ext}_{\Delta}^j(k[\Delta]/J, k[\Delta]) \cong \text{Ext}_{\Delta}^j(k[\Delta]/J, k[\Delta]).
\]

For example, assume that \(k[\Delta] \) is not Gorenstein and that \(J = \mathfrak{m} \). Then \(\text{Ext}_{\Delta}^j(k[\Delta]/J, k[\Delta]) \neq 0 \) for all \(j = \dim k[\Delta] \). But \(H_{\mathfrak{m}}^j(k[\Delta]) = 0 \) for all \(j > d \). Hence the \(\mathbb{N}^n \)-graded part of \(\text{Ext}_{\Delta}^j(k[\Delta]/J, k[\Delta]) \) is 0 for \(i > d \).

We say that \(\omega_{\Delta} := \text{Ext}_{\Delta}^{n-d}(k[\Delta], \omega) \) with \(d = \dim k[\Delta] \) is the canonical module of \(k[\Delta] \). The following is a generalization of [16, Theorem 1.1].

Theorem 4.9. If \(k[\Delta] \) is Cohen–Macaulay, then

\[
\left[H_j(\omega_{\Delta}) \right]_{-j} \cong \text{Ext}_{\Delta}^j(k[\Delta]/J, \omega_{\Delta})
\]

for all \(j \geq 0 \).

Proof. For convenience, we say that a \(\mathbb{Z}^n \)-graded \(S \)-module \(M \) is \(j \)-graded if \(M_{-j} = M \). By Theorem 4.5, it suffices to prove that \(\text{Ext}_{\Delta}^j(k[\Delta]/J, \omega_{\Delta}) \) is \(j \)-graded. Set \(d = \dim k[\Delta] \). It is well known that

\[
\text{Ext}_{\Delta}^j(k[\Delta]/J, \omega_{\Delta}) \cong \text{Ext}_{\Delta}^{n-d+i}(k[\Delta]/J, \omega)
\]

as \(\mathbb{Z}^n \)-graded \(S \)-modules. In fact, both of these are isomorphic to the graded Matlis dual of \(H_{\mathfrak{m}}^{d-i}(k[\Delta]/J, \omega) \). Hence it suffices to show that \(\text{Ext}_{\Delta}^j(k[\Delta]/J, \omega) \) is \(j \)-graded. Let \(F_* \) be a \(\mathbb{Z}^n \)-graded minimal free resolution of \(k[\Delta]/J \) over \(S \). By an argument using Taylor’s resolu-
tion, we see that F_\ast is a direct sum of free modules $S(-\mathbf{a})$ with $\mathbf{a} \leq \mathbf{j} + 1$.

Set $G^\ast := \text{Hom}_S(F_\ast, \omega_S)$. Since $\omega_S = S(-1)$, G^\ast consists of free modules $S(-\mathbf{b})$ with $\mathbf{b} \geq -\mathbf{j}$. In particular, G^\ast is a complex of \mathbf{j}-graded modules. Thus $H^i(G^\ast) = \text{Ext}_S^i(k[\Delta]/J^{i+1}, \omega_S)$ is \mathbf{j}-graded.

The following is clear from Theorem 4.9.

Corollary 4.10. If $k[\Delta]$ is Cohen–Macaulay, then we can construct $H^i(\omega_S)$ from its submodule $\text{Ext}_S^i(k[\Delta]/J^{i+1}, \omega_S)$ by Lemma 4.3. In particular, if $k[\Delta]$ is Gorenstein, then $H^i(k[\Delta])$ is determined by a submodule $\text{Ext}_S^i(k[\Delta]/J^{i+1}, k[\Delta])$.

Remark 4.11. Assume that $k[\Delta]$ is Cohen–Macaulay. From Theorem 4.9, we see that $\text{depth}(k[\Delta]/J^{i+1}) = \text{depth}(k[\Delta]/J^i)$ and $\text{Ass}(k[\Delta]/J^{i+1}) = \text{Ass}(k[\Delta]/J^i)$ for all $i \geq 2$. The former statement also follows from an argument using lcm-lattices (see [7]). In fact, for all $i \geq 2$, the lcm-lattice of $I_{\mathbf{j}}[\Delta] + I_{\mathbf{j}}[\Delta]$ is isomorphic to that of $I_{\mathbf{j}}[\Delta] + I_{\mathbf{j}}[\Delta]$.

For a square-free monomial ideal $I_\Delta \subset S$, Lyubeznik [13] proved a beautiful formula on the cohomological dimension of S at I_Δ, which states that

$$\text{(4.1)} \quad \text{cd}(S, I_\Delta) := \max\{i \mid H^i_I(S) \neq 0\} = \text{dim} S - \text{depth}(S/I_\Delta).$$

We can extend this result to a monomial ideal J of a Gorenstein Stanley–Reisner ring $k[\Delta]$, using the second Frobenius power $J^{[2]}$.

Corollary 4.12. Let the notation be as before. Assume that $k[\Delta]$ is Gorenstein. We have

$$\text{cd}(k[\Delta], J) = \text{dim} k[\Delta] - \text{depth}(k[\Delta]/J^{[2]}).$$

Proof. By Corollary 4.10, $H^i_I(k[\Delta]) \neq 0$ if and only if $\text{Ext}_S^i(k[\Delta]/J^{i+1}, k[\Delta]) \neq 0$. Since $k[\Delta]$ is Gorenstein, $\text{Ext}_S^i(k[\Delta]/J^{i+1}, k[\Delta])$ is isomorphic to the Matlis dual of $H^{d-i}_m(k[\Delta], J^{[2]})$ up to degree shifting, where $d = \text{dim} k[\Delta]$. Hence $H^i_I(k[\Delta]) \neq 0$ if and only if $H^{d-i}_m(k[\Delta]/J^{[2]}) \neq 0$. Since $\max\{i \mid H^i_I(k[\Delta]/J^{[2]}) \neq 0\} = \text{depth}(k[\Delta]/J^{[2]})$, we are done.

If $\Delta = 2^{[n]}$ (i.e., $k[\Delta] = S$), then Corollary 4.12 and Eq. (4.1) imply that $\text{depth}(S/I_\Delta) = \text{depth}(S/I_{\mathbf{j}}[\Delta])$ for all $i \geq 1$. This also follows from the fact that the lcm-lattice of $I_{\mathbf{j}}[\Delta]$ is isomorphic to that of $I_{\mathbf{j}}[\Delta]$ for all $i \geq 1$.

Example 4.13. Set $S = k[x, y, z, w]$, $I_\Delta = (xz, yw)$, and $J = (z, w)$. That is, Δ consists of four edges of a quadrilateral, and Σ consists of three edges of Δ. Then $k[\Delta]$ is Gorenstein, and $\text{dim} k[\Delta] - \text{depth}(k[\Delta]/J) = 0$. But an easy calculation (e.g., via Theorem 3.2) shows that $H^i_J(k[\Delta]) \neq 0$, although $H^i_J(k[\Delta]) = 0$ for all $i \geq 2$. Thus $\text{cd}(k[\Delta], J) = 1$, so the direct analogue of (4.1) does not hold for $J \subset k[\Delta]$.

LOCAL COHOMOLOGY OF STANLEY–REISNER RINGS 723
On the other hand, depth \((k[\Delta]/J^{[2]}) = 1\), and in fact, \(J^{[2]} \subset k[\Delta]\) has an embedded prime \((x, w, z)\). (This also means that \((x, w, z) \in \text{Ass}(H^j_j(k[\Delta]))\) by Corollary 4.14. Hence \(\dim k[\Delta] - \text{depth}(k[\Delta]/J^{[2]}) = 1\), in agreement with Corollary 4.12.

To state the next result, we introduce the following notation. For a \(k[\Delta]\)-module \(M\) and an integer \(i\), set

\[
\text{Ass}^i(M) = \{ P \in \text{Ass}(M) \mid \dim(k[\Delta]/P) = \dim k[\Delta] - i \}.
\]

Corollary 4.14. Assume that \(k[\Delta]\) is Cohen–Macaulay and \(\dim k[\Delta] = d\). If \(P \in \text{Ass}(H^j_j(\omega_{k[\Delta]}))\), then \(\dim(k[\Delta]/P) \leq d - i\) and

\[
\text{Ass}^i\left(H^j_j(\omega_{k[\Delta]}) \right) \supseteq \text{Ass}^i\left(H^j_j(\omega_{k[\Delta]}/J^{[2]}) \right) = \{ P_F \mid F \text{ is a facet of } \Sigma \text{ with } |F| = d - i \}.
\]

To prove this result, we need the following lemma.

Lemma 4.15 (see [6, Theorem 1.1]). Let \(M\) be a finitely generated \(k[\Delta]\)-module. If \(P \in \text{Ass}(\text{Ext}^i_{k[\Delta]}(M, \omega_{k[\Delta]}))\), then \(\dim(k[\Delta]/P) \leq d - i\), and we have \(\text{Ass}^i(M) = \text{Ass}^i(\text{Ext}^i_{k[\Delta]}(M, \omega_{k[\Delta]}))\) for all \(i \geq 0\).

Proof. The proof of [6, Theorem 1.1] also works here.

Proof of Corollary 4.14. Since \(\text{Ext}^i_{k[\Delta]}(k[\Delta]/J^{[2]}, \omega_{k[\Delta]}) \subseteq H^j_j(\omega_{k[\Delta]})\) is an *essential extension by Theorem 4.9, we have \(\text{Ass}(H^j_j(\omega_{k[\Delta]})) = \text{Ass}(\text{Ext}^i_{k[\Delta]}(k[\Delta]/J^{[2]}, \omega_{k[\Delta]}))\). Hence the first statement and the equality in the displayed equality follow from Lemma 4.15. The last inclusion holds since \(\text{Ass}(k[\Delta]/J^{[2]}) \supseteq \text{Ass}(k[\Delta]/J) = \text{Ass}(k[\Sigma]) = \{ P_F \mid F \text{ is a facet of } \Sigma \} \).

Remark 4.16. Even \(H^j_j(S)\) can have an embedded prime (see [16, Example 1]). The inclusion in Corollary 4.14 can be strict, as Example 4.13 shows.

5. A TOPOLOGICAL FORMULA FOR THE HILBERT FUNCTION IN THE GORENSTEIN CASE

In Section 3 we gave a combinatorial formula for the \(Z^n\)-graded Hilbert function of \(H^j_j(k[\Delta])\) for general \(\Delta\). If \(\Delta\) is Cohen–Macaulay, then we can give a formula (Theorem 5.1) for the Hilbert function of \(H^j_j(\omega_{k[\Delta]}\) for the canonical module \(\omega_{k[\Delta]}\) of \(k[\Delta]\). Hence, if \(\Delta\) is Gorenstein, then we get a new formula (Corollary 5.2) on \(H^j_j(k[\Delta])\).
THEOREM 5.1. Assume that $k[\Delta]$ is Cohen–Macaulay and has dimension d, and that $\Sigma \subseteq \Delta$ is a subcomplex of Δ. As before, let I denote the image of I_S in $k[\Delta] = S/I_{\Delta}$. Then for any multidegree \(\mathbf{a} \) in \mathbb{Z}^n, setting $F_+ := \text{supp}_a, F_- := \text{supp}_-a$, we have

$$H_j(\omega_{k[\Delta]}_a) \cong \tilde{H}_{d-j-1}(\text{star}_{\Delta}(F_-) \cap \Sigma, \text{del}_{\text{star}_{\Delta}(F_-) \cap \Sigma}(F_+); k)$$

$$\cong \tilde{H}_{d-j-1}[F_+][-1](\text{lk}_{\text{star}_{\Delta}(F_-) \cap \Sigma}(F_+); k).$$

Proof. The second expression is equivalent to the first by Proposition 6.2, so we need prove only the first.

A minimal injective resolution of ω_S in Mod is given by

$$D^*: 0 \to D^0 \to D^1 \to \cdots \to D^n \to 0,$$

and the differential is composed of $\pm f: E(S/P_r) \to E(S/P_{F \setminus \{i\}})$ for $j \in F$, where $f: E(S/P_r) \to E(S/P_{F \setminus \{i\}})$ is induced by the natural surjection $S/P_r \to S/P_{F \setminus \{i\}}$ (see [4, Section 5.7]). Then $D^*_k[\Delta] := \text{Hom}_S(k[\Delta], D^*[n-d])$ gives a minimal injective resolution of $\omega_{k[\Delta]}$ in Mod. We see that $D^*_k[\Delta]$ is of the form

$$D^*_k[\Delta]: 0 \to D^0_k[\Delta] \to D^1_k[\Delta] \to \cdots \to D^n_k[\Delta] \to 0,$$

and the differential is induced by that of D^*. Note that the signs in this differential are given in the same way as the augmented chain complex $\tilde{C}_*(\Delta)$ of Δ. Since J is a monomial ideal, we have $H_j(\omega_{k[\Delta]}) = H^j(\Gamma_j(D^*_k[\Delta]))$. Note that

$$\Gamma_j(D^*_k[\Delta]) = \bigoplus_{F \in \Sigma} E(k[\Delta]/P_r).$$

By Lemma 4.1, $[E(k[\Delta]/P_r)]_a = k$ if $F \in \text{star}_{\Delta}(F_-) \cap \text{del}_{\text{star}_{\Delta}(F_-)(F_+)}$ and $[E(k[\Delta]/P_r)]_a = 0$ otherwise. Hence $[\Gamma_j(D^*_k[\Delta])]_a$ is isomorphic to

$$\tilde{C}_{d-j-1}(\text{star}_{\Delta}(F_-) \cap \Sigma, \text{del}_{\text{star}_{\Delta}(F_-) \cap \Sigma}(F_+); k)$$

as a chain complex of k-vector spaces. We are done.

If $a \in \mathbb{N}^n$ (i.e., $F = \emptyset$), then Theorem 5.1 simplifies because $\text{star}_{\Delta}(F_-) \cap \Sigma = \Sigma$. Consequently, we obtain for $a \in \mathbb{N}^n$ with $F := \text{supp} a$,

\begin{equation}
H_j(\omega_{k[\Delta]}_a) \cong \tilde{H}_{d-j-1}[F_-][-1](\text{lk}_{\Sigma}(F); k).
\end{equation}
If \(a \in \mathbb{N}^n \), then we have
\[
H^i_j(\omega_{k[\Delta]})_a \cong \text{Ext}^i_{k[\Delta]}(k[\Delta]/J, \omega_{k[\Delta]})_a \cong H_{\text{mod}}^{d-i}(k[\Delta]/J)_{-a}
\]
by Theorem 4.9 and local duality ([4, Theorem 3.5.8]). Thus (5.1) also follows from a well-known formula of Hochster ([17, Theorem 4.1]).

Let \(\Delta \) be a Gorenstein complex (over \(k \)). Set \(\Delta' := \text{core}(\Delta) \), a \(k \)-homology sphere. Let \(V \) be the vertex set of \(\Delta' \), so that if \(W := [n] - V \), then \(\Delta = 2W + \Delta' \) and \(\omega_{k[\Delta]} = k[\Delta](-W) \) (see [17, 4]).

Corollary 5.2. Suppose that \(k[\Delta] \) is Gorenstein with \(\dim k[\Delta] = d \), and \(\Sigma \) a subcomplex of \(\Delta \). Keeping the same notation as before, and defining for \(a \in \mathbb{Z}^n \),
\[
F := (F_+ \cup W) - F_- = F_+ \cup (W - F_-)
\]
we have
\[
H^i_j(k[\Delta])_a \cong \tilde{H}_{d-i-1}(\text{star}_\Delta(F_-) \cap \Sigma, \text{del}_{\text{star}_\Delta(F_-)} \cap \Sigma(F); k)
\]
\[
\cong \tilde{H}_{d-i-|F|-1}(\text{lk}_{\text{star}_\Delta(F_-)} \cap \Sigma(F); k)
\]

Example 5.3. Consider the case \(k[\Delta] = S \) (i.e., \(\Delta \) is the full simplex \(2^n \)). In this case, \(\text{star}_\Delta(F_-) \cap \Sigma \) is always \(\Sigma \), and we have
\[
H^i_j(S)_a \cong \tilde{H}_{n-i-|F|-1}(\text{lk}_\Sigma(F); k)
\]
for all \(a \in \mathbb{Z}^n \), where \(F = \{ i \mid a_i \geq 0 \} \). This reproves a formula of Terai [18].

Now we consider Problem 3.6 again.

Theorem 5.4. Suppose that \(\Delta \) is a Cohen–Macaulay complex of dimension \(d - 1 \) and \(\Sigma \) is an \((s-1) \)-dimensional subcomplex of \(\Delta \). Then \(H^i_j(\omega_{k[\Delta]})_a = 0 \) for all \(i \neq d - s \) if and only if for every face \(F \) of \(\Delta \), the subcomplex \(\text{star}_\Delta(F) \cap \Sigma \) is a Cohen–Macaulay complex of dimension \(s - 1 \).

Proof. The “if” part is immediate from Theorem 5.1. We prove the “only if” part. Set \(\Sigma'(F) := \text{star}_\Delta(F) \cap \Sigma \) for \(F \in \Delta \). It suffices to show that
\[
\tilde{H}_{i-|G|-1}(\text{lk}_{\Sigma'(F)}(G)) = 0 \quad \text{for all } i \neq s \text{ and all } G \subseteq [n].
\]
We can easily check that \(\text{lk}_{\Sigma'(F)}(G) = \text{lk}_{\Sigma'}(F) \). Thus we may assume that \(F \cap G = \emptyset \). Then there is some \(a \in \mathbb{Z}^n \) with \(\text{supp}_+(a) = G \) and \(\text{supp}_-(a) = F \), and so (5.3) follows from Theorem 5.1.

The next corollary is immediate from Theorem 5.4.
COROLLARY 5.5. Suppose that \(k[\Delta] \) is Gorenstein. Then \(H_j(k[\Delta]) = 0 \) for all \(i \neq \text{grade } J \) (i.e., the condition of Problem 3.6 is satisfied) if and only if for every face \(F \in \Delta \) the subcomplex \(\text{star}_G(F) \cap \Sigma \) is Cohen–Macaulay and has the same dimension as \(\Sigma \).

Remark 5.6. (1) Assume that a pair \((\Delta, \Sigma)\) satisfies the condition of Theorem 5.4. Then \(\Sigma \) itself is Cohen–Macaulay, since \(\text{star}_G(\emptyset) \cap \Sigma = \Sigma \). Moreover, for any facet \(F \) of \(\Delta \), \(\{ G \in \Sigma \mid G \subseteq F \} = \text{star}_G(F) \cap \Sigma \) is a Cohen–Macaulay complex of dimension \(s - 1 \). In particular, any facet of \(\Delta \) contains a facet of \(\Sigma \).

(2) Here we give a ring-theoretic meaning of \(\text{star}_G(F) \cap \Sigma \). Let \(k[\Delta]_s \) be the localization of \(k[\Delta] \) at the multiplicatively closed set generated by the monomial \(x^F \). Then the kernel of the composition \(S \to k[\Delta] \to k[\Delta]_s \) is \(I_{\text{star}_G(F)} \). Thus \(I_{\text{star}_G(F) \cap \Sigma} = I_{\text{star}_G(F)} + I_\Sigma \).

EXAMPLE 5.7. Checking the combinatorial condition of Theorem 5.4 is somewhat complicated, but the following examples satisfy the condition:

(1) Let \(\Sigma \) be the \(s \)-skeleton of a Cohen–Macaulay complex \(\Delta \). In this case, \(\text{star}_G(F) \cap \Sigma \) is the \(s \)-skeleton of the Cohen–Macaulay complex \(\text{star}_G(F) = 2^F \ast \text{lk}_G(F) \). Hence it is Cohen–Macaulay.

(2) Let \(\Delta \) be a \((d - 1)\)-dimensional balanced Cohen–Macaulay complex, let \(T \subset [d] \) be a subset with \(|T| = s \), and let \(\Sigma = \Delta_T \) be the rank-selected subcomplex (see [17, III, Section 4]). Then the pair \((\Delta, \Sigma)\) satisfies the condition of Theorem 5.4. In fact, for any \(F \in \Delta \), \(\text{star}_G(F) \) is a balanced Cohen–Macaulay complex again, and \(\text{star}_G(F) \cap \Sigma \) coincides with the rank-selected subcomplex \(\text{star}_G(F)_T \). Hence it is a Cohen–Macaulay complex of dimension \(s \) by [17, III, Theorem 4.5].

We can explain this example from a ring theoretical standpoint. As in [17, III, Section 4], let \(\kappa: [n] \to [d] \) be the coloring map of \(\Delta \). For \(j \in [d] \), define

\[
\theta_j = \sum_{\kappa(i) = j} x_i \in k[\Delta].
\]

By [17, Proposition 4.3], \(\theta_1, \ldots, \theta_d \) is a system of parameters of \(k[\Delta] \). If \(\kappa(i) = j \), then \(x_i \theta_j = x_i^2 \) in \(k[\Delta] \). Set \(J' := (\theta_j \mid j \notin T) \). Since \(J = (x_i \mid \kappa(i) \notin T) \), we have \(J \supset J' \supset J[2] \) and hence \(J = \sqrt{J'} \). Therefore, \(J \subset k[\Delta] \) is a set-theoretic complete intersection of codimension \(d - s \), and \(H_j(k[\Delta]) = H_j^J(k[\Delta]) = 0 \) for all \(i > d - s \). (This is true even if \(k[\Delta] \) is not Cohen–Macaulay.) On the other hand, since \(k[\Delta] \) is Cohen–Macaulay, \(H_j^J(k[\Delta]) = 0 \) for all \(i < d - s = \text{grade}(J) \). By the same reasoning, we also have \(H_j^J(\omega_{k[\Delta]}) = 0 \) for \(i \neq d - s \). So Remark 5.6 (1) gives another proof of [17, III, Theorem 4.5], which states that \(\Sigma \) is Cohen–Macaulay in this case.
Naturally, since Theorem 3.2 and Corollary 5.2 both express the same local cohomology in topological terms when \(k[\Delta] \) is Gorenstein, there must be some topological explanation for their equivalence. For example, consider the case where \(\Delta = 2^{|n|} \) and \(k[\Delta] = S \), as in Example 5.3. Terai’s formula and our Corollary 5.2 state that

\[
\left[H^i_\Delta(S) \right]_{(-1, \ldots, -1)} \cong \tilde{H}_{n-i-1}(\Sigma; k),
\]

while Theorem 3.2 gives

\[
\left[H^i_\Delta(S) \right]_{(-1, \ldots, -1)} \cong \tilde{H}^{i-1}(\|\Delta\| - \|\Sigma\|, \|\partial\Delta\| - \|\Sigma\|; k),
\]

where for \(\Delta = 2^{|n|} \) we have \(\partial \Delta = 2^{|n|} - \{n\} \). For simplicity, assume that \(I_S \neq 0 \) (i.e., \(\Sigma \neq 2^{|n|} \)). Then \(\|\Delta\| - \|\Sigma\| \) is contractible (since it is star-shaped with respect to the barycenter of the maximum face \(\{n\} \) of \(\Delta \)), and hence \(\tilde{H}^{i-1}(\|\Delta\| - \|\Sigma\|; k) = 0 \) for all \(i \). So the long exact sequence for cohomology shows that

\[
\tilde{H}^{i-1}(\|\Delta\| - \|\Sigma\|, \|\partial\Delta\| - \|\Sigma\|; k) \cong \tilde{H}^{i-2}(\|\partial\Delta\| - \|\Sigma\|; k).
\]

Thus Alexander duality on the \((n-2) \)-sphere \(\|\partial\Delta\| \) connects Theorem 3.2 and Terai’s formula.

In the general case, the situation is much more complicated. But, as we now explain, the relation between Theorem 3.2 and Corollary 5.2 is based on the “disguised” version of Alexander duality (Lemma 6.8), giving further confirmation for the observation (see, e.g., [14]) that in a combinatorial setting, Matlis duality corresponds to Alexander duality.

Recall that Corollary 5.2 says that

\[
H^i_j(k[\Delta])_a \cong \tilde{H}_{d-i-[F]-1}(\text{lk}_{\text{star}_a}(F_+ \cap \Sigma(F)); k)
\]

\[
\cong \tilde{H}_{d-i-[F]-1}(\text{lk}_{\text{star}_a}(F_+ \cup F_-) \cap \Sigma(F); k),
\]

where the second isomorphism is due to the easily checked equality

\[
\text{lk}_{\text{star}_a(A) \cap \Sigma(B)} = \text{lk}_{\text{star}_a(C \cup A) \cap \Sigma(B)} \text{ if } C \subseteq B.
\]

On the other hand, Theorem 3.2 says that

\[
H^i_j(k[\Delta])_a \cong \tilde{H}^{i-1}(s^{-1}(\text{star}_a(F_+)), s^{-1}(\text{del}_{\text{star}_a(F_+)}(F_-)); k)
\]

\[
\cong \tilde{H}^{i-1}(s^{-1}(\text{star}_a(F_+ \cup F_-)), s^{-1}(\text{del}_{\text{star}_a(F_+ \cup F_-)}(F_-)); k),
\]

where the first isomorphism is our original statement and the second isomorphism is Proposition 6.6.
Thus we need to show that when Δ is Gorenstein, and with the foregoing notation,
\[
\tilde{H}_{d-i-[F]}(\text{lk}_{\star}(F_+ \cup F_-) \cap \Sigma(F); k)
= \tilde{H}^{i-1}(s^{-1}(\pi_{\star}(F_+ \cup F_-)), s^{-1}(\pi_{\star}(F_+ \cup F_-)); k).
\]
Note that all complexes in this last equation are subcomplexes of
\[
\star(F_+ \cup F_-) = 2^F \ast 2^G \ast \text{lk}_{\Delta}((F_+ \cup F_-) - W).
\]
Note also that the last complex in the foregoing join is a link of a face in the homology sphere $\Delta' = \text{core}(\Delta)$, and hence a homology sphere itself.

Using Eq. (6.3), we can replace
\[
\star(F_+ \cup F_-) \text{ with } \Delta,
\]
and
\[
\star(F_+ \cup F_-) \cap \Sigma \text{ with } \Sigma, \quad F_- \text{ with } G
\]
(since we may assume that $F_+ \cup F_- \in \Delta$ by Corollary 3.3, we can keep the assumption $\Sigma \neq \emptyset$), and then we need only prove the following combinatorial topological statement:

If $\Delta = 2^F \ast 2^G \ast \Sigma$ for some homology sphere Σ and Σ is a subcomplex of Δ, then
\[
\tilde{H}_{d-i-[F]}(\text{lk}_{\Sigma}(F); k)
\equiv \tilde{H}^{i-1}(s^{-1}(\Sigma), s^{-1}(\pi_{\star}(G)); k),
\]
where $d - 1 = \dim \Delta$.

To prove this, first note that if F is not a face of Σ, then the left-hand side vanishes. The right-hand side will also vanish, since then some monomial m which divides x^F will lie in $I_{\Sigma} \setminus I_{\Delta}$ and give rise to a relative cone point in $(s^{-1}(\Sigma), s^{-1}(\pi_{\star}(G)))$.

Therefore, we may assume that F is a face of Σ, and then Proposition 6.7 implies that
\[
\tilde{H}^{i-1}(s^{-1}(\Sigma), s^{-1}(\pi_{\star}(G)); k)
\equiv \tilde{H}^{i-1}(s^{-1}(2^G \ast \Sigma), s^{-1}(\pi_{\star}(2^G \ast \Sigma)); k).
\]

Now we can further replace
\[
2^G \ast \Sigma \text{ with } \Delta
\]
and
\[
\text{lk}_{\Sigma}F \text{ with } \Sigma,
\]
and then we must prove the following:
If \(\Delta = 2^G \ast \emptyset \) for some homology sphere \(\emptyset \) and \(\Sigma \) is a subcomplex of \(\Delta \), then
\[
\tilde{H}_{d-i-1}(\Sigma; k) \cong \tilde{H}^{i-1}(s^{-1}(\Delta), s^{-1}(\text{del}_{\Delta}(G)); k),
\]
where \(d - 1 = \text{dim } \Delta \).

Starting with the right-hand side, we have
\[
\tilde{H}^{i-1}(s^{-1}(\Delta), s^{-1}(\text{del}_{\Delta}(G)); k) = \tilde{H}^{i-1}(s^{-1}(\Delta), s^{-1}(\partial \Delta); k)
\cong \tilde{H}^{i-1}(\|\Delta\| - \|\Sigma\|, \|\partial \Delta\| - \|\Sigma\|; k)
\cong \tilde{H}_{d-i-1}(\Sigma; k),
\]
where the second-to-last isomorphism uses Proposition 6.5, and the last isomorphism is the disguised Alexander duality lemma (Lemma 6.8).

6. APPENDIX: TOOLS FROM COMBINATIONAL TOPOLOGY

In this section we collect various definitions and facts from combinatorial topology needed in the paper. Good references for much of this material are [15, 3, Section 4.7; 2].

Let \(\Delta \) be a simplicial complex on vertex set \(V \), that is, a collection of subsets \(F \) (called faces) of \(V \) which is closed under inclusion. The dimension \(\text{dim } F \) of a face \(F \) is one less than its cardinality \(|F| \), and the dimension \(\text{dim } \Delta = \max_{F \in \Delta} \text{dim } F \). A maximal face under inclusion is called a facet. The topological space which is the geometric realization of \(\Delta \) is denoted by \(|\Delta| \). We write \(X \approx Y \) to mean that the topological spaces \(X \) and \(Y \) are homotopy equivalent, and \(X \cong Y \) to mean that they are homeomorphic. When using these symbols with simplicial complexes, we mean that the corresponding geometric realizations are homotopy equivalent or homeomorphic.

Given a face \(F \) of \(\Delta \), we can define three subcomplexes, called the star, deletion, and link of \(F \) within \(\Delta \), as follows:

\[
\begin{align*}
\text{star}_\Delta(F) &:= \{ G \in \Delta : G \cup F \in \Delta \}, \\
\text{del}_\Delta(F) &:= \{ G \in \Delta : F \nsubseteq G \}, \\
\text{lk}_\Delta(F) &:= \{ G \in \Delta : G \cup F \in \Delta, G \cap F = \emptyset \}.
\end{align*}
\]

Note that \(\text{lk}_\Delta(F) \) is a simplicial complex on the vertex set \(V - F \). Given two simplicial complexes \(\Delta_1 \) and \(\Delta_2 \) on disjoint vertex sets \(V_1 \) and \(V_2 \), their simplicial join \(\Delta_1 \ast \Delta_2 \) is the simplicial complex on vertex set \(V_1 \sqcup V_2 \) having a face \(F_1 \sqcup F_2 \) for every \(F_i \) in \(\Delta_i \), \(i = 1, 2 \). One can also define the
corresponding topological join \(X \ast Y\) of two spaces \(X, Y\) (see [15, Section 62]) so that

\[\|\Delta_1 \ast \Delta_2\| \equiv \|\Delta_1\| \ast \|\Delta_2\|\].

With these definitions, one can check that

\[\text{star}_d(F) \cup \text{del}_d(F) = \Delta,\]
\[\text{star}_d(F) \cap \text{del}_d(F) = \partial F \ast \text{lk}_d(F),\]
\[\text{star}_d(F) = 2\partial \ast \text{lk}_d(F),\]

where \(\partial F\) denotes the boundary complex of \(F\), i.e., all proper subsets of \(F\).

The \textit{suspension}, \(\text{Susp} \Delta\), of a simplicial complex (or a topological space) \(\Delta\) is the join \(S^0 \ast \Delta\), where \(S^0\) is a complex (space) having two disconnected vertices. More generally, when \(\Delta_1\) triangulates a \(d\)-sphere, one has \(\Delta_1 \ast \Delta_2 \equiv \text{Susp}^{d+1}\Delta_2\).

For a subspace \(Y\) of a topological space \(X\), we let \(X/Y\) denote the quotient space that shrinks \(Y\) to a point. The following fact is well known.

Proposition 6.1. For any subcomplex \(\Delta'\) of a simplicial complex \(\Delta\), we have

\[\tilde{H}^*(\Delta, \Delta'; k) \equiv \tilde{H}^*(||\Delta||, ||\Delta'||; k) \equiv \tilde{H}^*(||\Delta||/||\Delta'||; k)\]

where the cohomology in the leftmost expression is simplicial, and the other two cohomologies are singular.

The following proposition is a straightforward and well-known consequence of Eq. (6.2).

Proposition 6.2. For any face \(F\) in a simplicial complex \(\Delta\), we have

(i) \(||\Delta||/||\text{del}_d(F)|| \equiv \text{Sus}^{|F|}\|\text{lk}_d(F)\|\)

(ii) \(\tilde{H}^*(\Delta, \text{del}_d(F); k) \equiv \tilde{H}^*_{|F|}(\text{lk}_d F; k)\).

Let \(\text{Sd}\) denote the barycentric subdivision operator on simplicial complexes ([15, Section 15]). Given a subcomplex \(\Sigma\) of a simplicial complex \(\Delta\), let \(\text{Sd}(\Delta - \Sigma)\) denote the subcomplex of \(\text{Sd} \Delta\) induced on the vertices which are not barycenters of faces in \(\Sigma\).

Proposition 6.3 (see [3, Lemma 4.7.27]). Let \(\Delta\) be a simplicial complex and let \(\Delta'\) and \(\Sigma\) be two subcomplexes. Then the pair of spaces \((||\Delta|| - ||\Sigma||, ||\Delta'|| - ||\Sigma||)\) is relatively homotopy equivalent to (the geometric realizations of the pair

\[(\text{Sd}(\Delta - \Sigma), \text{Sd}(\Delta' - \Sigma)).\]

We sometimes wish to refer to the topology of a finite poset \(P\), by which we mean the geometric realization of its \textit{order complex}, the simplicial complex on vertex set \(P\) having the totally ordered subsets of \(P\) as faces.
LEMMA 6.4 (Relative Quillen Fiber Lemma). Let $f: P \to Q$ be an order-preserving map of posets, and let $Q' \subseteq Q$ be an induced subposet. If the posets $f^{-1}(Q_{\preceq q})$ and $f^{-1}(Q'_{\preceq q})$ are contractible for every $q \in Q$, $q' \in Q'$, then f induces a relative homotopy equivalence of the pairs $(P, f^{-1}(Q'))$ and (Q, Q').

Proof. By the usual Quillen fiber lemma ([2, (10.11); 3, Lemma 4.7.29]), f induces homotopy equivalences between P and Q and between $f^{-1}(Q')$ and Q'. But this is sufficient for f to induce a relative homotopy equivalence of the pairs by [5, Lemma 3].

We recall some terminology used in Section 3. Let Σ be a subcomplex of a simplicial complex Δ on vertex set $[n]$, with $I_\Sigma = (m_1, \ldots, m_\mu) + I_\Delta$; i.e., m_1, \ldots, m_μ are monomials corresponding to the minimal faces of $\Delta - \Sigma$. Define the order-preserving map

$$2^{[\mu]} \xrightarrow{s} 2^{[n]}$$

$$F \xrightarrow{s} \text{supp } \prod_{i \in F} m_i.$$

Note that since s is order-preserving, $s^{-1}(\Delta)$ is a simplicial complex on vertex set $[\mu]$, as is $s^{-1}(\Delta')$ for any other subcomplex Δ' of Δ. When we wish to emphasize the dependence of this map s on the pair (Δ, Σ), we write $s_{\Delta, \Sigma}$. However, note that if Δ' is a subcomplex of Δ, then those monomials in $\{m_i\}_{i=1}^\mu$ which correspond to faces of Δ' generate the image of $I_{\Sigma \cap \Delta'}$ in $k[\Delta']$, and consequently,

$$s^{-1}_{\Delta, \Sigma}(\Delta') = s^{-1}_{\Delta, \Sigma \cap \Delta'}(\Delta').$$

PROPOSITION 6.5. If Δ' is a subcomplex of Δ, then $(s^{-1}_{\Delta, \Sigma}(\Delta), s^{-1}_{\Delta, \Sigma}(\Delta'))$ is relatively homotopy equivalent to the pair of spaces $(||\Delta|| - ||\Sigma||, ||\Delta'|| - ||\Sigma||)$. In particular, $s^{-1}_{\Delta, \Sigma}(\Delta)$ is homotopy equivalent to $||\Delta|| - ||\Sigma||$.

Proof. The first assertion specializes to the second for $\Delta' = \emptyset$. To prove the first assertion, note that by Proposition 6.3 it is equivalent to show that $(s^{-1}_{\Delta, \Sigma}(\Delta), s^{-1}_{\Delta, \Sigma}(\Delta'))$ is relatively homotopy equivalent to the pair $(\text{Sd}(\Delta - \Sigma), \text{Sd}(\Delta' - \Sigma))$. By the definition of barycentric subdivision, the latter is a pair of order complexes for the posets of faces in $(\Delta - \Sigma, \Delta' - \Sigma)$. Thus if we momentarily regard $\Delta - \Sigma, \Delta' - \Sigma$ as posets, then the result follows from Lemma 6.4 if we can show that

- $s^{-1}_{\Delta, \Sigma}(\Delta) = s^{-1}_{\Delta, \Sigma}(\Delta - \Sigma)$ (and similarly for Δ') and
- for each face F in Δ but not in Σ, the subposet $s^{-1}_{\Delta, \Sigma}(\Delta - \Sigma \subseteq F)$ is contractible (and similarly for Δ').

To see the first assertion, note that if $G \subseteq [\mu]$ lies in $s^{-1}_{\Delta, \Sigma}(\Delta)$, then this means that $\text{supp}(\prod_{j \in G} m_j)$ is a face F of Δ which does not lie in Σ (since
its support contains the support of at least one m_j in I_Σ). For the second
assertion, note that $s^{-1}_{\Delta}(\Delta - \Sigma) \subseteq F$ contains a unique
maximum element, namely \{ $j \in [\mu]$ $|$ supp $m_j \subseteq F$ \}.

The next proposition follows immediately using Eq. (6.2) and excision.

Proposition 6.6. $\tilde{H}_i(s^{-1}(\Delta), s^{-1}(\text{del}_\Delta(F)); k) \cong \tilde{H}_i(s^{-1}(\text{star}_\Delta F), s^{-1}(\text{del}_{\text{star}_\Delta F}(F)); k)$.

The next proposition is used in Section 5 in showing the equivalence of
Corollary 5.2 and Theorem 3.2 when $k[\Delta]$ is Gorenstein.

Proposition 6.7. Let Φ be a simplicial complex and let $\Phi' \subseteq \Phi$ be a
subcomplex. Let Δ and Δ' be simplicial complexes which are joins
\[\Delta := 2^F \ast \Phi \]
and
\[\Delta' := 2^F \ast \Phi', \]
in which F is a simplex on a vertex set disjoint from that of Φ, Φ'. Assume
that Σ is a subcomplex of Δ containing the face F. Then the pair
$(s^{-1}_{\Delta}((\Delta - \Sigma)), s^{-1}_{\Delta'}((\Delta'))) \in \text{relatively homotopy equivalent to the pair (}$
\[(s^{-1}_{\Phi}(\text{lk}_\\Phi(F)), s^{-1}_{\Phi'}(\text{lk}_\\Phi'(F))). \]

Equivalently, via Proposition 6.5, the pair $(||\Delta|| - ||\Sigma||, ||\Delta'|| - ||\Sigma||)$ is
relatively homotopy equivalent to the pair $(||\Phi|| - ||\text{lk}_\\Phi(F)||, ||\Phi'|| - ||\text{lk}_\\Phi'(F)||)$.

Proof. By Proposition 6.3, it suffices to show that $(\text{Sd}(\Delta - \Sigma), \text{Sd}(\Delta' - \Sigma))$ is
relatively homotopy equivalent to $(\text{Sd}(\Phi - \text{lk}_\\Phi(F)), \text{Sd}(\Phi' - \text{lk}_\\Phi'(F)))$.

Regarding these as pairs of order complexes for the pairs of posets
$(\Delta - \Sigma, \Delta' - \Sigma)$ and $(\Phi - \text{lk}_\\Phi(F), \Phi' - \text{lk}_\\Phi'(F))$, we can try to apply
Lemma 6.4. To this end, define an order-preserving poset map
\[\Delta - \Sigma \overset{f}{\rightarrow} \Delta \]
\[G \overset{g}{\leftarrow} G \cup F. \]
Every face in the image of f clearly contains F, so one can define a map
on the image in the reverse direction that sends $H \mapsto H - F$. It is easy to
check that this gives an isomorphism between the image poset $f(\Delta - \Sigma)$
(resp. $f(\Delta' - \Sigma)$) and the poset $\Phi - \text{lk}_\\Phi(F)$ (resp. $\Phi' - \text{lk}_\\Phi'(F)$). Thus it
only remains to show that f induces a relative homotopy equivalence, i.e.,
the subposet $f^{-1}(\Delta_{\subseteq H})$ of $\Delta - \Sigma$ is contractible for every H in the
image of f. But $f^{-1}(\Delta_{\subseteq H})$ has H as its unique maximum element H. \[\]

Our last result is a disguised form of Alexander duality, which turns out
to be the crux of the equivalence of Corollary 5.2 and Theorem 3.2 when
$k[\Delta]$ is Gorenstein.

LOCAL COHOMOLOGY OF STANLEY-REISNER RINGS 733
Lemma 6.8. Let \mathcal{S} be a simplicial homology sphere (over some coefficient ring), and let $\Delta = 2^F \ast \mathcal{S}$ for some simplex F (possibly empty) on a vertex set disjoint from \mathcal{S}. Let $d = \dim \Delta$ and let Σ be subcomplex of Δ.

Then

$$\tilde{H}_i(\Sigma; k) \cong \tilde{H}_i(\|\Delta\| - \|\Sigma\|, \|\partial \Delta\| - \|\Sigma\|; k)$$

for $i + j = d - 1$, where $\partial \Delta = \partial F \ast \mathcal{S}$ (and the coefficient ring has been suppressed for the sake of brevity).

Proof. First, deal with the easy case where F is empty. Then $\Delta = \mathcal{S}$ is a homology d-sphere, and $\partial \Delta = \emptyset$. Consequently, $\Delta = \mathcal{S}$ is a homology d-sphere. The key idea is to enlarge Δ in a controlled way, so as to obtain yet another homology sphere $\tilde{\mathcal{S}}$, use excision, and then rely on Alexander duality within \mathcal{S} (see Section 71).

If $F \neq \emptyset$, then ∂F is a sphere, and hence $\partial \Delta = \partial F \ast \mathcal{S}$ is another homology sphere. The key idea is to enlarge Δ in a controlled way, so as to obtain yet another homology sphere $\tilde{\mathcal{S}}$, use excision, and then rely on Alexander duality within $\tilde{\mathcal{S}}$. Define this new homology sphere $\tilde{\mathcal{S}}$ by adding a cone vertex v over the subcomplex $\partial \Delta$:

$$\tilde{\mathcal{S}} := \Delta \cup (v \ast \partial \Delta).$$

Proposition 6.9. $\tilde{\mathcal{S}}$ is a homology d-sphere.

Assuming this proposition for the moment, we can complete the proof of Lemma 6.8. We have the following isomorphisms, which are justified later:

$$\tilde{H}_i(\|\Delta\| - \|\Sigma\|, \|\partial \Delta\| - \|\Sigma\|; k) \cong \tilde{H}_i(\|\tilde{\mathcal{S}}\| - \|\Sigma\|, \|v \ast \partial \Delta\| - \|\Sigma\|; k)$$

$$\cong \tilde{H}_i(\tilde{\mathcal{S}}; k)$$

for $i + j = d - 1$.

The first isomorphism comes from excision, we excise away

$$(\|v \ast \partial \Delta\| - \|\partial \Delta\|) - \|\Sigma\|$$

from the pair on the right-hand side.

The second isomorphism is due to the fact that $\|v \ast \partial \Delta\| - \|\Sigma\|$ is a contractible subspace of $\|\tilde{\mathcal{S}}\| - \|\Sigma\|$; it is star-shaped with respect to v,
since Σ can intersect only the cone $v \ast \partial \Delta$ in a subset of its base $\partial \Delta$. Consequently, the homology of $\|v \ast \partial \Delta\| - \|\Sigma\|$ vanishes, and then the long exact sequence for the pair $(\|\hat{\Delta}\| - \|\Sigma\|, \|v \ast \partial \Delta\| - \|\Sigma\|)$ gives the isomorphism.

The third isomorphism is Alexander duality within $\hat{\Sigma}$, using Proposition 6.9.

Proof. We must show for every face G in $\hat{\Sigma}$, that lk_G has the homology of a sphere of the same dimension as lk_G.

We first deal with the case where $G = \emptyset$. That is, we must show that $\hat{\Sigma}$ itself has the homology of a d-sphere. This follows from the Mayer–Vietoris exact sequence applied to

$$\hat{\Sigma} = \Delta \cup (v \ast \partial \Delta),$$
$$\partial \Delta = \Delta \cap (v \ast \partial \Delta),$$

and the fact that $\partial \Delta = \partial F \ast \hat{\Sigma}$ is a homology sphere.

We now deal with two other cases for G, depending on whether or not it contains v.

Case 1. $v \notin G$. If we write $G = F' \sqcup G'$, where $F' \subseteq F$ and G' is a face of $\hat{\Sigma}$, then we can easily check that

$$\text{lk}_G = \Delta' \cup (v \ast \partial \Delta'),$$

where Δ' is the join $\partial F' \ast \text{lk}_G$. Since Δ' is again a simplex joined with a homology sphere (like Δ was), this link has the same form as $\hat{\Sigma}$ and hence has the correct homology by the $G = \emptyset$ case that we just explored.

Case 2. $v \in G$. Then we can easily check that

$$\text{lk}_G = \text{lk}_{v \ast \partial \Delta} = \text{lk}_{\partial \Delta}(G - v).$$

Hence we are done in this case, because $\partial \Delta$ is a homology $(d - 1)$-sphere.

\section*{Acknowledgments}

The authors thank Professor Gennady Lyubeznik for valuable comments. The first author is partially supported by the NSF. This research was began when the third author was visiting Mathematical Science Research Institute and University of California Berkeley, he is grateful to these institutes for their warm hospitality.
REFERENCES

18. N. Terai, Local cohomology modules with respect to monomial ideals, preprint.